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Alzheimer’s disease is an age-related progressive neurodegenerative disorder with an enormous unmet
medical need. It is the most common form of dementia affecting �5% of adults over 65 years. In view of
our ageing society the number of patients, as well as the economical and social impact, is expected to grow
dramatically in the future. Currently available medications appear to be able to produce moderate symp-
tomatic benefits but not to stop disease progression. The search for novel therapeutic approaches targeting
the presumed underlying pathogenic mechanisms has been a major focus of research and it is expected
that novel medications with disease-modifying properties will emerge from these efforts in the future. In
this review, currently available drugs as well as novel therapeutic strategies, in particular those targeting
amyloid and tau pathologies, are discussed.
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Introduction
Alzheimer’s disease is the most common cause of progressive

dementia in the elderly population. It is a chronic neuro-

degenerative disorder that leads to progressive disturbances

of cognitive functions including memory, judgement,

decision-making, orientation to physical surroundings

and language (Nussbaum and Ellis, 2003). Characteristic

neuropathological findings include selective neuronal and

synaptic losses (Morrison and Hof, 1997), extracellular

neuritic plaques containing the b-amyloid peptide (Glenner

and Wong, 1984; Masters et al., 1985) and neurofibrillary

tangles (NFTs) composed of hyperphosphorylated forms of

the tau protein (Delacourte and Defossez, 1986; Grundke-

Iqbal et al., 1986a, b; Kosik et al., 1986; Goedert et al., 1988,

1992; Wischik et al., 1988; Flament et al., 1989; Lee et al.,

1991; Hasegawa et al., 1992; Sergeant et al., 1995).

The clinical picture of dementia, as well as the histological

findings of amyloid plaques and NFTs, was described as

early as 1906 by the German psychiatrist Alois Alzheimer at

a conference in Tübingen (reviewed by Maurer et al., 1997).

His findings were published in his famous report ‘Über eine

eigenartige Erkrankung der Hirnrinde’ [‘A characteristic

disease of the cerebral cortex’] in 1907 (Alzheimer, 1907). In

his 1911 publication, Alzheimer reported his second case of

dementia and also included drawings of the typical

neurofibrillary changes from his first case (Alzheimer,

1911; for reviews on Alzheimer’s work and contributions

of others in this context, see Bick, 1994; Maurer et al., 1997;

Burns et al., 2002). Although discovered already a century

ago, plaques and tangles are, till today, still the defining

criteria for a definite post-mortem diagnosis.

It has been estimated that �5% of the population older

than 65 years is affected by Alzheimer’s disease (Bullock,

2004). The prevalence doubles approximately every 5 years

beyond age 65 (Cummings, 2004) and some studies suggest
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that nearly half of the people aged 85 years and older suffer

from this devastating disorder (Forsyth and Ritzline, 1998).

Due to the demographic development of Western societies,

undoubtedly the number of patients and the economic

impact of Alzheimer’s disease will grow extraordinarily in

the future without advances in therapy or prevention.

Current medications that have passed FDA approval

for the treatment of Alzheimer’s disease include acetylcho-

linesterase (AchE) inhibitors for mild to moderate cases,

and memantine, an NMDA (N-methyl-D-aspatarte)-receptor

antagonist for the treatment of moderate to severe

Alzheimer dementia. All of these drugs seem to be able to

produce modest symptomatic improvements in some of

the patients (for review, see Clark and Karlawish, 2003;

Cummings, 2004; Scarpini et al., 2003), none of the available

medications, however, appears to be able to cure Alzheimer’s

dementia or to stop the disease progression.

There is enormous medical need for the development of

novel therapeutic strategies that target the underlying

pathogenic mechanisms in Alzheimer’s disease and that are

therefore expected to lead to new medications with strong

disease-modifying properties.

Current status: symptomatic strategies
Cholinergic deficit
According to the ‘cholinergic hypothesis of Alzheimer’s

dementia’ the destruction of cholinergic neurons in the

basal forebrain and the resulting deficit in central

cholinergic transmission contribute substantially to the

characteristic cognitive and non-cognitive symptoms

observed in the patients (Bartus et al., 1982; Cummings

and Back, 1998). Reductions in the activities of choline

acetyltransferase and AChE in brain tissues from Alzhei-

mer’s disease patients were first reported in 1976 and 1977

(Bowen et al., 1976; Davies and Maloney, 1976; Perry et al.,

1977). These enzymes are involved in the synthesis and

degradation of acetylcholine, and the observed reduction in

Alzheimer’s disease suggested a selective destruction of

cholinergic neurons. The cholinergic hypothesis provided

the rational basis for the development of the AChE

inhibitors for Alzheimer’s disease therapy. Alternative

approaches aiming for improved cholinergic neurotrans-

mission, such as the administration of acetylcholine

precursors, the stimulation of presynaptic acetylcholine

release or muscarinergic agonists were not successful due to

lack of efficacy or because of severe side effects (Doody

et al., 2001). The acetylcholine deficiency hypothesis was

primarily supported by post-mortem examinations of

brains from patients with advanced dementia (Bartus

et al., 1982; Perry, 1986; Whitehouse et al., 1986). The

underlying assumption that the cholinergic deficits occur

early in the course of the disease has been challenged by

more recent studies reporting that the activities of the

marker enzymes choline acetyltransferase and AChE were

not reduced in individuals with mild Alzheimer’s disease

(Davis et al., 1999), and that cholinergic activity may be

even up-regulated in early stage of the disease (DeKosky

et al., 2002; Frolich, 2002).

Inhibition of brain cholinesterase activity
After its release into the synaptic cleft the neurotransmitter

acetylcholine is degraded rapidly by the hydrolytic activity of

cholinesterases. In the human brain, the most prominent

enzyme involved in acetylcholine hydrolysis is AChE. Recent

evidence suggests that additionally, butyrylcholinesterase

(BChE) can also hydrolyse acetylcholine in the brain and

may play a role in cholinergic transmission (Mesulam et al.,

2002a, b).

Inhibition of these enzymes leads to an increase in the

acetylcholine concentration in the synaptic cleft and is thus

expected to enhance cholinergic transmission and ameliorate

cholinergic deficit. Three different cholinesterase inhibitors,

namely galantamine, donepezil and rivastigmine are

commonly used for the treatment of mild to moderate

Alzheimer’s disease. Donepezil and galantamine are selective

inhibitors of AChE, while rivastigmine also inhibits BChE,

which accounts for �10% of the cholinesterase activity in

normal human brain and appears to be predominantly

associated with glia (reviewed in Scarpini et al., 2003).

Several randomized, double-blind, placebo-controlled

studies reported positive effects of the cholinesterase

inhibitors on cognitive and functional symptoms, as well

as on behavioural abnormalities in Alzheimer’s dementia

(Rogers et al., 1998; Corey-Bloom, 1998; Rosler et al.,

1999; Tariot et al., 2000; Winblad et al., 2001). Systematic

reviews of the available randomized, double-blind,

placebo-controlled studies by the Cochrane Collaboration

support the use of the three cholinesterase inhibitors

rivastigmine (Birks et al., 2000), donepezil (Birks and

Harvey, 2003) and galantamine (Loy and Schneider,

2004) for treatment of mild to moderate Alzheimer’s

disease. The treatment effects observed at 6 months were

moderate and of similar size for the three substances

(reviewed in Scarpini et al., 2003). In line with the Cochrane

reviews, clinical benefits from cholinesterase inhibitors

were also reported in two other meta-analyses published in

2004 (Whitehead et al., 2004; Ritchie et al., 2004). In a

recent systematic review, however, the scientific basis for the

recommendations of cholinesterase inhibitors for treatment

of Alzheimer’s disease has been questioned (Kaduszkiewicz

et al., 2005). Further long-term studies including the direct

comparisons of the three cholinesterase inhibitors would be

desirable.

Glutamate-mediated neurotoxicity
Glutamate excitotoxicity mediated through excessive activa-

tion of NMDA receptors is believed to play a role in the

neuronal death observed in Alzheimer’s disease and other

neurodegenerative conditions (reviewed in Bleich et al.,

2003; Hynd et al., 2004).
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Glutamate represents the main excitatory neurotransmit-

ter in the central nervous system and a physiological level of

glutamate-receptor activity is essential for normal brain

function (Kornhuber and Weller, 1997). Glutamate recep-

tors can be broadly divided into metabotropic glutamate

receptors, which are coupled to G-proteins, and ionotropic

receptors, which are ligand gated ion channels. On the

basis of their sensitivity to synthetic agonists, the latter are

classified into the NMDA, a-amino-3-hydroxy-5-methyl-4-

isoxazole-propionate (AMPA) and kainate receptors (Javitt,

2004).

In Alzheimer’s disease, excessive activation of NMDA

receptors is believed to cause increases in intracellular

Ca2+ which then triggers downstream events that ultimately

lead to neurodegeneration (for review, see Hynd et al.,

2004). Consequently, NMDA-receptor antagonists may have

a therapeutic potential for protecting neurons from

glutamate-mediated neurotoxicity.

Potent NMDA-receptor antagonists like MK-801 or

phencyclidine (PCP) were reported to produce psycho-

tomimetic side effects (Kornhuber and Weller, 1997),

presumably due to interference with the physiological

functions of NMDA glutamate receptors. Memantine is a

non-competitive NMDA-receptor antagonist with moderate

affinity (Kornhuber et al., 1989) that appears to be able to

protect neurons while leaving physiological NMDA-receptor

activation unaffected (reviewed in Sonkusare et al., 2005).

Memantine interacts with the NMDA receptor at therapeutic

concentrations (Kornhuber and Quack, 1995).

Memantine was approved in 2002 in Europe for the

treatment of ‘moderately severe to severe Alzheimer’s

disease’ and in 2003 in the United States for the treatment

of moderate to severe cases of Alzheimer’s disease

(Sonkusare et al., 2005). A recent systematic review of

double-blind, parallel group, placebo-controlled randomized

trials of memantine in people with dementia published by

the Cochrane Collaboration suggested a beneficial effect of

memantine on cognitive function and functional decline in

patients with moderate to severe Alzheimer’s disease, and

on cognitive function in vascular dementia. The drug was

reported to be well-tolerated (Areosa Sastre et al., 2005).

Combination therapy
The positive clinical results of memantine monotherapy

and the observation that memantine does not interact

in vitro with the AChE inhibitors donepezil, galantamine or

tetrahydroaminoacridine (Wenk et al., 2000) suggested that

the clinical combination of memantine with cholinesterase

inhibitors might represent a particularly valuable approach.

A randomized, double-blind, placebo-controlled clinical trial

of patients with moderate to severe Alzheimer’s dementia

who had already been adjusted to donepezil was published

in January 2004. After 24 weeks, a statistically significant

benefit of the combination therapy as compared with the

monotherapy was observed with regard to measures of

cognitive function, activities of daily living, behaviour and

clinical global status (Tariot et al., 2004).

Mechanism-based therapeutic approaches
targeting b-amyloid and tau pathologies
The characteristic neuropathological hallmarks of

Alzheimer’s disease include neuritic plaques and NFTs

(Alzheimer, 1907, 1911). Neuritic plaques are extracellular

lesions composed of a central core of aggregated amyloid-b

peptide (Ab) surrounded by dystrophic neurites, activated

microglia and reactive astrocytes (Selkoe, 1991). In 1984,

Glenner and Wong first reported on the purification and

partial amino acid sequence determination of the b-amyloid

peptide from cerebrovascular amyloid associated with

Alzheimer’s disease (Glenner and Wong, 1984). Shortly

after, the 4 kDa amyloid protein components purified

from the plaque cores from Alzheimer’s disease and Down

syndrome brains were found to be essentially identical,

indicating a common origin (Masters et al., 1985)

NFTs are intracellular bundles of paired helical filaments

(PHFs; Kidd, 1963; Terry, 1963) and straight filaments

(Yagishita et al., 1981). They are composed of tau protein

(Delacourte and Defossez, 1986; Grundke-Iqbal et al., 1986a;

Kosik et al., 1986; Goedert et al., 1988; Wischik et al., 1988)

in an abnormally hyperphosphorylated form (Grundke-

Iqbal et al., 1986b; Flament et al., 1989; Lee et al., 1991;

Goedert et al., 1992; Hasegawa et al., 1992; Sergeant

et al., 1995). It appears that these two proteinacious

lesions are at the root of the pathogenesis of Alzheimer’s

disease, and consequently it is believed that targeting the

underlying mechanisms leading to plaques and tangles

will ultimately generate novel therapeutics with disease-

modifying properties.

Therapeutic strategies targeting b-amyloid
The amyloid cascade hypothesis
The dominating hypothesis to explain the mechanisms

leading to Alzheimer’s disease is the amyloid cascade

hypothesis, which states that the Ab, a fragment of the

amyloid precursor protein (APP), plays a central role in

the pathogenesis. Ab is produced proteolytically from APP

by the so called b- and g-secretases. It is believed that

accumulation of b-amyloid (in particular of the Ab42

peptide) in the brain initiates a cascade of events that

ultimately leads to neuronal dysfunction, neurodegeneration

and dementia (Fig. 1; for a review, see Hardy and Selkoe,

2002).

The strongest argument supporting a causal role of b-

amyloid in Alzheimer’s disease comes from the identification

of mutations in the APP gene (Chartier-Harlin et al., 1991;

Goate et al., 1991; Murrell et al., 1991) and in the genes for

presenilin-1 and -2 (PS1 and PS2; Levy-Lahad et al., 1995;

Sherrington et al., 1995) that are responsible for early-onset

forms of familial Alzheimer’s disease (FAD). By July 2006,
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25 pathogenic mutations in APP, 155 in PS1 and 10 in PS2

were listed on the Alzheimer Disease & Frontotemporal

Dementia Mutation Database (Cruts and Rademakers, 2006;

http://www.molgen.ua.ac.be/ADMutations/). Another online

database listing FAD mutations is available at http://www.

alzforum.org/res/com/mut/default.asp. FAD mutations in

PS1 and PS2, as well as mutations in the APP gene close

to the g-secretase cleavage site, modify the proteolytic

generation of Ab peptides in such a way that the relative

proportion of the highly amyloidogenic Ab42 form is

increased (Suzuki et al., 1994; Tamaoka et al., 1994; Borchelt

et al., 1996; Duff et al., 1996; Citron et al., 1997). The

so-called ‘Swedish’ APP double mutation (KM670/671NL)

leads to a rise in overall Ab generation due to an increased

cleavage by b-secretase (Citron et al., 1992; for reviews, see

Hardy and Selkoe, 2002; St George Hyslop and Petit, 2004).

Ab peptides represent the principal protein component of

the neuritic plaques characteristic for Alzheimer’s disease

and it was shown that aggregated forms of synthetic Ab

peptides can cause damage to cultured neuronal cells

(Pike et al., 1993; Lorenzo and Yankner, 1994). More recent

findings suggest that rather than highly aggregated Ab

species, soluble oligomeric prefibrillar forms of Ab [so called

Ab-derived diffusible ligands (ADDLs) or protofibrils] may

represent the neurotoxic entity and cause synaptic dysfunc-

tion (Lambert et al., 1998; Hartley et al., 1999).

Fig. 1 Amyloid cascade hypothesis and selected strategies for therapeutic intervention. The figure summarizes the presumed sequence
of pathological processes that leads to neurodegeneration in AD according to the amyloid cascade hypothesis (Hardy and Selkoe, 2002),
and indicates selected potential approaches for therapeutic intervention. Ab42 is believed to initiate this series of pathogenic events.
Modified from: D. Selkoe, ‘The amyloid hypothesis’. Alzheimer Research Forum. Available at http://www.alzforum.org/res/adh/cur/
knowntheamyloidcascade.asp. Accessed in August 2006.
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Transgenic animal models may help to better understand

the role of amyloid and tau in the aetiology of Alzheimer’s

disease and they may also serve for testing novel drug

candidate compounds.

Transgenic mice that show robust amyloid plaque

pathology were first reported by Games and colleagues in

1995 (Games et al., 1995). These mice expressed high levels

of the V717F FAD-mutant form of human APP and

developed extracellular amyloid plaques, astrocytosis and

neuritic dystrophy. In 1996, transgenic ‘Tg2576’ mice over-

expressing the Swedish APP double mutation were shown to

develop Congo red positive amyloid plaques and age-

dependent correlative memory deficits (Hsiao et al., 1996).

Sturchler-Pierrat and colleagues (1997) generated the APP23

line expressing Swedish mutant APP under control of

the Thy-1 promoter. These mice developed typical plaques

and showed signs of inflammatory reactions as well as

cerebrovascular amyloid deposits (Sturchler-Pierrat et al.,

1997; Calhoun et al., 1999). At age 14–18 months, a selective

reduction of neurons in the hippocampal area CA1 was

observed (Calhoun et al., 1998). (For a recent review on

additional mouse lines that have been generated since then,

see McGowan et al., 2006.)

According to the amyloid cascade hypothesis novel

therapeutic strategies that lower Ab levels or prevent the

formation of the presumed neurotoxic oligomeric Ab

species are predicted to stop or slow down the progession

of neurodegeneration and dementia in Alzheimer’s disease.

Modulation of Ab production
Ab peptides are proteolytic fragments of the APP, a large

integral membrane protein that is composed of a signal

sequence, a large extra-membranous region, a single

transmembrane domain and a small cytosolic C-terminal

tail (Kang et al., 1987). Post-translational modifications of

APP include phosphorylation, tyrosine-sulphation and N-

and O-linked glycosylations (Oltersdorf et al., 1990;

Weidemann et al., 1989). Ab is generated from APP by

sequential cleavages by two proteases termed b- and g-

secretase. APP cleavage by the so-called a-secretase, which

was the first proteolytic cleavage to be identified, precludes

Ab generation since the a-secretase cleavage site is located

within the Ab sequence (Esch et al., 1990; Sisodia et al.,

1990). Ab is not the result of abnormal or pathological APP

processing, as was originally believed, but is secreted

constitutively by normal cells in culture (Haass et al.,

1992; Shoji et al., 1992) and can be detected in plasma and

CSF of healthy humans (Seubert et al., 1992). The

observation that g-secretase activity was prevented in

neuronal cells derived from PS1 deficient mouse embryos

indicated that PS was tightly linked to the intramembrane

cleavage of APP (De Strooper et al., 1998). Two conserved

aspartate residues in PS1 located in transmembrane

regions were shown to be essential for g-secretase activity

(Wolfe et al., 1999), and subsequent studies revealed that

g-secretase is a protein complex composed of PS, nicastrin,

PEN2 and APH-1. It appears that PS1 provides the active

core of the secretase complex and that the enzymatic

mechanism is that of an aspartate protease (reviewed in De

Strooper, 2003).

Beta-secretase was discovered and cloned in 1999

(Hussain et al., 1999; Sinha et al., 1999; Vassar et al., 1999;

Yan et al., 1999) and has been a major focus of drug

discovery efforts since then. BACE1 knock-out mice were

reported to produce only very small amounts of Ab

confirming that BACE1 represents the primary b-secretase

in vivo. Furthermore, the absence of severe phenotypes in

the knockout mice (Luo et al., 2001; Roberds et al., 2001),

suggests that targeting b-secretase may be a particularly

promising therapeutic approach, even though the identifica-

tion of specific small molecule inhibitors suitable for drug

development appears to be difficult (Citron, 2004).

Several pharmaceutical companies have actively searched

for small molecule compounds that can reduce Ab

production by affecting one of these targets.

A g-secretase inhibiting compound (LY450139) by Eli

Lilly was recently tested in a 6-week Phase II trial. The

compound was reported to reduce Ab levels in plasma

but not in CSF at concentrations that did not produce

significant side effects (Siemers et al., 2005).

A major concern regarding the therapeutic usefulness of

g-secretase inhibition and potential side effects comes from

the identification of several g-secretase substrates other

than APP, including Notch 1 and others (for review, see

De Strooper, 2003).

The finding that certain non-steroidal anti-inflammatory

drugs (NSAIDs) can preferentially reduce the generation of

the highly amyloidogenic Ab42 species without affecting

Notch cleavage (Weggen et al., 2001), indicates the existence

of a g-secretase modulating mechanism as a potential drug

target that may allow for lowering Ab42 levels without

inducing potential side effects related to complete inhibition

of g-secretase. It is reasonable to assume that currently more

potent and specific Ab42 lowering compounds are being

actively searched for.

Cleavage of APP by non-amyloidogenic a-secretase can be

stimulated by muscarinic acetylcholine-receptor agonists,

and this was shown to also reduce Ab generation in cell

culture (Hung et al., 1993; Wolf et al., 1995). M1 muscarinic

acetylcholine-receptor agonists were therefore suggested to

be potentially useful not only for symptomatic treatment of

Alzheimer’s disease but to a limited extent also for causal

therapy (Fisher, 2000).

The M1 agonist AF267B (Fisher, 2000) was recently tested

in triple-transgenic mice expressing mutant forms of

presenilin 1, APP and tau (Oddo et al., 2003; Billings

et al., 2005). A 10-week treatment of the mice, with daily

intraperitoneal injections of the compound, was

reported to ameliorate cognitive deficit in the mice and to

reduce both, amyloid and tau pathologies (Caccamo et al.,

2006).
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Inhibition of Ab-aggregation
Preventing the formation of the presumed toxic oligomeric

aggregates of Ab by small molecules represents another

promising approach for the development of novel and causal

therapeutics for treating Alzheimer’s disease.

Neurochem Inc., a Canadian company, has completed a

Phase II clinical trial of their glycosaminoglycan mimetic

Alzhemed that has been designed to bind to Ab peptides

and thereby inhibits formation of Ab aggregates. A phase III

trial is planned (reviewed in Citron, 2004).

Metal ions like Cu2+ and Zn2+ may be involved in the

mediation of Ab aggregation and toxicity (Atwood et al.,

1998). A significant decrease in brain Ab deposition in

APP-transgenic mice was observed after 9 weeks treatment

with clioquinol, an antibiotic and Cu/Zn chelator that

crosses the blood–brain barrier (Cherny et al., 2001).

Recently Prana Biotechnology cancelled an upcoming

Phase II/III clinical trial of clioquinol (PBT-1) because of

toxic impurities believed to occur during the manufacture

(Boggs, 2005; Prana Biotechnology, 2005).

Ab immunotherapy
In a landmark paper in 1999 Dale Schenk and co-workers

described that immunization with Ab attenuates the

Alzheimer’s disease-like pathology in a transgenic mouse

model of Alzheimer’s disease (Schenk et al., 1999). Using

peripheral antibody administration the same group provided

direct evidence that Ab antibodies are sufficient to reduce

the amyloid deposition (Bard et al., 2000). These funda-

mental observations have meanwhile been confirmed in

different transgenic Alzheimer’s disease models as well as in

aged non-human primates, which develop some brain

amyloid in particular cerebral amyloid angiopathy (CAA;

Lemere et al., 2004). Furthermore, Ab immunization was

shown to also reduce various aspects of the amyloid-

associated pathology including neuritic dystrophy and

synaptic degeneration as well as early tau accumulation

(Lombardo et al., 2003; Oddo et al., 2004; Brendza et al.,

2005; Buttini et al., 2005).

These histopathological normalizations also result in

functional improvements. Active and passive immunization

against Ab can reduce the learning deficits of APP-

transgenic mice (Janus et al., 2000; Morgan et al., 2000).

An amelioration of memory deficits can already be found

after short term and even a single passive immunization in

the absence of an amyloid reduction (Dodart et al., 2002;

Kotilinek et al., 2002). This lack of correlation with amyloid

deposits probably reflects the fact that some behavioural

deficits seem to be induced by amyloid deposits while

others may be more acutely caused by soluble Ab species

(oligomers). In accordance Ab immunization has been

demonstrated to neutralize infused Ab oligomers and to

improve synaptic plasticity impaired by these oligomers

(Hartman et al., 2005; Klyubin et al., 2005).

Three different, though not mutually exclusive, mechan-

isms have been proposed to explain the amyloid lowering

effect of Ab immunization. Following the detection of

antibodies bound to brain amyloid deposits it has been

postulated that they trigger Fc-receptor-mediated phago-

cytosis (Schenk et al., 1999; Bard et al., 2000). Compatibly,

microglia activation, increased Fcg-receptor expression

and a superior efficacy of IgG2a antibodies showing highest

Fcg-receptor affinity have been observed (Schenk et al.,

1999; Bacskai et al., 2001; Bard et al., 2003; Wilcock et al.,

2003; Bussiere et al., 2004; Wilcock et al., 2004b). In

addition, in vivo efficacy of Ab antibodies correlated with

their ability to induce phagocytosis in an in vitro system

(Bard et al., 2000). As an alternative mechanism, the anti-

bodies might act as chaperones and disrupt Ab aggregates or

prevent aggregation (Solomon et al., 1997). Supporting

this hypothesis, antibodies can block and even reverse Ab

aggregation and toxicity in vitro (Solomon et al., 1997;

Frenkel et al., 2000; McLaurin et al., 2002; Du et al., 2003).

In vivo Fc-receptor independent clearance of amyloid

deposits has been observed with F(ab0)2 fragments and in a

Fcg-receptor knock-out background (Bacskai et al., 2002;

Das et al., 2003; Wilcock et al., 2004a). While evidence

for both hypotheses seems contradictory, a possible expla-

nation comes from a study describing a rapid microglia-

independent clearance of diffuse amyloid followed by a

microglia-dependent elimination of compact plaques

(Wilcock et al., 2003). Finally, circulating antibodies were

postulated to sequester Ab, shift the equilibrium towards the

periphery and thereby reduce brain Ab deposition

(DeMattos et al., 2001). Consistent with this peripheral

sink hypothesis an elevation of blood Ab after immunization

has been found (DeMattos et al., 2001; Pfeifer et al., 2002;

Lemere et al., 2003; Gandy et al., 2004; Lemere et al., 2004;

Wilcock et al., 2004b) which reflected the brain amyloid

burden (DeMattos et al., 2002). Yet, this could also be

explained by a simple stabilization of blood Ab due to

antibody binding. At present it is not possible to exclude any

of the three hypothetical action mechanisms as they may act

in concert and depend on the particular experimental

paradigm (e.g. level of Ab generation, isoform ratios

and amyloid type, as well as, stage of amyloid formation

or route of administration). More studies, which better

consider these parameters, will be needed to determine their

relative contribution to the overall effects.

The first clinical trials of Ab immunotherapy, which used

aggregated Ab1–42 as antigen, had to be stopped in Phase II

due to aseptic meningoencephalitis in 6% of the treated

patients (Orgogozo et al., 2003; Bayer et al., 2005; Gilman

et al., 2005). Autopsy studies of two affected patients

demonstrated a T-cell-mediated autoimmune response

(Ferrer et al., 2004; Nicoll et al., 2003) presumably directed

against Ab. The use of full-length Ab containing T-cell

epitopes (Monsonego et al., 2003) with a strong T-cell

adjuvant (QS21; Cribbs et al., 2003) and the supplementa-

tion of the vaccine by polysorbate-80 (Tween-80) during

the Phase II trial (Gilman et al., 2005) may have contributed

to the adverse response. Evidence for efficacy of Ab
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immunotherapy was obtained in the first three autopsies,

which showed extensive neo-cortical areas devoid of amyloid

plaques and associated dystrophic neurites and astrocytes,

while amyloid angiopathy and the NFTs were not reduced

(Nicoll et al., 2003; Ferrer et al., 2004; Masliah et al., 2005).

Clinically, antibody responders significantly improved over 1

year in some memory tests, while others did not change

significantly (Gilman et al., 2005). In a small subset tested

for CSF tau a significant decrease was found indicative of a

reduced degeneration. MRI detected greater brain volume

decreases and ventricular enlargements in antibody respon-

ders, which is not understood but the amyloid removal may

directly or indirectly be responsible for this effect (Fox et al.,

2005). Considering the limitations of the study, as well as

the positive trends in several efficacy measures, additional

testing of Ab immunotherapy seems warranted if the safety

issues can be addressed.

Extensive studies of active Ab immunization in mice and

other species had not predicted autoimmune disease

although meningoencephalitis (Lee et al., 2005a) as well as

an elevation in cerebral haemorrhages (Pfeifer et al., 2002;

Wilcock et al., 2004c; Racke et al., 2005) has meanwhile been

described after passive immunization. While the significance

of these findings with respect to the adverse events in

the active immunization study in humans remains open,

the findings need to be considered in the development of

alternative approaches. These mainly aim to avoid the

unwanted T-cell response. For active immunization alter-

native adjuvants (Cribbs et al., 2003; Maier et al., 2005), use

of the mucosal immune system (Weiner et al., 2000;

Leverone et al., 2003) or of Ab fragments (Li et al., 2004c;

Agadjanyan et al., 2005; Solomon, 2005; Zurbriggen et al.,

2005) are exploited. The Ab peptides used span the B-cell

epitopes in the N-terminal part and are linked to carrier

proteins including viral structures or other independent

T-cell epitopes, which should not induce an Ab-specific

T-cell response. Passive Ab immunotherapy with mono-

clonal antibodies is being evaluated, as well as DNA vaccines

expressing Ab and fragments thereof. If these second

generation approaches show the expected safety profile Ab

immunotherapy holds promise as a disease-modifying

Alzheimer’s disease therapy.

Therapeutic strategies targeting tau
hyperphosphorylation and
neurofibrillary degeneration
Neurofibrillary lesions made up from aggregated

hyperphosphorylated forms of the microtubule-associated

protein tau represent a second defining neuropathological

feature of Alzheimer’s disease. The pathological

hyperphosphorylation of tau, which can be visualized by

immunochemical methods, is an early event in the

development of Alzheimer’s disease-related neurofibrillary

changes (Braak and Braak, 1995). Phosphorylation of tau

regulates its ability to promote microtubule assembly

(Lindwall and Cole, 1984) and abnormal hyperphosphoryla-

tion interferes with its normal biological function (Gustke

et al., 1992; Bramblett et al., 1993; Alonso et al., 1994) by

decreasing tau’s ability to bind to, and to stabilize,

microtubules. This loss of function can be restored in vitro

by dephosphorylation of pathological tau protein with

phosphatases (Iqbal et al., 1994). Under pathological

conditions, an imbalance of kinase and phosphatase

activities may lead to aberrant hyperphosphorylation of

tau resulting in its detachment from microtubules, break-

down of the microtubule network, disturbance of axonal

transport and ultimately neurodegeneration (Mandelkow

and Mandelkow, 1998; Fig. 2). Additionally, certain

pathological forms of tau may also have direct neurotoxic

properties (‘gain of toxic function’; Shahani and Brandt,

2002). The identification of mutations in the tau gene that

are responsible for familial frontotemporal dementia with

parkinsonism linked to chromosome 17 (FTDP-17) indi-

cated that malfunction or dysregulation of tau alone can be

sufficient to induce neurodegeneration (Hutton et al., 1998;

Spillantini et al., 1998). Until now, 40 different pathogenic

tau mutations have been reported that cause frontotemporal

dementia (Cruts and Rademakers, 2006; Alzheimer Disease

and Frontotemporal Dementia Mutation Database; available

at http://www.molgen.ua.ac.be/ADMutations/). The neuro-

pathology in these cases is characterized by neuronal loss

and the presence of neuronal or neuronal and glial

aggregates of hyperphosphorylated tau protein (Lee et al.,

2001; Dermaut et al., 2005). The molecular details of tau-

related neurodegeneration and the identity of the presumed

neurotoxic species are not well understood, yet. Recent

findings in transgenic mice expressing non-mutant human

tau isoforms, suggest that neuronal death may not be

directly linked to the formation of the highly aggregated

NFTs (Andorfer et al., 2005). In line with these observations,

Santacruz and co-workers reported functional improve-

ments but ongoing NFT formation in transgenic mice after

suppression of mutant human tau expression (Santacruz

et al., 2005).

The inhibition of tau-related neurofibrillary degeneration

represents a highly promising approach in search for novel

therapies for Alzheimer’s disease and related tauopathies.

This may be achieved by targeting one or more tau kinase(s),

by increasing the activity of protein phosphatase (PP)-2A

or by inhibition of the presumed toxic properties of

pathological tau proteins.

Inhibition of tau kinases
More than 30 phosphorylation sites on tau protein have been

described and numerous proline directed and non-proline

directed kinases were shown to be able to phosphorylate tau

protein in vitro. These include glycogen synthase kinase 3-b

(GSK3-b), cdc2-like kinase (cdk5), extracellular signal-

regulating kinase-2 (ERK2), microtubule-affinity-regulating
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kinase (MARK), protein kinase A (PKA), members of the

stress-activated protein kinase (SAPK) family, Ca2+/

calmodulin-dependent kinase II and casein kinases I and II

(for reviews see Johnson and Hartigan, 1998; Buee et al.,

2000).

While it is clear that aberrant phosphorylation of tau

protein is a key feature of neurofibrillary degeneration, the

exact role of particular phosphorylation sites on tau and

the identity of the relevant protein kinases that contribute to

their phosphorylation under pathological conditions remain

elusive.

Of the many potential tau kinases, GSK3b and cdk5/p25

have received particular attention. Cruz et al. (2003),

reported that inducible over-expression of the cdk5 activator

p25 in the postnatal forebrain of transgenic mice resulted

in tau hyperphosphorylation and aggregation as well as in

neuronal loss, providing strong evidence that aberrant kinase

activity can lead to neurodegeneration. When transgenic

mice over-expressing p25 were crossed with mice transgenic

for human tau carrying the P301L FTDP-17 mutation, an

increase in tau hyperphosphorylation and aggregation

relative to P301L tau single transgenic mice was observed.

Interestingly, in these double transgenic mice insoluble tau

was associated with activated GSK3, suggesting that although

p25/cdk5 provided the initial trigger, at least one additional

kinase (GSK3) appeared to be involved (Noble et al., 2003).

While sarcosyl-insoluble hyperphosphorylated tau was

increased in these double transgenic mice, this was

apparently not associated with significantly accelerated

dystonia as compared with the P301L tau single transgenic

mice.

Neuronal inducible over-expression of GSK3-b in

hippocampus and cortex of transgenic mice was shown to

increase tau phosphorylation at the PHF1 epitope, to induce

somatodendritic localization of tau and to lead to neuro-

degeneration (Lucas et al., 2001). While these observations

clearly support GSK3-b as a tau kinase in vivo, its role in

the tau-related pathology remains somehow controversial: in

double transgenic mice expressing wild-type human tau and

a constitutively active form of GSK3-b, a 2-fold increase in

GSK3-b kinase activity appeared to reduce the neuropatho-

logy and motor impairments that were observed in single

tau transgenic mice, (Spittaels et al., 2000).

Another candidate kinase that has been implicated in

abnormal hyperphosphorylation of tau is the MAP kinase

ERK2, which can phosphorylate tau in vitro at many of

the Ser/Thr-Pro motifs and to high stoichiometry

(Roder and Ingram, 1991; Drewes et al., 1992). Importantly,

ERK2 and several members of the SAPK family but not

GSK3 and cdk5 (neuronal cdc2-like kinase) were shown to

be able to phosphorylate tau at Ser422, which is one of very

few phosphorylation sites that appear to be specific for

Fig. 2 A hypothetical sequence of events leading to neurofibrillary degeneration in Alzheimer’s disease: under pathological
conditions (possibly triggered by oligomeric Ab) an imbalance of phosphatase and kinase activities results in abnormal hyperphosphorylation
of tau protein. Release of hyperphosphorylated tau protein destabilizes microtubules which affects
axonal transport and leads to synaptic dysfunction and degeneration. Unbound tau protein can aggregate and form NFTs.
Hyperphosphorylated and/or aggregated tau species may have direct neurotoxic effects (‘toxic gain of function’).

Therapeutic approaches to Alzheimer’s disease Brain (2006), 129, 2840–2855 2847

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/129/11/2840/295068 by guest on 21 August 2022



disease (Hasegawa et al., 1996; Goedert et al., 1997).

Activated forms of ERK1/2 and the upstream activating

kinases MEK1/2 were shown to co-distribute with the

progressive neurofibrillary changes in Alzheimer’s disease

(Pei et al., 2002; Perry et al., 1999).

In cell-culture experiments, however, stimulation of

MAP kinase by v-raf transformation did not induce tau

hyperphosphorylation (Latimer et al., 1995), nor did

inhibitors of the classical MEK–ERK activation pathway

prevent tau hyperphosphorylation in cellular models

involving okadaic acid (Ho et al., 1997) or arsenite

(Giasson et al., 2002).

Several animal models have been developed, that repro-

duce characteristic features of tau-related neurofibrillary

degeneration and that may serve for testing novel kinase

inhibitors in vivo to evaluate their therapeutic potential and

to assess the role of particular kinases in tau filament

formation and neurodegeneration. These models include

for example transgenic mice expressing FTDP-17 mutant

forms of human tau (Lewis et al., 2000; Gotz et al., 2001) as

well as novel triple-transgenic mice developing both, tau and

amyloid pathologies (Oddo et al., 2003).

Recently, Noble and co-workers reported that chronic

inhibition of GSK3 for 30 days in vivo by lithium reduced

tau hyperphosphorylation at several sites and decreased

the levels of aggregated insoluble tau in JNPL3 transgenic

mice over-expressing mutant human tau (Noble et al.,

2005). Strong in vivo evidence that inhibition of pathological

tau hyperphosphorylation can also have a functional

impact and therefore represents a particularly promising

therapeutic strategy comes from a very recent study. Le

Corre and co-workers treated JNPL3 mice transgenic for

P301L mutant tau for 9 weeks with a novel orally available

and blood–brain-barrier-penetrating synthetic kinase inhi-

bitor. The compound was selected from a series of synthetic

indolocarbazoles with limited kinase selectivity but capable

of preventing tau hyperphosphorylation in cell and brain

slice culture models. A significant delay in the onset of

the typical motor deficits in these mice was observed in the

treated group as compared to the controls, and this was

accompanied by a reduction in abnormal tau hyperphos-

phorylation (Le Corre et al., 2006). Taken together, these

observations strongly support the use of inhibitors of aber-

rant phosphorylation of tau as an approach to developing

a disease-modifying treatment for Alzheimer’s disease and

other tau-related neurodegenerative diseases.

Prolyl-isomerase Pin1
In 1999, Lu et al. discovered that the peptidyl prolyl cis/trans

isomerase Pin1 bound to tau protein phosphorylated at

Thr231 and co-purified with PHFs from Alzheimer’s disease

brain. In vitro, Pin1 was shown to restore the ability of

phosphorylated tau to promote microtubule assembly

(Lu et al., 1999). Additionally, Pin1 can facilitate depho-

sphorylation of tau by phosphatase PP2A (Zhou et al., 2000).

Pin1 knockout mice were reported to develop tau

hyperphosphorylation, sarcosyl-insoluble filamentous tau

aggregates and neuronal degeneration in an age-related

fashion (Liou et al., 2003). These observations suggest that

Pin 1 may have protective functions against age-related

neurodegeneration (Lu, 2004). Ramakrishnan et al. (2003)

reported the detection of Pin1 granules in early stages of

Alzheimer’s disease, FTDP-17 (P301L) and Pick’s disease

and discussed several different possible scenarios concerning

Pin1’s role in tauopathies. One of these suggested that Pin1

may be involved in the pathogenesis and may promote

the development of neurofibrillary pathology. Understan-

ding the exact role of Pin1 in disease will be a prerequisite to

evaluate Pin1 as a potential novel therapeutic target.

Activation of phosphatases
The phosphorylation state of any phosphoprotein results

from the activities of both, kinases and phosphatases. It has

been suggested, that in Alzheimer’s disease, an imbalance of

kinase and phosphatase activities may lead to abnormal

hyperphosphorylation of tau protein (Mandelkow and

Mandelkow, 1998). Reduced activites of tau-phosphatases

have been reported in Alzheimer’s disease brain as compared

to controls (Gong et al., 1995). Protein phosphatases PP2A,

PP2B and, to a lesser extent PP1, can dephosphorylate tau

protein in vitro (reviewed in Lau et al., 2002). Additionally,

PP2A was also shown to be involved in the regulation of tau

phosphorylation in vivo (Gong et al., 2000). Expression of a

dominant negative form of PP2A in transgenic mice under

control of a neuron-specific promoter resulted in a 34%

reduced activity of PP2A, and induced tau hyperphos-

phorylation at Ser202/Thr205 and Ser422 (Kins et al., 2001).

Thus, it has been suggested that in addition to kinase

inhibition, restoration or up-regulation of tau phosphatase

activities (e.g. PP2A) may represent another potential

approach to inhibition of abnormal tau hyperphosphory-

lation (Iqbal and Grundke-Iqbal, 2004).

Memantine, an NMDA-receptor antagonist approved for

the treatment of moderate to severe Alzheimer’s disease was

recently reported to inhibit okadaic acid-induced abnormal

tau hyperphosphorylation and the associated neuro-

degeneration in rat hippocampal slices. Interestingly, it was

suggested that memantine exerted this effect by restoration

of PP2A activity through ‘PP2A signalling’ (Li et al., 2004b).

Inhibition of tau aggregation
Filamentous tau lesions in the affected brain regions

represent the defining neuropathological features of tauo-

pathies (for reviews, see Tolnay and Probst, 1999; Lee et al.,

2001). In Alzheimer’s disease, the intraneuronal NFTs

contain PHFs as the major and straight filaments as a

minor component, both of which are composed of hyper-

phosphorylated tau proteins (see above). The neurofibrillary

lesions in Alzheimer’s disease develop in a predictable
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spatiotemporal sequence, and the six stages of disease

progression have been defined by Braak and Braak (1991,

1995). NFTs were shown to correlate with neuronal loss

(Fukutani et al., 1995; Gomez-Isla et al., 1997) and with

severity of dementia (Arriagada et al., 1992; Wilcock and

Esiri, 1982). The hypothesis that tau aggregation and NFT

formation are directly linked to neurodegeneration is

supported by recent observations from cultured neuro-

blastoma cells inducibly over-expressing tau fragments.

Only those mutant tau fragments that formed aggregates but

not soluble forms were found to be cytotoxic (Khlistunova

et al., 2006). Thus, substances that can inhibit tau

aggregation might have the potential to ultimately protect

neurons from neurofibrillary degeneration. Methods for

screening for tau aggregation inhibitors have been developed

and potential small molecule candidate compounds have

been identified (Chirita et al., 2004; Pickhardt et al., 2005).

At present, however, the exact properties of the presumed

neurotoxic form of abnormal tau protein and the precise role

of hyperphosphorylation and aggregation in the pathological

processes are not clear. Recent findings in mice transgenic

for wild-type or mutant human tau indicate that tau-related

neurodegeneration can occur independently of NFT

formation and that NFTs do not invariably cause neuronal

loss (Andorfer et al., 2005; Santacruz et al., 2005). It has

also been proposed that aggregation of hyperphosphorylated

tau into PHFs may represent a protective mechanism to

sequester toxic forms of abnormal tau protein (Lee et al.,

2005b). A similar protective function of protein aggregation

has been shown for huntingtin (Arrasate et al., 2004).

Other approaches
Markers of neuroinflammation including activated

microglia and astrocytes, complement components and

inflammatory cytokines are typically observed in association

with Alzheimer’s disease neuropathology (for review,

see McGeer and McGeer, 2003; Tuppo and Arias, 2005).

Observational retrospective and prospective studies indicated

that the long-term use of NSAIDs may have a preventive

effect against the development of Alzheimer’s disease

(reviewed in Szekely et al., 2004) suggesting that neuro-

inflammation may contribute to the neurodegeneration.

The selective cyclooxygenase (COX)-2 inhibitor rofecoxib

and the non-selective NSAID, naproxen, were also tested in

a clinical randomized control trial for the treatment of mild

to moderate Alzheimer’s disease, but neither drug was able

to slow the rate of cognitive decline as compared with the

placebo control group (Aisen et al., 2003). Some NSAIDs

including ibuprofen can modify g-secretase activity in

such a way that, specifically, the production of Ab42

peptides is decreased (see above and Weggen et al., 2001).

In APP-transgenic mice, ibuprofen reduced amyloid load

and microglial activation (Lim et al., 2000) suggesting an

effect at an early stage of plaque pathology.

Cholesterol metabolism appears to play an important role

in the biology of APP and possibly also in the pathological

processes leading to Alzheimer’s disease. APP processing and

Ab production are sensitive to cholesterol levels (Simons

et al., 1998). The activities of both, b- and g-secretase, were

shown to be inhibited by lowering cholesterol in cultured

neurons (Cordy et al., 2003; Wahrle et al., 2002). Treatment

with cholesterol lowering drugs reduced Ab levels in vivo in

cerebrospinal fluid of guinea pigs (Fassbender et al., 2001)

and alleviated Ab pathology in transgenic mice (Refolo et al.,

2001). In humans, lovastatin was reported to reduce serum

Ab concentration in a dose-dependent manner (Friedhoff

et al., 2001; cited in Wolozin, 2004). Retrospective

epidemiological studies indicated a reduced risk of devel-

oping dementia in patients taking statins (Jick et al., 2000;

Wolozin et al., 2000). In contrast, three prospective studies

failed to show a protective effect of statins with regard to

cognitive function (Shepherd et al., 2002; Heart Protection

Study Collaborative Group, 2002; Li et al., 2004a).

Interestingly, elevated plasma cholesterol levels were

reported in individuals carrying the apolipoprotein epsilon

4 allele (APOE4; Sing and Davignon, 1985; Ehnholm et al.,

1986), which is the major genetic risk factor for Alzheimer’s

disease (Corder et al., 1993; Poirier et al., 1993). At present,

the exact mechanism by which APOE4 affects the

pathophysiology of Alzheimer’s disease is not clear. A recent

meta-analysis did not reveal Alzheimer’s disease associated

polymorphisms in cholesterol-related genes other than

APOE and it was therefore concluded that the link between

Alzheimer’s disease and APOE4 was probably not directly

related to cholesterol (Wolozin et al., 2006).

Summary and conclusions
Medications for the treatment of Alzheimer’s disease that are

available today include cholinesterase inhibitors and the

NMDA-receptor antagonist, memantine. These drugs are

safe and in several large and independent studies, they

were reported to produce moderate symptomatic benefits.

At present, however, there is no treatment available that can

stop the progressive deterioration of cognitive functions in

the Alzheimer’s disease patients. The development of novel

drugs with strong disease-modifying properties therefore

represents one of the biggest unmet medical needs today.

The pathophysiology of Alzheimer’s disease and the

search for novel therapeutic strategies have been a major

focus of academic and industry research for several years.

The predominant hypothesis to explain the pathogenesis is

the amyloid cascade hypothesis, and consequently, several of

the novel and promising therapeutic strategies are specifi-

cally addressing the amyloid pathology.

Whether anti Ab-immunotherapy, small molecule secre-

tase inhibitors, other Ab lowering approaches or aggregation

inhibitors will turn out to be safe and will be able to stop or

slow down disease progression remains to be seen.
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