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Pulmonary arterial hypertension (PAH) is a rare disease characterized by high blood

pressure in the pulmonary circulation driven by pathological remodeling of distal

pulmonary arteries, leading typically to death by right ventricular failure. Available

treatments improve physical activity and slow disease progression, but they act primarily

as vasodilators and have limited effects on the biological cause of the disease—the

uncontrolled proliferation of vascular endothelial and smooth muscle cells. Imbalanced

signaling by the transforming growth factor-β (TGF-β) superfamily contributes extensively

to dysregulated vascular cell proliferation in PAH, with overactive pro-proliferative

SMAD2/3 signaling occurring alongside deficient anti-proliferative SMAD1/5/8 signaling.

We review the TGF-β superfamily mechanisms underlying PAH pathogenesis, superfamily

interactions with inflammation and mechanobiological forces, and therapeutic strategies

under development that aim to restore SMAD signaling balance in the diseased

pulmonary arterial vessels. These strategies could potentially reverse pulmonary arterial

remodeling in PAH by targeting causative mechanisms and therefore hold significant

promise for the PAH patient population.
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TGF-β SUPERFAMILY DYSREGULATION IS A CRITICAL
COMPONENT OF PAH

In pulmonary arterial hypertension (PAH), pathologic vascular remodeling distorts the gross- and
micro-scale structure of the pulmonary arterial vasculature, severely disrupting blood flow patterns
throughout the cardiopulmonary circulation. The primary pathology is thought to originate in the
small distal arterioles, in which uncontrolled proliferation of vascular cells results in narrowing
and occlusion of the vascular lumen. Loss of luminal space in turn increases pulmonary vascular
resistance and pulmonary arterial pressure, leading to strain on the right cardiac ventricle and
ultimately to heart failure (1).

Multiple cell types of the pulmonary arterial wall contribute to vascular remodeling in PAH
(Figure 1) (2). Smooth muscle cells (SMCs) over-proliferate and thereby thicken vessel walls
and cause vascular muscularization, including around the distal arterioles where SMCs are not
normally found. Endothelial cells (ECs) also over-proliferate and in later stages of disease can
form neointimal lesions that obstruct distal arterioles (3). Accordingly, targeting the proliferation
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FIGURE 1 | Cellular, molecular, and biomechanical progression of PAH in the pulmonary arterial wall. Under normal conditions, the pulmonary distal arterioles

comprise an intimal monolayer of ECs and are largely devoid of a medial layer with SMCs. Laminar blood flow patterns promote BMPRII-pathway signaling in ECs and

maintain vascular quiescence (1). Genetic mutations or combined insults lead to insufficient BMPRII levels and SMAD1/5/8 signaling in multiple vascular cell types.

Early events during PAH pathogenesis include the onset of vascular wall stiffening and inflammatory responses, including infiltration by diverse inflammatory cell types.

Apoptotic ECs appear early but are progressively replaced by apoptosis-resistant and hyperproliferative ECs, which ultimately form disorganized neointimal lesions

(2–4). SMAD2/3 pathway-activating ligands including TGF-β, activin A, GDF8, and GDF11 become upregulated and contribute to arterial remodeling. Gremlin-1, a key

pathogenic protein in PAH, reduces BMPRII-pathway signaling by antagonizing specific BMPs. SMCs accumulate in the medial layer, causing distal muscularization.

Fibroblasts in the adventitial layer become activated and synthesize fibrotic extracellular matrix. PVR, pulmonary vascular resistance; mPAP, mean pulmonary arterial

pressure.

of SMCs and ECs to treat PAH has been the subject of extensive
efforts over the last two decades. Studies on the platelet-
derived growth factor receptor pathway, which is strongly
upregulated in the distal pulmonary arteries of PAH patients
and contributes to over-proliferation (4), have suggested that
reversal of pathology is clinically achievable (5, 6)—although
safer alternative strategies are desirable (7). Research into
PAH disease mechanisms has also highlighted the critical
roles of other signal transduction pathways, especially those of
the transforming growth factor-β (TGF-β) superfamily, which
interact with inflammatory processes and biomechanical forces
to regulate EC and SMC proliferation.

The TGF-β superfamily features more than 30 ligands,
which together regulate a great variety of developmental
and homeostatic processes in all major organs including the
vasculature (8). Indeed, dysregulation of TGF-β superfamily
signaling has been implicated in numerous cardiomyopathies
and vasculopathies, including atherosclerosis, vascular
calcification, Marfan syndrome, Loeys-Dietz syndrome, and
hereditary hemorrhagic telangiectasia, in addition to PAH
(9–12). Typically, binding of a dimeric TGF-β superfamily
ligand promotes assembly of a heterotetrameric signaling
complex comprising two type I and two type II receptor
serine/threonine kinases. Upon ligand binding, the constitutively
active type II receptor phosphorylates the type I receptor,
activating the type I receptor intracellular kinase domain.

Signal is then propagated through various canonical (involving
SMAD transcription factors) and non-canonical (or SMAD-
independent) pathways. In PAH, recent evidence indicates
a signaling imbalance between the two principal canonical
pathways, with underactive SMAD1/5/8 signaling occurring
alongside overactive SMAD2/3 signaling in pulmonary
arterial ECs and SMCs (13). In the remaining sections, we
describe how this SMAD signaling imbalance influences the
exuberant cell proliferation underlying vascular remodeling
and describe therapeutic approaches for either attenuating
excessive SMAD2/3 signaling or restoring deficient SMAD1/5/8
signaling in diseased pulmonary vasculature (14–20). The
potential involvement of non-canonical TGF-β superfamily
pathways in PAH pathogenesis is poorly understood, but
these signaling mechanisms have been implicated in related
pathological conditions, such as fibrosis, and merit further study.
We therefore refer the reader to previous reviews covering
non-canonical signaling in disease (21–25).

DEFICIENT SIGNALING IN
ANTI-PROLIFERATIVE SMAD1/5/8
PATHWAY

Studies exploring the human genetics of PAH have revealed
important insights into PAH pathobiological mechanisms.
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Mutations in BMPR2, which encodes bone morphogenetic
protein receptor type II (BMPRII), were discovered in 2000
as the first known genetic cause of PAH (26, 27). Such
mutations account for >70% of inherited PAH cases and 20% of
spontaneous cases, by far the largest proportion for any single
gene locus (28–30). Reduced levels of BMPRII protein have been
found in other forms and etiologies of PAH, even in the absence
of BMPR2mutation, suggesting that this signaling pathway could
be a point of convergence among multiple distinct PAH disease
etiologies (31–33).

BMPRII pathway activity is important in both pulmonary
arterial ECs and SMCs, although the two vascular cell types
appear to depend on different BMPRII ligands and on different
BMPRII signaling outputs. Circulating bone morphogenetic
protein 9 (BMP9) and BMP10 are thought to be critical
quiescence factors in the pulmonary arteries and act primarily
upon ECs (34). Mice with Bmpr2 ablated selectively in ECs
develop PAH-like disease, including proliferating ECs and
SMCs, highlighting the importance of BMPRII signaling in the
endothelium in particular (35). In addition, BMPRII-deficient
human ECs in culture undergo enhanced transformation to a
proliferative and synthetic mesenchymal phenotype, suggesting
that BMPRII-mediated signaling in the endothelium preserves
vascular structure by promoting EC quiescence (36, 37). In
contrast, BMP2 and BMP7 promote SMC apoptosis through
BMPRII (38), and BMP4 reduces SMC proliferation (39, 40).
Thus, loss of BMPRII from SMCs could decrease BMP2/4/7
signaling and result in the accumulation of apoptosis-resistant
and hyperproliferative SMCs—hallmarks of distal arterial
muscularization in PAH. Gremlin-1, an endogenous antagonist
of BMP2/4/7, is markedly upregulated in PAH (Figure 1) (41, 42),
which could potentially account for reduced BMPRII pathway
activity in patients with normal BMPR2 expression. Notably,
recent evidence indicates that BMPRII-deficient macrophages
are also important contributors to vascular remodeling in PAH,
underscoring the complexity of PAH pathogenesis and the
interactions between vascular cell types of different lineages (43).

Interestingly, mutations associated with PAH have also
been discovered for several TGF-β superfamily members that
interact functionally with BMPRII in pulmonary ECs and
SMCs (44, 45). Additional PAH risk genes include those
encoding the BMPRII ligands BMP9 and BMP10 (46–48); the
BMPRII signaling partners activin receptor-like kinase 1 (ALK1)
and endoglin (49–51); the BMPRII transcriptional mediators
SMAD1, SMAD4, and SMAD8 (52, 53); and the scaffolding
protein caveolin-1 (54–56), which regulates BMPRII signaling
through its localization and internalization. Although not all
PAH risk factors are associated with BMPRII function, the
striking enrichment for TGF-β superfamily members clearly
identifies the BMPRII signaling axis as a pathway necessary
for pulmonary vascular homeostasis (44). Together, evidence
stemming from human genetics and preclinical experiments
suggests that the BMP-BMPRII-SMAD1/5/8 pathway performs
a protective function and is necessary to prevent vascular cell
proliferation and consequent pathologic vascular remodeling
(Figure 1). However, it is important to note that experiments
in vitro reveal that BMPRII-deficient ECs could gain SMAD1/5

responsivity to TGF-β through lateral signaling (36), suggesting
possible additional levels of signaling complexity in a tissue
context. It will therefore be important to resolve the states
of SMAD1/5/8 and SMAD2/3 phosphorylation in a cell type–
specific manner in the lungs of PAH patients.

OVERACTIVE SIGNALING IN
PRO-PROLIFERATIVE SMAD2/3 PATHWAY

Whereas the BMPs signal predominantly through the
SMAD1/5/8 canonical pathway, other TGF-β superfamily
members, notably TGF-β and the activin-class ligands, instead
signal mainly through SMAD2/3. Recent evidence has revealed
pathogenic roles for multiple SMAD2/3 pathway-activating
ligands in PAH vascular remodeling and in the control of
vascular cell proliferation (13, 57), providing important new
targets for therapeutic development.

In PAH patients, elevated TGF-β levels have been detected
in remodeled distal arterioles and in the circulation (Figure 1)
(58–60). TGF-β can inhibit apoptosis of SMCs through activation
of a non-canonical PI3K/AKT pathway and can promote
SMC proliferation through a non-canonical PTEN-dependent
pathway (61, 62). Blockade of signaling by one or more
TGF-β isoforms using a soluble ligand trap (57), a pan–
TGF-β antibody (63), or a TGF-β receptor antibody (64)
demonstrates that TGF-β signaling plays a direct role in vascular
remodeling and narrowing. Systemic administration of a TGF-
β ligand trap decreases phosphorylated SMAD2 in the lungs
of a PAH rat model, suggesting that TGF-β exerts at least
some of its remodeling effects through canonical signaling in
addition to non-canonical pathways (57). Beyond its direct
effects in vascular remodeling, TGF-β also induces expression of
endothelin-1 (ET-1) by ECs, an additional pathogenic factor in
PAH (65). Increased levels of ET-1 reduce BMPRII expression
(66), and BMPRII knockdown increases ET-1 (67), suggesting
that a positive feedback loop could link diminished BMPRII
output with enhanced signaling by TGF-β and ET-1 during
PAH pathogenesis.

Activin-class ligands, which include activin A, growth
differentiation factor 8 (GDF8), and GDF11, have more recently
been implicated in PAH pathogenesis (13). These ligands,
like TGF-β isoforms, activate SMAD2/3 signaling and might
therefore act in concert with TGF-β, exerting pathogenic effects
through overlapping or distinct mechanisms during pathologic
vascular remodeling in PAH. Immunohistochemical evidence
indicates that activin A, GDF8, and GDF11 are upregulated
in small pulmonary arteries of PAH patients and PAH rodent
models (Figure 1) (13). As we describe further below, concurrent
inhibition of multiple activin-class ligands imparts robust
protection in PAH rodent models and in phase 2 clinical
trials. The individual contributions made by activin A (68) and
GDF11 (69) have been explored in preclinical studies. Activin
A in particular appears to play a substantial pathogenic role:
it is upregulated by ECs in PAH lung tissues, can perturb
EC function in culture, causes BMPRII downregulation, and
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when overexpressed selectively in mouse ECs can cause PAH-
like disease featuring muscularized pulmonary arteries and right
heart hypertrophy (68). Selective ablation of Gdf11 in mouse
ECs protects against experimental PAH (69), suggesting that
GDF11 might act similarly to activin A, a close phylogenic
relative (70). Notably, GDF11 can signal through the type
I receptor ALK5, better known as the principal SMAD2/3-
activating receptor used by TGF-β (71, 72), providing a potential
mechanism for convergence of GDF11- and TGF-β-mediated
signals. Given emerging evidence of GDF8 involvement in
vascular dysfunction and chronic inflammatory disease (11, 12,
73, 74), it will be important in future studies to dissect the
pathogenic contributions made specifically by GDF8, if any,
to vascular remodeling in PAH. Whether any of the activin-
class ligands drive pathologic vascular remodeling processes
through non-canonical signaling mechanisms has not yet been
investigated to our knowledge.

In addition to their roles in pathologic vascular cell
proliferation, TGF-β superfamily ligands also control the
excessive deposition of extracellular matrix, or fibrosis, that leads
to vascular wall stiffness in later stages of PAH progression
(Figure 1) (75). TGF-β1 in particular has long been regarded as
a master regulator of fibrosis, but accumulating evidence also
implicates TGF-β2 and TGF-β3 isoforms in fibrotic processes
potentially relevant to PAH vascular remodeling (58, 76, 77).
Individually or in combination, the three TGF-β isoforms are
thought to promote myofibroblast differentiation, drive the
synthesis and deposition of extracellular matrix proteins, and
might stimulate mesenchymal transformation of endothelial
or other cell types in the pulmonary arteries (36, 78).
Interestingly, lung BMPRII and phosphorylated SMAD1/5/8
levels were found to be decreased in a model of pulmonary
hypertension associated with pulmonary fibrosis, suggesting
that SMAD signaling balance might coordinately regulate
fibrosis together with cell proliferation (79). Many important
mechanisms of arterial fibrogenesis in PAH, including the
potential involvement of activin-class ligands, require further
study. It is clear, however, that PAH pathogenesis is characterized
by multiple pathogenic ligands acting in parallel—in complex
and potentially combinatorial modes—upon distinct classes of
vascular cell types.

INTERPLAY BETWEEN INFLAMMATION
AND TGF-β SUPERFAMILY SIGNALING IN
PAH

Partial disruption of pulmonary vascular BMPRII signaling is not
sufficient to initiate PAH pathogenesis because only a subset of
mutation carriers is thought to develop overt disease. For BMPR2
mutation carriers, penetrance is estimated to be∼27% (14–42%)
(28–30, 80, 81). As such, additional stimuli have been proposed
as “second hits,” which could potentially decrease BMPRII
expression or activity below a certain threshold necessary for
disease. Inflammation is considered one likely candidate for a
second hit in PAH (82, 83). In animal models, inflammation
precedes clear evidence of structural alterations and might be a

key determinant of disease onset and progression (84). Multiple
classes of immune cells, including macrophages, T cells, and
neutrophils, have been identified in the vicinity of remodeled
pulmonary arteries of PAH patients and PAH rodent models
(Figure 1) (85, 86). Furthermore, inflammatory gene signatures
have been found in cardiac and pulmonary tissues from patients
and animal models of PAH (87).

Multiple lines of evidence indicate a close relationship
between inflammation and BMPRII pathway signaling during
PAH pathogenesis. For example, mice heterozygous for a
Bmpr2 null allele, but not wild-type controls, become more
likely to develop PAH-like disease when overexpressing 5-
lipoxygenase, which causes a sustained inflammatory response
(88). Similarly, Bmpr2 haploinsufficient rats are more prone to
inflammation-induced PAH and exhibit evidence of apoptosis-
resistant and proliferative ECs and enhanced mesenchymal
transformation (89). Impaired BMPRII activity is also associated
with pulmonary overexpression of inflammatory mediators
including interleukin-6 (IL-6) and granulocyte-macrophage
colony-stimulating factor, which are involved in leukocyte
recruitment and PAH pathogenesis (90–92). Finally, mice with
Bmpr2 ablated from monocyte-lineage macrophages exhibited
muscularized pulmonary arteries and increased right ventricular
systolic pressure after Sugen-hypoxia treatment while depletion
of macrophages with clodronate reversed these parameters (43).
Together, these studies suggest that BMPRII-mediated signaling
within the pulmonary vasculature normally protects against
inflammation-induced vascular remodeling.

If levels of BMPRII activity become deficient, then otherwise
innocuous inflammatory signals could initiate a feed-forward
loop of pathological signaling by TGF-β (36), activin-class
ligands (13), and other proinflammatory cytokines (43). IL-
6 is a key inflammatory signal upregulated in the serum and
lungs of patients with PAH (93). Transgenic mice overexpressing
IL-6 in the lungs exhibit pulmonary arterial muscularization
and proliferative arteriopathy, indicating that this molecule
regulates multiple pathologic remodeling processes in PAH (90).
At least some of these effects in IL-6 transgenic mice are
probably mediated by enhanced TGF-β signaling, as IL-6 has
been demonstrated to augment TGF-β1 responses by reducing
turnover of TGF-β receptors from the plasma membrane (94).
The observation that BMPRII pathway signaling normally
inhibits IL-6 expression in pulmonary vasculature suggests
a potential mechanism by which BMPR2 haploinsufficiency
provides a vulnerable setting for runaway inflammatory and
fibrotic signaling (95).

INTERPLAY BETWEEN
MECHANOBIOLOGY AND TGF-β
SUPERFAMILY SIGNALING IN PAH

Biomechanical forces attributable to arterial physical properties
and blood flow play prominent roles in vascular remodeling.
Together with inflammatory signals, biomechanical forces
and TGF-β superfamily signaling interact reciprocally during
vascular homeostasis and disease initiation (96). Pathologic
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vascular remodeling in PAH is characterized both by narrowing
of the distal pulmonary arterioles and resultant dilation of
the larger, more proximal arteries. Changes in the width of
the vessel lumen are accompanied by increased thickness and
stiffness of vessel walls, properties that together reinforce the
development of turbulent blood flow patterns throughout the
pulmonary arterial tree (Figure 1). Turbulent flow itself in
turn contributes to dysfunction and excessive proliferation of
ECs, leading to neointimal lesions, and vascular occlusion
(75). These structural, biomechanical, and proliferative changes
could establish a positive feedback loop of pathologic vascular
remodeling, especially around vascular branch points where
turbulent flow forces are most pronounced. Indeed, neointimal
lesions of proliferative ECs are found primarily at branch
points (75). Furthermore, detailed temporal analysis in rodent
PAH models reveals that arterial stiffening occurs early in
the disease process, prior to hemodynamic changes and right
ventricular dysfunction, suggesting that vessel wall stiffening is
one determinant of disease onset (97).

Changes in the mechanical properties of pulmonary blood
flow are interpreted by TGF-β superfamily receptors located in
endothelial cells and affect changes in canonical superfamily
signaling pathways. For example, steady-state laminar flow, the
pattern typical of healthy vasculature, promotes EC quiescence by
facilitating activation of the BMPRII-SMAD1/5/8 axis (Figure 1)
(98). This signaling pathway prevents cell cycle progression by
ECs and contributes to the stabilization of EC cellular junctions,
preventing vascular remodeling processes. Laminar blood flow
also promotes expression of the key BMPRII partner ALK1
(98) and promotes its association with the coreceptor endoglin,
mechanisms that sensitize ECs to BMP9 signaling and aid
in BMPRII pathway activation (99, 100). ALK1 therefore acts
as a critical molecular link between blood flow and vascular
quiescence (101). Furthermore, caveolin-1, itself a PAH risk
factor that is regulated by shear stress forces, is required for
proper membrane localization of BMPRII (102, 103). In elegant
contrast with the quiescence-promoting role for the BMPRII
pathway, disturbed flow patterns stimulate arterial remodeling
through a mechanism dependent upon endothelial SMAD2/3
and ALK5 signaling (104, 105). These studies suggest an
interesting model for the onset of PAH pathogenesis in which
loss of BMPRII or one of its signaling partners removes a flow-
regulated brake upon SMAD2/3-driven remodeling processes
by pulmonary vascular ECs. Inflammation could enhance this
pathogenic process by further diminishing BMPRII levels,
and remodeling could beget further remodeling by disrupting
laminar flow patterns important for BMPRII pathway activity
(Figure 1).

TGF-β isoforms are prominent among superfamily ligands
that require mechanical activation from a latent state to engage
cognate receptors (8). Briefly, TGF-β isoforms are synthesized
as inactive precursors consisting of a prodomain—referred to as
the latency-associated peptide (LAP)—together with the mature
ligand and are attached to extracellular matrix proteins through
association with latent TGF-β binding proteins (LTBPs). Release
of an active signaling domain from the inert TGF-β/LTBP
complex depends upon the physical stiffness of the extracellular
environment. Thus, it has long been hypothesized that pathologic

TGF-β signaling in PAH and related fibrotic conditions operates
through a positive feedback loop of extracellular matrix
deposition, increased stiffness, and further TGF-β activation
(106, 107). Proper sequestration of latent TGF-β complexes by
LTBP proteins is known to be critical for the spatial and temporal
regulation of TGF-β activation during homeostasis and disease
(108) and might facilitate rapid signaling responses to physical
insults. As discussed further below, the many types of proteins
that control TGF-β localization and activity, including RGD-
integrins, metalloproteinases, and thrombospondin-1, provide
potential therapeutic targets for PAH treatment (109).

TARGETING DEFICIENT SMAD1/5/8
PATHWAY SIGNALING

In the two decades since BMPRII deficiency was first implicated
in the development of PAH, many approaches to promote
SMAD1/5/8 pathway signaling in the pulmonary vasculature
have been evaluated in PAHmodels and, in a few cases, clinically
(Table 1).

Restoration of BMPRII Expression
Preclinical studies have investigated delivery of the wild-type
BMPR2 gene by various methods to remedy BMPRII deficiency
(110, 111, 132–134). These studies indicate that delivery of
exogenous BMPR2 to the pulmonary vascular endothelium can
improve cardiopulmonary parameters in two different rodent
models of PAH, in some cases on a preventive basis and in other
cases therapeutically. As noted previously (15), two limitations
of using viral vectors to deliver BMPR2 to the endothelium
are the transient nature of adenoviral transgene expression
and the potential for deleterious mutations following genomic
integration. Alternativemethods of BMPR2 delivery are therefore
under investigation (134, 135). BMPR2 gene delivery has not yet
been studied clinically.

Epigenetic mechanisms, notably including hypermethylation
of the BMPR2 promoter, are implicated in PAH pathogenesis
(136). The transcriptional regulator switch-independent 3a
(SIN3a), recently found to be dysregulated in PAH patients and
rodent models, promotes BMPR2 expression in PASMCs through
demethylation of its promoter (112). Increased BMPRII levels in
these cells were accompanied by higher levels of pSMAD1/5/8,
confirming activation of this pathway. Intratracheal delivery
of SIN3a by adenoviral vector restored BMPRII expression,
increased levels of pSMAD1/5/8, and improved cardiopulmonary
endpoints in two rat models of PAH (112). This virally mediated
approach to indirectly elevating BMPR2 expression is associated
with the same limitations as those noted above for direct BMPR2
delivery. In addition, as it relies on the endogenous BMPR2
gene, this approach is expected to be more effective in patients
with reduced expression of wild-type BMPR2 than in patients
harboring BMPR2 inactivating mutations.

Other diverse approaches for elevating BMPRII levels
have yielded positive results in preclinical models of PAH. A
promising approach involves activation of the orphan nuclear
receptor Nur77, which is a key regulator of proliferation
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TABLE 1 | Agents targeting canonical TGF-β superfamily pathways for PAH.

Pathway branch Target Agent and mechanism Preclinical

activity

Clinical evaluation

Study type NCT ID Status

SMAD1/5/8 BMPR2 gene AdBMPR2 + Fab-9B9 or AdCMVBMPR2myc

+ Fab-9B9 (adenoviral delivery)

(110, 111) – – –

BMPR2 promoter

hypermethylation

Adenoviral delivery of SIN3a (112) – – –

BMPRII miR-20a inhibitor (antagomiR disinhibits

BMPRII expression)

(113) – – –

6-Mercaptopurine (activation of Nur77) (114) – – –

4-Phenylbutyrate (rescue of misfolded BMPRII) (115) – – –

Ataluren/PTC124 (translational read-through of

premature termination mutations)

(116) – – –

BMP9 Recombinant BMP9 (activation of BMPRII) (117) – – –

Anti-BMP9 antibody (immunoneutralization) (118) – – –

BMP2, BMP4, BMP7 Anti-gremlin1 antibody (disinhibition of specific

BMPs)

(119) – – –

BMPRII-ALK1 signaling FK506/tacrolimus (disinhibition of ALK1) (120, 121) Phase 2a 01647945 (122)

Other – (123)

Downstream target

genes

Stabilized apelin analogs (activation of APJ) (124, 125) Other 01457170 (126)

Nutlin-3 (rescue of p53-PPARγ complex) (127) – – –

SMAD2/3 ALK5 SD-208, SB-525334 (TKI) (128, 129) – – –

ALK5, TGFBRII Anti-TGF-β receptor antibody

(immunoneutralization)

(64) – – –

TGF-β1, TGF-β2,

TGF-β3

Pan anti-TGF-β antibody (multi-ligand

sequestration)

(63) – – –

TGF-β1, TGF-β3 TGFBRII-Fc (multi-ligand sequestration) (57) – – –

Latent TGF-β

stabilization

LSKL peptide (competitive antagonism of

thrombospondin-1)

(130) – – –

Activin-class ligands

(activin A, GDF8,

GDF11, activin B)

ActRIIA-Fc (multi-ligand sequestration) (13) Phase 2 03496207 (131)

Phase 2a 03738150 Ongoing

Phase 3 04576988 Ongoing

04811092 Ongoing

04896008 Ongoing

APJ, apelin receptor; PPARγ, peroxisome proliferator-activated receptor gamma; TKI, tyrosine kinase inhibitor.

and inflammation in vascular cells. Treatment with 6-
mercaptopurine increases expression of Nur77, BMPRII,
pSMAD1/5/8, and target gene Id3 in pulmonary arterioles in
a rat model of severe angioproliferative PAH (114). Moreover,
therapeutic treatment with 6-mercaptopurine reversed abnormal
vascular remodeling and RV hypertrophy in this model
(114). In another approach, an antagonistic modified RNA
oligonucleotide (antagomiR), which selectively targets the
BMPR2 negative regulator miR-20a, increased levels of BMPRII
expression in lung tissue and improved cardiopulmonary
parameters in a hypoxia-induced mouse model of PAH (113).
A limitation of this study is that it did not evaluate therapeutic
treatment in the context of established vascular pathology,
which would better model the disease state in PAH patients
with ongoing vascular remodeling. Other approaches have

increased pulmonary expression of BMPRII in mice harboring
certain BMPR2 mutations either by rescuing misfolded BMPRII
from the endoplasmic reticulum (115) or by facilitating
translational read-through of premature BMPR2 termination
mutations (116). Such approaches provide support for future
clinical evaluation in PAH patients with specific BMPR2
mutations (116).

Of special note, the herbally-derived agent berberine was
reported to improve cardiopulmonary endpoints in a hypoxia-
induced mouse model by elevating expression of BMPRII and
pSMAD1/5/8 while also reducing expression of TGF-β and
pSMAD2/3 (137). Although investigation of target identity
and further study are warranted, protective effects of berberine in
this model underscore the potential benefit of rebalancing TGF-β
superfamily signaling in PAH.
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Stimulation With Exogenous BMPs
The finding that exogenous BMP9 can reverse established
disease in rodent models of PAH (117) suggested that a
similar approach could be beneficial in patients. However,
this strategy is controversial because subsequent preclinical
studies indicate that the role of BMP9 in pulmonary vascular
homeostasis is complex and likely context dependent (118,
138–140). Importantly, loss of BMPRII reverses the endothelial
response to BMP9, paradoxically causing enhanced proliferation
(138), and BMP9 promotes pulmonary vascular remodeling in
mice under conditions of chronic hypoxia (139). Even if these
conflicting aspects of BMP9 function were to be resolved in
favor of a beneficial role in PAH, the clinical value of this
approach would depend on development of BMP9 agonists
with extended circulating half-lives to avoid impractical dosing
regimens in patients.

Disinhibition of Endogenous BMPs
BMP2, BMP4, and BMP7 exert anti-proliferative effects in
pulmonary vessels through SMAD1/5/8 pathway activation.
These ligands are selectively inhibited by the endogenous BMP
antagonist gremlin-1, which is implicated as an important
promoter of pathologic vascular remodeling in PAH (Figure 1)
(141). Circulating levels of gremlin-1 stratify survival in PAH
patients, hypoxia stimulates gremlin secretion by ECs, and
Grem1 haploinsufficiency reduces vascular remodeling in mice
exposed to chronic hypoxia (41, 42). In addition, stretch-
dependent secretion of gremlin-1 from pulmonary arterial cells is
implicated in PAH induced by congenital systemic-to-pulmonary
shunts and could potentially explain deficient BMPRII-pathway
signaling in the many such patients whose BMPR2 expression
is normal (142). Importantly, therapeutic immunoneutralization
of gremlin-1 reduces vascular remodeling in a mouse model of
PAH (119). Despite its potential as a therapeutic candidate for
PAH, anti–gremlin-1 antibody has not been evaluated clinically
to our knowledge.

Disinhibition of BMPRII/ALK1 Signaling
The immunosuppressive agent tacrolimus (FK506) has been
evaluated more extensively than other activators of SMAD1/5/8
pathway signaling as a potential treatment for PAH. A large-scale
screen of FDA-approved drugs identified FK506 as an effective
BMPRII signaling activator that disinhibits ALK1 kinase activity
through inhibition of the immunophilin FK-binding protein-
12 (120). FK506 reversed dysfunctional BMPRII signaling in
pulmonary ECs from patients with idiopathic PAH and reversed
cardiopulmonary functional deficits and vascular remodeling
when administered therapeutically in a rat model of severe angio-
obliterative PAH (120). Based on these promising preclinical
results, FK506 was assessed in a phase 2a tolerability and safety
study in PAH patients (NCT01647945, N = 23), but the results
were inconclusive (122) and could warrant follow-up evaluation
in a larger patient population. Intriguingly, FK506 treatment at
this dose led to substantial improvement and stabilization of
cardiovascular function in three patients with end-stage PAH
who did not qualify for the foregoing trial (123). Recent findings
suggest that targeting the BMPRII pathway with FK506may exert

direct protective effects on the right ventricle independent of its
beneficial effects on the pulmonary vasculature (121).

Activation of Downstream Genes in
Defective BMPRII Pathway
An alternative strategy to increase SMAD1/5/8 pathway activity is
to promote expression of its downstream targets. One prominent
target of BMPRII-mediated signaling in the endothelium is apelin
(143), a peptide ligand of the apelin receptor whose activation
opposes the renin-angiotensin-aldosterone system and regulates
cardiovascular functions including hemodynamic homeostasis
(144, 145). A genetic approach was used to identify apelin as a
target gene of the BMP pathway in endothelial cells, and BMPRII-
SMAD1/5/8 signaling was found to mediate downregulation of
apelin expression by BMPs in such cells (146). However, the
direction of this response is difficult to reconcile with later studies
revealing apelin insufficiency in PAH lung and implicating apelin
as beneficial in the context of PAH and cardiovascular disease
more broadly. For example, circulating apelin levels are reduced
in patients with PH, and apelin deficiency worsens hypoxia-
induced PH in mice (147). Administration of a stabilized apelin
analog, pyroglutamylated apelin-13, improves cardiopulmonary
parameters in a monocrotaline rat model of PAH (124). In PAH
patients undergoing right heart catheterization (NCT01457170,
N = 19), this apelin analog reduced pulmonary vascular
resistance and increased cardiac output without reducing mean
pulmonary arterial pressure (126). Apelin receptor agonists with
extended circulating half-lives are under development (125, 144),
but substantial improvement will be needed for their use to
become practical in a chronic clinical setting.

Additional agents have been evaluated preclinically as
therapeutic activators of downstream targets in the SMAD1/5/8
pathway. One is nutlin-3, a small molecule which stabilizes
a BMPRII-dependent transcription factor complex between
p53 and PPARγ (peroxisome proliferator-activated receptor
gamma) to activate a vasculoprotective gene regulation program
downstream of BMPRII that includes the apelin gene (APLN)
(127). This approach has been used to regenerate pulmonary
microvessels and reverse persistent PH in mice with loss of
BMPRII in pulmonary arterial ECs (127). Another therapeutic
agent that can promote expression of BMPRII pathway effectors
is tyrphostin-AG1296, a small-molecule tyrosine kinase inhibitor
identified by screening compounds for improved survival of ECs
from PAH patients (148). The tyrphostin-AG1296 mechanism
of action remains to be defined but involves combined
upregulation of BMPRII, SMAD1/5 coactivators, and cAMP
response element-binding proteins, leading to an anti-PAH gene
expression signature.

TARGETING OVERACTIVE SMAD2/3
PATHWAY SIGNALING

Inhibitors of the SMAD2/3 pathway have also been explored
for treatment of PAH (Table 1) and could theoretically be used
in combination with activators of the SMAD1/5/8 pathway
as a strategy to rebalance superfamily signaling. As noted for
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berberine in the preceding section, some individual agents
could potentially exert superfamily rebalancing effects through
complementary actions on both SMAD pathways, either directly
or indirectly through known mechanistic links between them.

TGF-β
TGF-β inhibition was proposed more than a decade ago as a
potential therapeutic approach to treat PAH (57, 63, 64, 128,
129, 149–151). Given the prominent roles of TGF-β in fibrotic
diseases and cancer, diverse therapeutic approaches for inhibiting
TGF-β-mediated signaling are being explored preclinically and
clinically for those indications (152, 153) and could potentially
be useful for treating PAH. Recent evidence indicates that there
could be differential involvement of TGF-β-mediated signaling in
patients with idiopathic PAH compared to those with hereditary
PAH as well as differential involvement in rodent models of the
disease (154).

Inhibition of TGF-β Receptors
Small-molecule inhibitors of ALK5 display efficacy in rodent
models of PAH (128, 129) but have not been evaluated in
PAH patients due in part to safety concerns and the potential
for off-target effects (155). Such tyrosine kinase inhibitors are
not selective for ALK5, as they also inhibit the closely related
ALK4 and ALK7 receptors, which mediate activin signaling
(156). Additionally, ALK5 inhibition is not selective for TGF-
β signaling because this type I receptor also mediates signaling
by GDF11 (71, 72). An antibody capable of inhibiting both
type I and type II receptors for TGF-β was reported to be
efficacious in a monocrotaline rat model of PAH (64), but
such receptor immunoneutralization has not been evaluated in
patients with PAH.

Inhibition of Active TGF-β Isoforms
More selective methods of TGF-β inhibition, including a pan
anti–TGF-β antibody and a TGFBRII-Fc fusion protein that
selectively sequesters TGF-β1 and TGF-β3, have displayed
efficacy in rodent models of PAH (57, 63). Isoform selectivity in
the latter case is thought to be advantageous partly due to major
involvement of TGF-β2 in cardiac valve homeostasis and thus
cardiotoxicity associated with ALK5 inhibition [see citations in
ref. (57)]. These approaches for targeting TGF-β isoforms have
not yet been evaluated clinically in PAH.

Stabilization of Latent TGF-β
An intensely explored approach to inhibit TGF-β signaling
involves stabilization of latent ligand normally sequestered in
the extracellular matrix, thereby preventing release of TGF-
β and its binding to receptors. Such activation is regulated
endogenously by interaction of TGF-β-containing latent
complexes with several types of proteins, including integrins,
proteases, thrombospondin-1, and glycoprotein-A repetitions
predominant protein (GARP) (157–159). Thrombospondin-1 is
implicated preclinically in PH caused by either hypoxia or the
parasite Schistosoma mansoni, and thrombospondin-1 inhibition
by the synthetic tetrapeptide Leu-Ser-Lys-Leu protects mice from
PH caused by either factor (130). Further reinforcing the vascular

connection, thrombospondin-1 contributes to arterial stiffening
caused by disturbed blood flow (160). Although not investigated
in experimental PAH, integrin inhibitors and antibody-mediated
stabilization of latent TGF-β display efficacy in models of fibrosis
or cancer (161–164), providing preclinical support for such
approaches generally. Because endogenous mechanisms of TGF-
β activation vary depending on cellular and tissue context (158),
the therapeutic effects produced by the foregoing approaches
would be predicted to differ according to their respective targets.
Moreover, such approaches targeting TGF-β regulation would
likely produce a subset of the effects seen by directly targeting
active TGF-β isoforms and therefore provide precision which
could be advantageous in certain contexts.

Inhibition of Activin-Class Ligands
Activin-class members of the SMAD2/3 signaling pathway have
only recently been recognized widely as important contributors
to PAH pathogenesis. Most prominent is the ligand trapping
fusion protein ActRIIA-Fc, also known as sotatercept, which
sequesters the activin-class ligands activin A, activin B, GDF8,
and GDF11 with high affinity (165). As noted above, at least
three of these ligands are upregulated in pulmonary vascular
lesions of PAH patients and PAH rodent models (13). Protective
administration of a murine ActRIIA-Fc fusion protein in rodent
models markedly improves cardiopulmonary parameters and
vascular remodeling, and therapeutic administration of this agent
in a Sugen-hypoxia-normoxia model with established severe
disease effectively alleviates PH and vascular remodeling (13).
This activity is attributable in part to anti-proliferative effects
on pulmonary arterial SMCs and ECs as well as to enhanced
apoptosis in the vascular wall. Improvement in right ventricular
structure and function may stem from indirect effects of reduced
pulmonary vascular resistance and compliance. However, it could
also arise from direct cardioprotective effects of ActRIIA-Fc
consistent with those described previously with inhibition of
activin receptor-mediated signaling in models of left ventricular
failure associated with aging or systemic pressure overload
(166, 167).

A phase 2 study of ActRIIA-Fc has been conducted in patients
with PAH receiving background therapy (131). In this study
(NCT03496207, N = 106), sotatercept produced significant
improvement in the primary endpoint, pulmonary vascular
resistance. It was also associated with clinically meaningful
improvements in 6-min walk distance and circulating levels
of N-terminal pro-B-type natriuretic peptide, a marker for
cardiac dysfunction. Sotatercept has previously been evaluated
in healthy volunteers and patients with conditions characterized
by dysfunctional TGF-β superfamily signaling, including anemia
associated with myelodysplastic syndromes, anemia associated
with β-thalassemia, chemotherapy-induced anemia, end-stage
kidney disease, bone loss, and multiple myeloma (168–
174). As a result, substantial data are already available
regarding sotatercept’s safety profile. Ongoing clinical studies
of sotatercept in PAH patients include a phase 2 study
for detailed characterization of cardiopulmonary status by
right heart catheterization with exercise (NCT03738150) and
several phase 3 registration-enabling studies (NCT04576988,
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NCT04811092, NCT04896008). Interestingly, several clinical
studies have determined that sotatercept increases circulating
hemoglobin concentrations under diverse conditions (169, 171–
174). It has been observed that a large proportion of PAH patients
exhibits anemia and could therefore receive sotatercept with
acceptable erythropoietic effects (175). Further study is required
to determine the potential benefits of increasing hemoglobin
levels concurrently with targeting cardiopulmonary remodeling
in PAH patients, particularly those with anemia.

CONCLUSIONS

Our growing understanding of mechanisms responsible for
initiation and progression of PAH has not yet been matched by
development of therapies effectively targeting those underlying
disease processes. The TGF-β superfamily of ligands and
receptors plays a critical role in the development and severity of
PAH. More precisely, an imbalance in the intracellular SMAD2/3
vs. SMAD1/5/8 signaling pathways is now widely accepted to be
an important contributor. Therapies targeting these two SMAD
pathway branches have been evaluated preclinically and are
in a few cases in clinical development. Importantly, there are
indications that therapeutic interventions targeting the TGF-β
superfamily have the potential to be disease modifying. Indeed,
preclinical and clinical data generated with an ActRIIA-Fc
ligand trap in particular support the view that targeting cellular
proliferation through a rebalancing of SMAD activation could
be a beneficial therapeutic approach for the underserved PAH
patient population.

Further work is needed to establish whether other therapeutic
modalities such as those targeting mechanisms of latent ligand
activation could be developed to either reduce pro-proliferative

or enhance anti-proliferative TGF-β superfamily pathways.
Other interesting but underexplored possibilities are that either
concomitantmodulation of SMAD2/3 and SMAD1/5/8 pathways
or combined inhibition of SMAD2/3 pathway-activating ligands
(activin-class ligands together with one or more TGF-βs) could
provide benefits beyond those observed to date with more
restricted approaches. Such combinatorial strategies might also
be useful in the context of Group 3 PH, a disease category
characterized by pulmonary vasculopathy with fibrotic lung
disease, most notably in subgroups associated with interstitial
lung disease (PH-ILD) or chronic obstructive pulmonary disease
(PH-COPD). In addition, it remains to be determined whether
precisely targeting a single intracellular TGF-β superfamily
pathway, including canonical and non-canonical effectors, could
offer a different therapeutic window or greater ease of use
than inhibition of ligand-receptor interactions. Hence, two
decades after the seminal observations linking familial PAH
with TGF-β superfamily signaling, there are signs that targeting
this pathway—now thought to control multiple PAH disease
processes—could offer hope for transformative PAH treatments.
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