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Abstract

One of the primary genetic risk factors for Alzheimer’s disease (AD) is the presence of the Ɛ4 allele of

apolipoprotein E (APOE). APOE is a polymorphic lipoprotein that is a major cholesterol carrier in the brain. It is also

involved in various cellular functions such as neuronal signaling, neuroinflammation and glucose metabolism.

Humans predominantly possess three different allelic variants of APOE, termed E2, E3, and E4, with the E3 allele

being the most common. The presence of the E4 allele is associated with increased risk of AD whereas E2 reduces

the risk. To understand the molecular mechanisms that underlie APOE-related genetic risk, considerable effort has

been devoted towards developing cellular and animal models. Data from these models indicate that APOE4

exacerbates amyloid β plaque burden in a dose-dependent manner. and may also enhance tau pathogenesis in an

isoform-dependent manner. Other studies have suggested APOE4 increases the risk of AD by mechanisms that are

distinct from modulation of Aβ or tau pathology. Further, whether plasma APOE, by influencing systemic metabolic

pathways, can also possibly alter CNS function indirectly is not complete;y understood. Collectively, the available

studies suggest that APOE may impact multiple signaling pathways and thus investigators have sought

therapeutics that would disrupt pathological functions of APOE while preserving or enhancing beneficial functions.

This review will highlight some of the therapeutic strategies that are currently being pursued to target APOE4

towards preventing or treating AD and we will discuss additional strategies that holds promise for the future.
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Background

Apolipoprotein E4 is the major genetic risk factor in

Alzheimer’s disease

Alzheimer’s disease (AD), neuropathologically character-

ized by extracellular amyloid β (Aβ) deposition and

intracellular neurofibrillary tangles (NFT) of tau protein,

is the most prevalent neurodegenerative dementia affect-

ing millions of people worldwide [1]. One of the primary

genetic risk factors for sporadic AD, also referred to as

late onset AD (LOAD), is the presence of the E4 isoform

of apolipoprotein E (APOE) protein [2].

Humans have three major APOE alleles (E2, E3, and

E4) [3]. APOE3 is the reference allele present in the

majority of the population; the APOE4 allele increases

the risk of AD in a dose- and age-dependent manner

whereas the APOE2 allele is associated with reduced risk

of AD [4–6]. Though there are variations based on sex

and ethnicity, it is estimated that APOE2 homozygotes

have a 40% reduced risk of developing AD [7]. Presence

of APOE2 delays the age of onset in the Paisa kindred of

familial AD cases [8], reinforcing the idea that APOE2

isoforms are protective against familial AD. In humans,

the APOE2 allele while being protective against AD, is

associated with elevated plasma levels of cholesterol and

triglycerides and a condition called dysbetalipoproteine-

mia that is associated with coronary artery disease [9].

On the other hand, APOE4 is associated with increased

risk of atherosclerosis and increasing risk of AD by as

much as 8-12x in homozygotic humans. There is a gen-

eral consensus in the literature that AD patients with

the APOE4 isoform have accelerated onset of dementia,
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worse memory performance and higher Aβ burden than

APOE4 non-carriers [10], though the isoform-dependent

effects on tauopathy remain unclear [11, 12]. APOE4

can also exacerbate functional abnormalities such as

neuronal network connectivity independent of gross

structural changes or AD type proteinopathy [13]. These

topics have been covered previously in excellent reviews

and therefore not discussed further [10, 14, 15]. These

data suggest that it may be necessary to both restore

some critical APOE function in E4 carriers while also

inhibiting the activity of APOE4 in promoting AD-

related Aβ proteinopathy [14].

Peripheral and CNS pools of APOE are independent

APOE is a 299 amino acid protein, with an apparent

molecular mass of ~36kDa whose primary function is

that of a cholesterol transporter [14]. The three isoforms

differ by one amino acid each at positions 112 and 158

that has profound effects on their functions. Both

APOE2 (Cys112, Cys158) and APOE3 (Cys112, Arg158)

preferentially interact with small, phospholipid-enriched

high-density lipoproteins (HDL), while APOE4 (Arg112,

Arg158) has higher propensity to be associated with lar-

ger, triglyceride-enriched lipoproteins or VLDL [16]. A

further distinction is that among all the isoforms,

APOE2 has the lowest binding affinity for low-density

lipoprotein (LDL) receptors [17]. Mice have a single allele

of Apoe that differs at multiple positions from human

APOE, but encodes Arg at the positions cognate to 112

and 158 of human APOE. Most of what is known about

APOE has been derived from studies in mice and human

cell culture models. Studies in mice have examined both

endogenous mouse Apoe and expressed human APOE.

For the purposes of this review, we will use the human

and mouse nomenclature interchangeably as appropriate

for the model systems used, defaulting to APOE when dis-

cussing general features of APOE biology.

In the CNS, APOE is primarily synthesized by astro-

cytes and in certain circumstances, it is also produced by

microglia and neurons [18–21]. APOE has myriad func-

tions in the CNS that include immunomodulation, signal

transduction, proteostasis regulation and synaptic plasti-

city [14, 22]. The peripheral pool of plasma APOE is

produced mainly in the liver, and to a lesser extent by

the adrenal gland and macrophages. In the periphery, in

addition to regulating lipid metabolism, APOE has a key

role in controlling cardiovascular function and systemic

inflammation [23]. This pool of APOE exists mostly in-

dependent of the CNS pool under normal circumstances

[24, 25]. An important difference between the CNS and

peripheral APOE pools is that only peripheral APOE4

shows faster turnover rate compared to APOE3 and

APOE2 in humans and humanized mice [22, 23]. Astro-

cytic and plasma APOE lipoprotein particles are also

structurally different and the former is thought to lack

the cholesteryl ester core [26]. Therefore, it is possible

that the structure-function relationship of peripheral

and CNS pools of APOE to the development of AD and

non-AD pathologies might be distinct, suggesting that

these two pools of APOE can potentially act independ-

ently as risk factors in regulating pathogenesis during

normal aging or in neurodegenerative dementias.

Because of the pleiotropic functions of APOE isoforms

in the CNS and periphery, mechanistically dissecting the

role of APOE in the context of AD and related disorders

is fraught with complications. This uncertainty over po-

tential mechanism of action creates a conundrum in that

the E4 allele may cause disease by both a loss of function

or gain of function, depending on the cellular context

[14]. A recent report had serendipitously identified a

mouse model with intact peripheral Apoe levels and

thus normal plasma lipid profile but with extremely low

levels of brain Apoe. These mice have impaired synaptic

plasticity but their spatial memory skills are intact [24],

suggesting that peripheral and CNS APOE may have dis-

tinct effects on CNS function. On the other hand, ab-

sence of hepatic APOE does not affect the APOE4-

dependent induction of Aβ pathologies in young APP/

PS1 female mice, suggesting that plasma APOE4 may

have little influence on initiation of Aβ pathologies in

the brain [27]. With this knowledge, it is reasonable to

explore treatment options that would preferentially

modify the CNS pool of APOE without affecting the per-

ipheral sources, thus also avoiding systemic metabolic

syndromes.

Rodent models as exemplars of human APOE function

The Apoe deficient mice, Apoe hypomorphic mice and

APOE knock-in mice have been key resources in the

field of atherosclerosis biology, cardiovascular disease

and peripheral inflammation [28]. For the most part, the

data are concordant between mouse studies and humans

[29]. However, there are some critical differences be-

tween mouse and human lipoprotein biology that can

impact the interpretation of APOE-related studies in

mice. In mice, circulating cholesterol is predominantly

associated with HDL whereas it is bound to LDL in

humans [30]. In addition, mice lack the cholesteryl ester

transfer protein (CETP) gene which transfers cholesteryl

esters and triglycerides between lipoproteins [31].

Perhaps the most commonly used models to study hu-

man APOE function in the CNS are the human APOE

targeted replacement (TR) mice from Nobuyo Maeda’s

lab [32–34]. The APOE4 TR mice, in which the en-

dogenous Apoe gene has been replaced with human

APOE4, display various phenotypes including altered

cholesterol trafficking in the brain, blood brain barrier

(BBB) leakiness and cognitive deficits [35–39]. However,
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simply replacing the endogenous mouse Apoe gene with

the human APOE4 gene does not produce the primary

neuropathologies (Aβ and NFT) found in AD patients.

Overall, the lack of spontaneously occurring AD-type

pathology in APOE4 TR mice has limited its use as a

stand-alone model of AD.

Concurrence of experimental data across different

systems

A large number of studies have used rodent models

(such as APOE TR), in vitro models including human in-

duced pluripotent stem (iPS) cells and primary rodent

cultures as well as data from human biosamples to delin-

eate apoE-related pathologies. Most of the studies show

isotype-specific and directionality-specific concordance

between these experimental paradigms (Fig. 1). For ex-

ample, the isoform-dependent effects of APOE on Aβ

clearance and Aβ aggregation are in complete agreement

in these different systems [42–53]. As in humans, pres-

ence of APOE4 increases Aβ deposition burden in APP

transgenic mice relative to age-matched APOE2 TR

mice. This has also been demonstrated in human iPSC-

derived glial cultures, where APOE4 impairs glial Aβ

uptake and phagocytosis compared to APOE3 [48]. On

the other hand, there is a current lack of consensus re-

garding the relationship between tauopathy and APOE

isoform as demonstrated by studies showing a patho-

genic interaction of tau to APOE4 [11, 54] or APOE2

[12]. Further, human iPSC derived neurons [55] as well

as organoids [49] that express APOE4 accumulate higher

levels of phosphorylated tau when compared to neurons

expressing APOE3. Importantly, data from humans

present no clear association between APOE4 genotype

and severity of NFT pathology [56, 57]. Different APOE

isoforms have differential pathogenic effect on various

metabolic pathways such as cardiovascular function,

lipid transport, insulin signaling and glucose metabolism

across these model systems [36, 37, 58–67]. There is a

clear consensus regarding APOE4 isoform-dependent

pathogenic effect on cardiovascular function in mouse

models, in vitro studies and human studies [34, 35, 41,

68]. In the case of lipid transport, several studies have

shown that APOE4 carriers have increased hypolipidated

APOE compared to APOE3 and APOE2 carriers [69]

along with reduced APOE levels in the CSF of Aβ-

positive APOE4 carriers [70]. These observations hold

Fig. 1 Congruence of the effects of apoE between human studies, mouse models of AD and in vitro cell culture models. apoE influences

multiple pathways in the AD cascade in an isoform-dependent manner. We compared the concurrence of available research data in mouse

models and in vitro models versus clinical studies with human patients. Pathways indicated in the green color indicate a broad consensus of

APOE isoform effect between mice, men and in vitro models where E4 is associated with an increased pathological risk when compared to E3 or

E2 isoforms (E4>E3>E2). Data from the pathways indicated in yellow background are not in complete congruence between human studies,

mouse model experiments and in vitro data. Interestingly, even within a set of studies in a given experimental system, there is disagreement in

between the observations, which is marked by superscripted symbols that refers to the disparate studies. The symbols (< or >) indicate the order

of increased pathological effect for the APOE isoforms. The effects listed here are specific to only classical AD pathology and excludes data on α-

synuclein and TDP43 which are associated with diseases such as PDD and DLB. *, conflicting reports [see ref 40]; #, conflicting reports [see ref 41];

¶, studies compared APOE4 TR, Apoe KO, and wild type C57BL6J mice. The references presented are representative and not an exhaustive list
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true in primary rat neuron cultures and human iPS cell-

derived astrocytes [71, 72] as well as APOE TR mice [73,

74]. However, there are some conflicting reports from

human studies, which did not observe any isoform-

dependent differences in APOE levels in the CSF col-

lected from individuals at different ages [41].

APOE has been implicated in other metabolic and

cognitive functions. In the case of insulin signaling and

glucose metabolism, data from human brain scans, mice

and in vitro cell culture largely agree that APOE4 iso-

forms cause the most functional impairment [58–63]. In

terms of regulating brain function, APOE4 is the most

pathogenic in terms of brain connectivity and default

mode network function in humans whereas the evidence

comparing network connectivity in mouse models carry-

ing APOE4 genotype is uncertain as the experimental

controls did not include the APOE3 or APOE2 mice co-

horts [13, 49, 75–83]. In human iPS derived neurons,

APOE4 led to elevated number of synapses and in-

creased frequency of synaptic transmission [49]. Regard-

ing inflammation, there is a general agreement across

models that APOE4 is the most pathogenic [11, 84–88].

In contrast, there is evidence implicating APOE4 in im-

paired BBB integrity in humans, mouse models and cell

culture models, although a study in APOE4 TR mice did

not reveal any APOE-related dysfunction in BBB [36, 37,

40, 67, 89–91]. Overall, most of the data from rodent

models and human patients show congruence (Fig.1).

However, given that there are basic differences between

mice and human lipid profiles as well as the structure of

apoE itself, it is important to remain cautious of the inher-

ent variations that might affect directly translating APOE

targeted therapeutics from mouse models to humans.

Therapies in AD

AD still has no effective treatments or therapies despite

years of research. Dozens of drugs have proceeded to

clinical trials, ranging from Aβ targeting antibodies to

therapies targeting tau or metabolic pathways [92]. Sev-

eral factors may have influenced these discouraging out-

comes - perhaps the drugs are targeting the wrong

pathological substrates, or that the treatments are being

administered too late, or that a multi-target drug design

is needed [93]. With the steady growth of an aging

population, the increasing cost for care, and the failure

of therapies in clinic, there is a call for more targeted

‘precision therapy’ - treating AD patients stratified based

on their APOE genotype.

It is well-known that targeting anti Aβ immunother-

apies to patients stratified for APOE genotype can lead

to better outcomes. In particular, in MCI patients the

APOE4 allele seems to adversely affect the therapy out-

comes by modulating the treatment efficacy (disease

progression) or safety profile (vulnerability to brain

edema) relative to other APOE alleles [94]. Having said

that, AD therapies directly targeting specific APOE iso-

forms are still mostly in developmental phases [95]. It is

also possible that such APOE targeted therapies could

help with co-morbidities associated with dementia or

aging, such as diabetes and cardiovascular disease for E4

carriers, vascular dementia for E4 carriers, neuroinflam-

mation for E4 carriers and type III hyperlipoproteinemia

for E2 carriers. Whether APOE by itself is druggable is

debatable; however, it is tempting to suggest that target-

ing CNS APOE specifically early in the disease process

could alter the pathologic trajectory of AD either directly

by altering CNS pathologies like Aβ and tau and perhaps

indirectly by influencing related sequelae, such as in-

flammation, metabolic impairment and vascular dys-

function. Ultimately, it is possible that a cocktail of

drugs targeting APOE function in conjunction with

other anti-Aβ approaches that either limit Aβ plaques or

inhibit Aβ production can be used at different stages of

the disease to achieve significant disease modification.

APOE as a therapeutic target in AD

In the next few sections, we will consider currently avail-

able preclinical interventions, therapies that are in early

clinical studies in AD as well as some new research on

emerging targets that target APOE specifically (Table 1).

Altering levels of APOE4 as a potential disease modifying

therapy

APOE, especially APOE4, binds to Aβ, playing a key role

in Aβ deposition and clearance. Several studies have

shown that simply reducing APOE4 levels (such as cre-

mediated excision of APOE4 or creating haploinsuffi-

cient APOE4 models) lowers brain Aβ levels in APP

transgenic mice [96, 97]. Other approaches such as

blocking Aβ-APOE4 interaction can also lead to benefi-

cial effects, prompting the development of strategies to

either reduce the availability of APOE4 or prevent its

toxic interactions.

Anti-APOE4 immunotherapies

Similar to anti-Aβ antibody-based therapies, the idea be-

hind anti-APOE4 antibodies is that these antibodies will

be able to cross the BBB and neutralize the negative ef-

fects of APOE4, even if only a small amount of anti-

bodies can effectively enter the brain [98]. APOE4 has

already been implicated in Aβ deposition, and along with

other amyloid-associated proteins it is found in Aβ de-

posits. Thus, the idea is that if isoform-specific anti-

bodies can sequester pathogenic forms of APOE, it can

prevent Aβ build-up in the brain. Indeed, in mouse

models, anti-APOE antibodies can efficiently inhibit the

formation of Aβ deposits when introduced before the

onset of pathology [98]. More interestingly, these
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antibodies were also able to attenuate plaque burden

when introduced in mice with pre-existing Aβ deposits,

suggesting that this antibody could work as a therapeutic

agent [98]. In a subsequent study, anti-APOE antibodies

also led to improved spatial learning performance and

resting-state functional connectivity while having no ef-

fect on total plasma cholesterol in APP transgenic mice

[99]. In this study, topical application of anti-APOE anti-

bodies directly onto the brain prevented deposition of

new Aβ plaques as well as cleared pre-existing plaques.

The fact that these anti-APOE antibodies can disrupt

the direct binding of apoE to Aβ deposits is very promis-

ing, as this might work synergistically with anti Aβ im-

munotherapy in APOE4 patients to achieve a higher

degree of Aβ reduction. More recently, Liao et al. re-

ported that the antibody ‘HAE-4’ that preferentially rec-

ognizes the nonlipidated forms of APOE4/APOE3 over

the lipidated versions is highly effective in preventing Aβ

deposition by a FcγR-dependent mechanism in an APP/

APOE4 mouse model [100]. Following direct infusion

into the brain or following intraperitoneal administra-

tion, HAE-4 reduces total Aβ plaque burden but does

not alter the fibrillar plaque load. Surprisingly, this

antibody when administered peripherally was more effi-

cient at CNS target engagement than when administered

via direct brain infusion. This study is important in two

ways – one that it demonstrates that non-lipidated

forms of APOE4 may be preferentially pathogenic and

second, that since the non-lipidated form of APOE4 is a

small fraction of the total CNS APOE burden, this anti-

body would not be titered out by total APOE and could

be efficacious at a lower or less frequent dose [101].

Antisense oligonucleotide therapy

Based on the hypothesis that the reduction of APOE4

expression could reduce Aβ accumulation and thereby

alleviate Aβ pathology and cognitive deficits that typic-

ally follow, some groups have used antisense knockdown

approaches. Antisense oligonucleotides (ASOs) are syn-

thetic polymers that can be used as therapeutic agents

by disrupting the synthesis of a particular protein and

are considered as first line treatments in several neuro-

degenerative disorders such as polyneuropathy, muscular

dystrophies and spinal muscular atrophy [102]. With re-

gard to AD, there are only a few investigational ASO

mediated therapies in clinical testing – a notable one

Table 1 A selection of APOE based therapeutics used in rodent models and and clinical testing

Drug Rationale Developed by Reference/Clinical Trial Identifier

CS-6253 Increase APOE lipidation by activating
ABCA1

Tel Aviv University/Artery
Therapeutics

Ref 125

CN-105 APOE mimetic CereNova/AegisCN LLC Phase1: NCT02670824 (ICH); Ref 231

Phthalazinones, pyrazolines Small molecule structure-correctors Gladstone Institute/E-
Scape bio

Ref 132

APOE antibody Targeting non-lipidated APOE Washington University/
Denali therapeutics

Ref 99

Anti-sense oligonucleotide Reduce expression of APOE4 Washington University/
Ionis

Ref 104

Gene Therapy Biological: AAVrh.10 hAPOE2 vector Cornell University Phase 1: NCT03634007

Bexarotene Alter APOE production, APOE lipidation
and Aβ clearance

ReXceptor Inc. and C2N Phase 1: NCT02061878
Outcome: No change in Aβ;
increased CSF APOE

Cleveland Clinic Phase 2:NCT01782742
Outcome: No benefit in APOE4
patients; Ref 114

Probucol Cholesterol lowering drug McGill University/Douglas
Hospital Research Center

Phase1/2: NCT02707458 Ref 232

AGB101 Reduce APOE4-dependent abnormal hip-
pocampal network activity

Medical College of
Wisconsin

Phase 2: NCT03461861 Ref 233

Rosiglitazone Anti-diabetic (APOE allele dependent
response)

GlaxoSmithKline Phase3: NCT00348140
Outcome:No effect on mild to
moderate AD;
Ref 234

Epigallocatechin gallate (EGCG) +
multimodal intervention (diet,
exercise)

Correct APOE4-dependent cognitive
decline

Parc de Salut Mar Recruiting: NCT03978052. No direct
references found but see Ref 235

Exercise Relationship of APOE4 to CBF and blood-
based biomarkers (IGF-1, VEGF, BDNF)

University of Kansas
Medical Center

Recruiting:
NCT04009629
Ref 236
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being the anti tau ASO in Phase1/2 (BIIB080 from

Ionis/Biogen/Washington University) [103]. In regard to

targeting APOE expression with ASOs, the effort is still

in the preclinical phases of testing.

ASOs targeting APOE receptors have also been tested

in AD mouse models, for example an ASO specific for

corrective splicing of ApoER2 resulted in improved syn-

aptic function as well as learning and memory in the

CRND8 mouse model of Aβ pathology [104]. In mouse

models, ASO treatment targeting specifically APOE have

been successful in reducing Aβ pathology in APP/PS1

mice when treated before the onset of Aβ deposition

[105] (Table 1). However, it is unclear whether such

knock-down strategies will work in the presence of pre-

existing Aβ deposits, suggesting that this type of therapy

may have a limited window of opportunity. On a positive

note, compared to agonists of ApoE receptors that result

in systemic adverse effects in lipid metabolism, ASOs do

not show such side effects. Combined with the success-

ful ASO based therapies being tested in Huntington’s

and Amyotrophic Lateral Sclerosis (ALS) patients and

the latest developments in ASO chemistry that can dra-

matically improve its pharmacokinetic and pharmacody-

namic properties, ASO based therapies do have potential

as promising future therapeutic for AD patients [106].

Upregulating APOE expression through nuclear receptor

agonism

APOE expression is induced by the nuclear receptors,

peroxisome proliferator-activated receptor gamma

(PPARγ) and liver X receptors (LXR) in coordination

with retinoid X receptors (RXRs) [107]. GW3965, an

agonist for LXR, increases Abca1 and Apoe protein

levels, reduces Aβ levels and improves cognition in the

APP/PS1 mouse model [108]. This result was Abca1-

dependent, as GW3965 failed to alter Aβ levels in APP

transgenic mice lacking Abca1. In another study, the

RXR agonist Bexarotene (Targretin®), used to treat T cell

lymphoma, was used in the APP/PS1 transgenic mouse

model. In a study involving a relatively small cohort,

Bexarotene treatment reduced Aβ accumulation in an

APOE-dependent manner when orally administered

to these mice [109], though several groups were unable

to recapitulate the beneficial effect on plaque burden in

similar mouse models [110–112]. Based on the original

study that showed that bexarotene was effective in both

preventive and therapeutic modes, it was incorporated in

a proof of mechanism Phase IB trial in E3/E3 healthy

adults [113] (Table 1) as well as tested in a small cohort

of AD patients, called BEAT-AD study [114]. In the

BEAT-AD study, bexarotene lowered CNS Aβ levels (by

PET imaging) but did not produce any cognitive benefits

[114]. Unfortunately, bexarotene treatment increased

blood lipid levels in these patients increasing their risk

for stroke and heart attack. In a Phase IB proof of mech-

anism trial in young healthy APOE3 carriers, researchers

were able to measure plasma and CSF levels of APOE

using the stable isotope leveling kinetics (SILK) method.

Though APOE levels increased moderately in the CSF,

there was no effect on synthesis or clearance of Aβ in

CSF in these individuals [113]. One reason for this may

be the poor CNS penetration of bexarotene in human

patients (~low nM range) [113]. Notably, in mice the

BBB is extremely permeable to bexarotene [115]. This

finding raises a general cautionary issue regarding trans-

lation of drugs from rodents to humans. Coupled with

the hepatotoxicity of bexarotene, the low CNS pene-

trance of drug resulted in disappointing forecast for

translation to AD patients.

Stimulating APOE expression through HDAC inhibition

Histone deacetylase (HDAC) is a class of enzymes that

remove acetyl groups from histones in DNA leading to

gene silencing [116]. HDACs have been shown to play a

central role in regulation of genes involved in the lipid

metabolism pathway [117] as well as genes involved in

long term memory formation and cognition [118]. A re-

cent study in human astrocytoma cells showed that

HDAC inhibition can stimulate APOE expression, inde-

pendent of LXR and RXR [119]. Through the use of a

phenotypic screening strategy utilizing various chemoge-

nomics libraries, pan Class I HDAC inhibitors (MS275

and CI994) were found to increase APOE expression

and secretion by astrocytes via an LXR-independent

pathway [119]. These recent studies offer a new ap-

proach towards modulating APOE function.

Restoring or recalibrating APOE functions can also

alleviate CNS and peripheral pathologies

Another option for potentially exploiting APOE func-

tionality for AD treatment is regulating or restoring the

normal function of APOE that is typically lost, especially

in patients carrying the APOE4 isoform. Investigators

have been pursuing strategies to raise overall levels of

APOE function by increasing its lipidation as well as

using small molecules to modulate APOE4 structure or

function to more closely resemble APOE3. Some of

these methodologies are primarily geared to recoup the

loss of function in APOE in the APOE4 patients whereas

others target the toxic gain of function aspects that

APOE4 may have on AD-related pathology.

Small molecules that enhance ABCA1-mediated APOE4

lipidation

Among all APOE isoforms, APOE4 is unique in that it

has increased propensity of domain-domain interactions

that reduces lipid binding to the C terminal domain

leading to loss of stability and function [120, 121]. The
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presence of Arg112 in APOE4 enhances the intramo-

lecular interaction between its N-terminal domain and

the C-terminal domain via a salt bridge known as the

APOE4 domain interaction. As a result, APOE4 is typic-

ally hypolipidated or ‘lipid-depleted’ which has been pos-

tulated to correlate with the pathogenicity inherent to

APOE4 [69]. In general, APOE lipidation is highly reliant

on the ATP-binding cassette transporter A1, or ABCA1,

which moves lipids into apolipoproteins and is known to

protect against atherosclerosis [122]. Indeed, humans

lacking functional ABCA1 have lower APOE levels and

increased risk of AD and cardiovascular disease [123].

Consistent with this observation, deficiency of Abca1 ex-

acerbates amyloidogenesis while overexpression of

ABCA1 reduced the amyloid load in PDAPP transgenic

mice [124]. Supporting the hypothesis that ABCA1-

mediated lipidation is crucial Aβ clearance, subsequent

studies have upregulated ABCA1 with peptides and vari-

ous small molecules. An example of a small peptide that

activates Abca1 is CS-6253 (Table 1). Intraperitoneal in-

jection of CS-6253 into APOE4 TR mice 1) upregulated

Abca1; 2) induced lipidation of APOE4; and 3) reduced

cognitive deficits, tau hyperphosphorylation and Aβ ac-

cumulation [125]. In a follow-up study using APOE4 TR

and APOE3 TR mice, the authors showed that CS-6253

also normalizes plasma APOE4 lipidation and stability to

match APOE3 mice and additionally, this peptide was

able to partially normalize plasma apoA-I and apoJ levels

in APOE4 TR mice [126]. Another strategy to upregulate

Abca1 is by using ASOs against microRNA-33. Inhib-

ition of microRNA-33 by ASOs in cultured neurons and

APP transgenic mice reduces Aβ levels [127, 128]. With

the assumption that these drugs do not disrupt lipida-

tion state and the normal biological function of APOE3,

these studies support the notion that activation of

ABCA1 to stabilize lipidation profile of APOE4 is a vi-

able therapeutic target. Taken together, these studies

demonstrate that correcting the hypolipidation state of

APOE4 may be enough to alleviate AD-type pathologies.

Small molecules as APOE4 structure correctors

The domain interaction property of APOE4 reduces its

secretion from cells [129] and concurrently makes it

protease-labile [130], leading to pathogenic effects [131].

Thus, another potential therapy would be the disruption

of this APOE4 domain interaction using ‘structural cor-

rectors’ which are expected to negate the pathological

consequences of this domain interaction (Table 1). A

study using a FRET system coupled with high through-

put screening identified several small molecules that

could be used as structural correctors [132]. Treatment

of Neuro-2a cells expressing APOE4 with such structure

correctors caused the protein to become more ‘APOE3-

like’ both structurally and functionally. By restoring

mitochondrial cytochrome c oxidase levels, this treat-

ment reversed some of the detrimental effects of APOE4

in Neuro-2a cells. In another study using a human cell

line, similar effects were observed using the small mol-

ecule structure corrector PH002. The compound de-

creased APOE4 fragmentation, increased GABAergic

neuron numbers, reduced phosphorylated tau and Aβ

levels in a dose-dependent manner [55]. The studies

provide proof of concept that disrupting the APOE4 do-

main interaction using structure correctors could be

druggable target in AD.

APOE mimetic peptides regulate function via competing for

receptor binding

Using peptide mimetics that are structurally similar to the

lipid binding class A amphipathic helix found in apoE, it is

possible to regulate the lipidation and secretion of APOE.

These peptides are so designed as to promote cholesterol

trafficking, anti-inflammatory signaling and anti-

thrombotic effects – properties that have been used in tar-

geting systemic disorders such as atherosclerosis and cor-

onary artery disease [133] or acute brain injury models

[134–136]. One example is an 18 amino acid peptide with

no known natural homologs called 4F (Ac-D-W-F-K-A-F-

Y-D-K-V-A-E-K-F-K-E-A-F-NH2) that binds to LDL

(particularly oxidized phospholipids and unsaturated fatty

acids) and HDL at a site that is recognized by APOE

[137]. In primary glial cell cultures derived from humans

or mice, 4F increased APOE lipidation and APOE secre-

tion [137] and reversed aggregated Aβ-induced blockage

of glial APOE secretion. In a second study using APP

overexpressing Drosophila, two novel APOE mimetics,

COG 112 and COG 113, prevented neurodegeneration

and improved memory, though Aβ deposition was not

changed [138]. This suggests that such APOE mimetics

can alter AD-type dysfunction through altering lipid me-

tabolism that may be independent of Aβ pathology. These

peptides, when used in CVND-AD transgenic mice

(SwDI-APP/NOS2(-/-)) improved memory as well as re-

duced Aβ plaques and phosphorylated tau levels [139].

One study showed that such mimetic peptides are effica-

cious in APOE3 TR or APOE2 TR mice, but had no effect

in APOE4 TR mice [140], suggesting isoform-specificity.

Another APOE mimetic peptide derived from the receptor

binding region of APOE α helix, CN-105 (Ac-V-S-R-R-R-

NH2) has successfully completed Phase I clinical trial in

patients with intracerebral hemorrhage (ICH) (Table 1).

This peptide is BBB penetrant and reduces neuroinflam-

mation and neuronal injury in mouse models of acute

brain injury mouse models [135, 136] but this peptide has

not been tested in rodent AD models. Given the beneficial

role of APOE mimetics, future studies in AD mouse

models and cell culture systems with such mimetics are

warranted.
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Small molecule inhibitors of APOE-Aβ interactions

As previously stated, APOE, especially APOE4, is nor-

mally found within Aβ deposits [141]. Inhibitors of pro-

tein–protein interactions (PPI), once considered

undruggable, are now emerging as a tour de force be-

cause of dramatic improvement in understanding of PPI

scaffold chemistry [142]. An advantage of this method is

that these are often naturally occurring molecules that

can be very selective because of their precise targeting

[143]. One such inhibitor that disrupts the binding of

APOE to Aβ is a peptide mimetic called Aβ12-28P,

which is a non-fibrillogenic and non-toxic Aβ derivative

that happens to be BBB permeant [144]. This peptide, by

blocking the binding of APOE and Aβ at residues 12 to

28, reduced Aβ-induced neurotoxicity in cell culture.

Further studies revealed that Aβ12-28P had a strong

pharmacological effect in vivo where systemic adminis-

tration of the peptide resulted in reduction of Aβ de-

posits and in general a reduction of CNS Aβ in two

different APP transgenic mouse lines [145]. Admi-

nistration of Aβ12-28P also prevented working memory

deficits in mice, bolstering its further translatability [145,

146].

APOE is expressed predominantly from astrocytes

in the CNS [147, 148]. However, APOE synthesized

by astrocytes can be neurotoxic, to the extent that

specifically deleting astrocytic Apoe rescues spatial

learning and memory deficits in the APP/PS1 mouse

model [149]. This is also supported by a study that

used a co-culture system of neurons and astrocytes to

investigate the role of APOE on intraneuronal accu-

mulation of Aβ [150]. Intraneuronal Aβ accumulation

was higher in neurons co-cultured with wild-type

mouse astrocytes compared to the cultures exposed

to Apoe KO astrocytes reinforcing the idea that APOE

plays a key role in Aβ proteinopathy. Treatment with

Aβ12-28P, which disrupts APOE-Aβ interaction, sig-

nificantly lowered the amount of intraneuronal Aβ as

well as inhibited the loss of synaptic proteins in this

co-culture system [150].

Another example of an inhibitor of APOE-Aβ inter-

action is the 6KApoEp peptide that inhibits the bind-

ing of APOE to the N-terminus of APP [151]. This

peptide contains residues 133-152 of APOE protein

conjugated to six lysine residues at the N terminus.

When 6KApoEp was injected into the 5XFAD mouse

model of amyloid pathology, both Aβ and tau path-

ologies were reduced concomitant with improved

memory and hippocampal-dependent learning. How-

ever, 6KAPOEp therapy did not alter the cholesterol

or APOE levels in 5xFAD mice. These results demon-

strate that apoE-Aβ interaction inhibitors could po-

tentially be used for therapeutic reduction of Aβ and

tau burden in the CNS.

HDAC inhibition regulates endolysosomal function

Another group of researchers reported that HDAC regu-

lates endolysosomal function [152, 153]. Initially, using

yeast microarray databases, they identified Nhx1 as a

major HDAC regulated factor induced during nutrient-

limiting conditions [152]. Nhx1 is an endosomal Na+/

H+ exchanger (eNHE) whose main function in yeast is

vacuolar alkanization. The mammalian homolog of

NHx1 was identified as Nhe6 that is regulated by

cAMP-response element-binding protein (CREB) and

plays a key role in nutrient- and HDAC-dependent regu-

lation of endosomal pH [152]. This research group used

three different pharmacological strategies to activate

HDAC/CREB-dependent Nhe6 expression in immortal-

ized astrocytes expressing APOE3 or APOE4 and ob-

served that Creb-dependent Nhe6 expression corrected

Aβ clearance deficits observed in APOE4 astrocytes. In a

second report, this research group could mechanistically

relate this finding to dysfunction in LRP1 endocytosis

[153]. Using both Nhe6 deficient mice and immortalized

APOE4 astrocytes, they showed that Nhe6 deficiency

causes endosomes to become hyperacidic, which im-

pedes Aβ clearance by impairing endocytosis of LRP1

[153]. Inhibition of HDAC could normalize Aβ clearance

by restoring Nhe6 in the APOE4 astrocytes. Though

these HDAC inhibitors are efficacious in other systemic

disorders such as heart failure [154] and cancer [155],

the widespread clinical applications is limited due to se-

lectivity issues and toxicity issues.

Recalibrating APOE function using gene editing and gene

therapy

Several experimental strategies have been tested to alter

the prevalent apoE isoform in rodent models and

human-derived induced pluripotent stem cells (iPScs) as

a means to rectify the neurotoxic functions of APOE4.

Various studies have used CRISPR-mediated or adeno-

associated virus (AAV)-mediated gene delivery in these

model systems. However, these strategies have to con-

tend with ethical and safety hurdles before these can be

translated to clinical settings.

CRISPR/Cas9 mediated gene editing

One promising method for gene editing is using the

CRISPR (Clustered Regularly Interspaced Short Palin-

dromic Repeats) system that has just entered Phase 1

trial for treatment of relapsed refractory multiple mye-

loma and related cancers (NCT03399448: University of

Pennsylvania, Parker Institute for Cancer Immunother-

apy, Tmunity Therapeutics). CRISPR/Cas9 basically

functions like a pair of molecular scissors where an edit-

able guide RNA leads the Cas9 ‘scissor’ to a specific site

of the genome to cut where a different nucleotide se-

quence can then be inserted to correct a genetic defect
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[156]. CRISPR/Cas9 has already been proven successful

in iPS cells, where cells derived from a healthy E3/E4 in-

dividual were converted into E2/E2, E3/E3, E4/E4, or an

APOE KO genotype [157]. A second group used iPS cells

derived neurons from an APOE4 carrier and found that

CRISPR-editing the APOE4 reduced tau phosphorylation

and inomycin-induced cell death [158]. Interestingly,

though in the CNS APOE is mostly synthesized by astro-

cytes, this study showed that editing neuronal APOE to

the E3 isoform in these iPS-derived neurons is sufficient

to protect them from cytotoxic injury [158]. Another

study generated different brain cell types and organoids

from iPS cells derived from a human subject – on edit-

ing the APOE4 allele to APOE3 in these iPS-derived cells

increased Aβ clearance and reduced Aβ in the organoid

cultures [49]. This study shows that targeting APOE in

various CNS cell types can lead to beneficial functional

alterations in patient-derived in vitro systems. In animal

models, CRISPR/Cas9 is relatively safe and has been suc-

cessfully used to generate APOE KO in pigs and rats

with little to no off-target incidents or mosaicism [159–

161]. However, there is always the possibility of unex-

pected edits in the targeted and non-targeted portions of

the genome leading to unanticipated side effects as well

as triggering cancer risk [162, 163]. Inherent issues of

CRISPR/Cas9 include off-target gene editing and mosai-

cism or where only some of the copies of the target gene

are actually edited which could result in harmful side ef-

fects or unreliable treatment. Though data from iPS cells

is extremely promising, much more research and ethical

hurdles need to be cleared before gene editing with

CRISPR/Cas9 is ready to be used as a clinical intervention.

AAV-APOE2 biologic therapy

APOE4 has been established as the risk allele for AD,

and APOE2 is protective. This set the foundation for the

idea that if APOE2 could replace or be overexpressed in

APOE4 carriers, there would be a compensatory benefi-

cial therapeutic effect. Indeed, there is a current trial

scheduled to start that intends to test the safety of AAV-

APOE2 expression in APOE4 carriers (Table 1). Patients

will be infused with AAV-APOE2 in the cisterna magna

and then followed up for at least 2 years to assess safety

of this biologic therapy.

There is a robust rodent literature showing the effects

of AAV-mediated APOE expression in primarily mouse

models of amyloidosis. For example, intracerebral injec-

tion of AAV-APOE4 in APP/PS1 and Tg2576 mice re-

sulted in increased Aβ burden whereas AAV-APOE2

lowers Aβ burden [164]. However, a limiting factor of

this study is that this was done in the presence of mur-

ine Apoe that may itself influence Aβ deposition. In a

subsequent study from a second group, expression of

AAV-APOE2 was shown to reduce Aβ plaque burden in

a trigenic mouse (APP/PS1/APOE4 TR) [165]. This study

also showed that gene delivery of APOE2 was most ef-

fective before the onset of amyloid burden, suggesting

that in order to be a successful therapy the AAV would

need to be injected much before the onset of symptoms

in patients which poses its own challenges. Further

translational studies on non-human primates revealed

that intra-cisternal delivery of AAV-APOE2 led to wide-

spread expression in the CNS which established a safe

procedure for CNS delivery of biologics [166]. Because

of the inherent risk in any surgical procedure inside the

CNS, whether such AAV-APOE2 biologics can be dir-

ectly delivered into the AD-affected areas of the human

CNS needs to be cautiously determined. However as

Zhao et al showed in mice, even intrathalamic injections

were modestly effective in reducing Aβ burden in neu-

roanatomically distant areas such as hippocampus [165].

Another confounding variable is that while APOE2 may

decrease Aβ plaque formation, it may increase tau phos-

phorylation [12]. By injecting AAV-P301L tau into

APOE TR mice, this research group found that mice ex-

pressing APOE2 had higher NFT levels compared to

mice expressing APOE3 or APOE4. Along with data

showing genetic association between APOE2 with PSP in

humans, this brings up the question if overexpression of

APOE2 could inadvertently exacerbate tau pathology

while alleviating amyloid burden. In addition, questions

regarding effective dosage to achieve optimum biodistri-

bution and cell type transduction, pre-existing host im-

munity and long term CNS consequences still remain

safety concerns in AAV therapies. In addition, while

AAV-APOE2 gene therapy has promise, more know-

ledge on the neuropsychological and neuropathologic

consequences of APOE2 overexpression is needed.

Lifestyle and diet can also regulate APOE function

Metabolic syndrome (MetS) can be characterized as a

cluster of disorders that are associated with atheroscler-

osis, diabetes, hypertension, and has been linked to de-

mentia in general. A few studies have indicated that the

APOE4 allele is associated with increased risk of MetS

leading to dementia [167]. Multiple case studies have thus

examined the relationship of interventions in lifestyles

such as, but not limited to, diet and exercise to reduce the

risks associated with the APOE4 isoform. Though there is

still no strong precedent for these lifestyle factors to ef-

fectively reduce metabolic dysfunction and AD risk via af-

fecting APOE function, these interventions hold promise

as future and easily translatable strategies in the personal-

ized medicine niche due to their safety profiles.

Exercise

Based on epidemiological records and rodent studies, an

intuitive therapeutic strategy for AD patients is exercise.
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Exercise increases cerebral blood flow, neurogenesis, and

hippocampal volume as well has a positive impact on

memory in humans [168, 169]. In wild type mice, exer-

cise resulted in prevention of age-related neurovascular

changes, especially in the context of the Apoe gene [170].

This was consistent with the idea that APOE plays a key

role in functional impairment of the neurovascular unit

during aging and exercise can reverse these effects by

modulating neurovascular health.

Physical exercise can have a beneficial effect in AD

type dementias by altering neuroplasticity as observed in

both human case studies and rodent studies [171, 172].

However, there are still unresolved issues regarding the

relative efficacies of different exercise regimens and

presence of sex-dependent effects [173]. In a cohort of

201 cognitively normal adults, APOE4 carriers who do

not exercise frequently were shown to have an increased

risk of Aβ deposition [174]. However, this study did not

report how many of these sedentary APOE4 carriers

went on to develop actual AD-type dementia. A more

recent study with 200 individuals diagnosed with mild

AD addressed this issue, examining if exercise held any

cognitive or physical improvements for APOE4 carriers

[175]. The data did support that exercise intervention

improved cognitive function, and was found to be more

beneficial to APOE4 carriers. However, out of the five

tests for cognition, only one test showed a statistically

relevant correlation between exercise and APOE4 status.

Along with the small sample number and lack of infor-

mation on the ethnicities of the cohort, larger studies

would be required to validate any of the conclusions and

extend its application in the clinical setting.

Statins

Statins, or HMG-CoA reductase inhibitors, are a class of

drugs that are typically prescribed to lower cholesterol

levels in the blood. Researchers have postulated that in-

creased brain cholesterol levels, or at the very least dis-

ruption of lipid homeostasis, influences AD pathology

and risk. Epidemiological studies support that higher

serum cholesterol levels are linked to increased risk of

AD independent of APOE genotype [176–178]. A series

of epidemiological studies looked at the effect of statins

on dementia in general, spurred by observations that

usage of statin led to a significantly lower rate of cogni-

tive decline over 6 months [179]. However, more re-

cently the LEADe trial of 2010 and the CLASP study of

2011 that assessed the use of statins in AD patients

found no net benefit or harm in terms of cognitive de-

cline relative to the placebo group [180, 181]. Further

support for the idea that statins do not generally benefit

AD patients comes from another systematic review

[182]. These findings, however, contradict another large

study of Medicare beneficiaries which established a

beneficial association between statin use and reduced

AD incidence in specific populations [183]. The data,

however, showed wide variations in efficacy of statins

based on race and sex; for example, pravastatin was as-

sociated with reduced AD risk only among white women

whereas atorvastatin was efficacious in white women,

black women and Hispanic men. This finding suggests

that overall statin use may not be beneficial for all

people at risk for AD, but in a future of personalized

medicine, physicians should consider whether statins

could have higher health impact in specific patient pop-

ulations based on sex, ethnicity, prevalent health condi-

tions, and APOE genotype.

Ketogenic diet

Modern diets that are high in carbohydrates and low in

fats elevate blood glucose levels after ingestion and can

alter APOE function through glycation and oxidative

damage [184]. These diets are associated with impaired

brain glucose metabolism, which is an AD biomarker.

Feeding APOE TR rodents a high fat diet affected the

plasma levels (E4>E3) and hippocampal levels (E3<E4)

of APOE in an isoform-dependent manner [185]. Given

that APOE4 carriers have abnormally low rates of glu-

cose metabolism compared to other APOE genotypes, it

is possible that these diets may profoundly alter meta-

bolic status in APOE4 patients [186]. A proposed

method to supplement brain health could be the use of

ketone bodies that are produced by using a ketogenic

diet, or a high-fat low-carbohydrate diet (reviewed in

[187]) that can alter the microbiome and improve neuro-

vascular functions in young healthy mice [188]. In a

small clinical study on AD patients with mild cognitive

impairment (NCT02984540), certain gut bacteria

showed significant correlation with AD CSF biomarkers

(Aβ and phosphorylated tau) and further a modified

Mediterranean-ketogenic diet altered gut bacterial pro-

file [189], suggesting that such diets can regulate AD

biomarkers through regulating gut microbiome and as-

sociated metabolites. Some diet intervention trials have

reported that such regulated diets might have an effect

on the neuropsychiatric profile of early AD patients

[190], and some interventions show an APOE-

dependent effect [191, 192]. These studies, however

promising, need to be considered as they are – isolated

case studies or small trials that require larger placebo

controlled investigation for validation and further studies

in rodent models are warranted.

Insulin resistance and APOE

As previously stated, diabetes and impaired insulin sig-

naling are factors that increase the risk for MetS and are

associated with increased AD risk [193, 194]. Peripheral

insulin resistance is associated with lower cerebral
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glucose metabolism, which is also generally true of

APOE4 carriers, and this is further associated with

poorer memory performance [195]. However, a clinical

trial using insulin nasal sprays showed a complicated

sex/APOE interaction. In the APOE4 negative group,

male AD patients improved in cognitive function

whereas women worsened, whereas in the APOE4 group,

both sexes remained equally stable [196, 197].

In mice, the role of Apoe in insulin signaling was

established in a study that showed that deletion of Lrp1,

a major Apoe receptor, led to impaired brain insulin sig-

naling and glucose metabolism [198]. Studies in APOE4

TR mice showed that age along with peripheral insulin

resistance contribute to the insulin signaling impairment

in the brain by trapping the insulin receptor inside endo-

somes and contributing to impaired glycolysis [60]. With

the current emerging knowledge on the regulation and

function of brain insulin signaling, there is a need for

further research into how insulin/glucose metabolism in-

tersects with dementia in APOE isoform-dependent

manner.

Neuroinflammation and cerebrovascular integrity in the

context of APOE function

Evidence suggests that inflammation as well as cerebro-

vascular damage play a crucial role in the pathogenesis

of AD. APOE has been shown to predispose carriers to

different neuroinflammatory profiles depending on the

isoform. For example, in the ROS/MAP kindred of

LOAD, the protective role of the APOE2 haplotype

could be traced to its counteracting a pathologic micro-

glial signature [199] though APOE4 did not show a cor-

responding pathologic effect on aged microglia [199,

200]. In mouse models, both Apoe KO mice and APOE4

TR mice upregulate pro-inflammatory phenotype when

challenged with bacterial lipopolysaccharide [201]. A re-

cent paper suggested that mouse Apoe and human

APOE4 act as a direct checkpoint inhibitor by binding

to the complement C1q and attenuating the classical

complement cascade [202]. This work has spurred inter-

est to not only investigate the function of glia-specific

APOE in the CNS but how this impacts the neurovascu-

lar unit including the BBB. This line of research has not

yet identified any druggable candidates but future re-

search into neuroinflammation and peripheral inflamma-

tion may yield potential targets that can be targeted in

an APOE genotype-dependent manner.

TREM2

Microglia are resident immune cells in the brain that help

maintain CNS homeostasis and can initiate inflammatory

reactions when this homeostasis is perturbed. In AD,

microglia can become chronically dysfunctional [203]. Re-

cent genome wide association studies have identified

several microglial genes that regulate AD risk, foremost

among them being TREM2 [204]. The current state of

thought is that variants of TREM2 that increase AD risk

are loss of function mutations [205–207]. Recent studies

have implicated a close relationship between TREM2 and

APOE. APOE has been found to regulate the function of a

subset of microglia, which under the control of TREM2

can adopt a damage associated microglia (DAM) pheno-

type [208] that is analogous to a toxic molecular signature

of disease-associated microglia (MGnD) observed in sev-

eral animal models including AD model [209]. This

APOE-dependent phenotype is induced in phagocytic

microglia in the presence of apoptotic neurons and activa-

tion of the TREM2-APOE signaling pathway results in

functional impairment of the microglia. The authors sug-

gested that the switch from homeostatic to neurodegener-

ative state in AD-associated microglia is an initial

response to neuronal injury compounded by a failure to

switch back to a functional state. Several follow-up studies

have now shown that Aβ is also a ligand of Trem2 [210,

211], implicating the TREM2-APOE pathway directly in

AD pathogenesis. A recent report showed that loss of

Trem2 accelerates amyloidogenesis in mice by reducing

microglial function but these newly seeded deposits show

reduced amounts of Apoe compared to mice carrying

Trem2 [212]. Together this data suggests that microglia,

through Trem2 mediated signaling, can regulate apoE co-

deposition around Aβ deposits, which further has signifi-

cance in terms of Aβ clearance based on specific APOE

isoform [164]. Independently, in a mouse model of

tauopathy-mediated neurodegeneration, reducing micro-

glial activity through pharmacological methods increases

soluble APOE, reduces tauopathy and rescues neurode-

generation in APOE4 mice [54]. This report did not spe-

cifically look at Trem2 though another previous report

had ahown that attenuating microglial Trem2 is protective

against tau-mediated neurodegeneration [213]. Given that

this scenario of tripartite interactions between Aβ, tau and

APOE is mediated through microglial homeostasis, it is

tempting to suggest that targeting microglial TREM2

functions can result in APOE-isoform dependent thera-

peutic benefits. Of note, a recent report showed that the

ectodomain form of TREM2, soluble TREM2, is protective

in an amyloid mouse model by enhancing microglial me-

tabolism of Aβ [214] and triggering microglia to an active

state [215]. Given that TREM2 facilitates microglial deg-

radation of Aβ preferentially complexed with LDL [210],

this raises the intriguing possibility that soluble TREM2

may have therapeutic promise. However, another cell cul-

ture study seemed to indicate that AD-associated TREM2

risk variants do not show altered binding affinity for Aβ or

APOE [211], raising the conundrum regarding whether

TREM2-Aβ interaction is functionally dependent on spe-

cific APOE genotype.
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Blood Brain Barrier

The BBB is composed of a layer of tightly packed endo-

thelial cells which keeps out neurotoxins and pathogens

from the brain, imparting a sort of unique ‘immune pri-

vileged’ milieu during healthy conditions. In AD, BBB

dysfunction and leakiness precedes neurodegenerative

changes, brain atrophy, and dementia [216]. This finding

has encouraged researchers to look into how BBB break-

down relates to neurodegeneration in a series of AD

mouse models including APOE models. It has been sug-

gested that APOE is essential for maintaining BBB integ-

rity as the BBB is leaky in Apoe KO models [35, 36, 217].

Further, APOE triggers BBB breakdown in an isoform-

dependent manner in an in vitro model (E4>E3) [91],

though another group reported that the BBB is largely

intact at least in young APOE4 TR mice [40]. This raises

the possibility that APOE4 mediated BBB disruptions

can be localized to selectively vulnerable brain regions

or may depend on other factors, such as aging or pres-

ence of amyloid angiopathy. Another group of re-

searchers found that APOE4 mice had higher levels of

the cyclophilin A (CypA)-matrix metalloproteinase 9

(MMP-9) in the pericytes. Since pericytes make up the

BBB, this can lead to degradation of tight junctions and

basement membranes and leakiness of the BBB [36].

Other studies using radioactive tracers in mouse models

or using in vitro model of mouse brain microcapillaries

showed that APOE3 and APOE2 mediate Aβ clearance

through a faster route via LRP1 across the BBB while

APOE4 mediates Aβ clearance through VLDR at a much

slower rate possibly contributing to CNS accumulation

of Aβ [43]. These studies revealed a potential therapeutic

target, where researchers genetically and pharmacologic-

ally inhibited the CypA-MMP-9 pathway which resulted

in repairing the BBB and reversing the neurodegenera-

tion [36]. Curiously, loss in BBB integrity would also

imply that drugs (such as antibodies) administered per-

ipherally could gain easier access into the brains of

APOE4 individuals, leading to higher bioavailability. On

the whole, more studies are still required to establish the

relationship between APOE genotype and BBB integrity

and how this is altered in the context of neurodegenera-

tive dementia of the elderly.

Critical Challenges for targeting CNS resident APOE

One of the most critical challenges for any AD thera-

peutic is optimizing the route and mode of administra-

tion so as to achieve effective bioavailability by bridging

the BBB. A major area of research is now devoted to dis-

covering cutting edge technologies that can safely breach

the BBB. One option is to use the so-called Trojan horse

strategy utilizing bifunctional molecules, one arm of

which can be used to shuttle the APOE therapeutic

across the BBB as has been demonstrated for anti-Aβ

antibodies [218]. Another new technique is using pulsed

ultrasounds that would create transient openings in the

BBB allowing the APOE therapeutic to reach the sub-

strate, as has been done to optimize chemotherapy in

glioblastoma patients [219]. Perhaps another alternative

would be to use gene therapy vectors to deliver a benefi-

cial (E2) or even the neutral form (E3) of APOE, using

specific AAV capsid serotypes that are preferentially

neurotropic even when administered in the periphery

[220, 221]. Each one of these tools have their shortcom-

ings – for example, the bridging molecules used for the

Trojan horse strategy are not particularly specific for the

BBB, leading to potential dilution or even unwanted per-

ipheral side effects. Likewise, the pulsed ultrasound and

AAV based approaches have unknown long-term health

implications. Interestingly, a 20 amino acid stretch of

the APOE protein itself has been successfully utilized for

shuttling therapeutics across the BBB in a mouse model

of lipofuscinosis, a pediatric neurodegenerative disorder

[222, 223], suggesting the possibility of using endogen-

ous shuttling signals for efficacious delivery through the

BBB. Even with these exciting breakthroughs, several

challenges remain: if administered peripherally, how do

we prevent the APOE therapeutic to be titered by the

peripheral pools of APOE, or worse, cause systemic

metabolic dysfunction and additionally, how to safely

guide the therapeutic to the affected brain regions or cell

types once inside the brain.

Targeting APOE in other dementias

Aside from its established role in AD, not much is

known about how APOE influences disease pathogenesis

in AD related dementias such as Fronto-temporal de-

mentias (FTD), dementia with Lewy bodies (DLB) and

vascular dementia. Consequently, very few mechanistic

and therapeutic studies in mouse models are available.

The APOE2 allele is associated with an increased risk

of ALS-FTD [224]. In another study, APOE2 and

APOE4 alleles showed protective and increased disease

risk effects, respectively, for FTD subtypes such as be-

havioral variant FTD and semantic dementia, though po-

tential overlaps between clinical diagnosis of FTD and

AD cannot be completely ruled out in this study [225].

Similarly, APOE4 appears to be a risk factor for DLB

[226] and vascular dementia [227]. There is no direct as-

sociation of APOE with other atypical parkinsonism syn-

dromes with dementia such as corticobasal degeneration

(CBD), multiple system atrophy (MSA) and progressive

supranuclear palsy (PSP) [228]. Knocking out mouse

Apoe resulted in delayed neurodegeneration in a mouse

model of synucleinopathy [229]. In mouse studies, both

APOE4 as well as APOE2 increased tauopathy burden in

two different mouse models [11, 12], raising intriguing
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possibilities of how APOE might interact with tau in the

presence of co-morbidities (such as Aβ and α-synuclein).

Conclusions

APOE not only impacts lipid metabolism but various

CNS functions and neurodegenerative proteinopathy in

AD in an isoform-dependent manner. The current evi-

dence highlights how APOE isoform determines physio-

logical homeostasis in the brain and how several APOE-

targeted therapeutic approaches can have corrective or

preventive outcome(s) in neurodegenerative proteinopa-

thies, particularly in AD (Fig. 2). Many of these experi-

mental approaches are validated in various cellular or

animal models, with the overall perception that current

APOE-targeted therapies would be more effective at pre-

vention rather than treatment of those already in the

throes of the neurodegenerative cascade. If or when

these treatments make it through clinical trials, the po-

tential benefit could be greatest for APOE4 carriers,

where early intervention would slow the rate of decline

(neuropathologic or neuropsychiatric) though it is un-

likely to entirely stop the progression of disease. This is

exemplified in some of the rodent amyloid models,

where early intervention led to reduction of Aβ deposits

but not complete clearance. However, if future research

shows that APOE alters other AD related proteinopa-

thies in these patients, such as tau or α-synuclein or in-

flammation either directly or through altering Aβ levels,

then certain APOE directed therapies may have more

profound multi-target effects in an APOE isoform-

dependent manner. Additionally, APOE4 targeted ther-

apies might also become adjuvants to other multimodal

treatments that would target the more age-advanced

pathologies, such as neuroinflammation or BBB leakiness

[230]. Advancements in biomarkers for earlier diagnosis

and prognosis of AD, especially in an APOE-informed

population, would be invaluable for targeted therapies in

an emerging era of precision medicine. Additionally,

how such interventions will alter peripheral lipid homeo-

stasis and vascular function would also need to be deter-

mined. The safety profile of any therapeutic will thus

need to balance the total amount of APOE, lipidation

profile of APOE, vascular risk factors, inflammatory

phenotype and systemic effects. With this taken to-

gether, APOE-targeted therapeutic strategies remain a

propitious area of research for preventing or delaying

the onset of AD type dementias.
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