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Abstract— In this paper, we propose a therapeutic-assisted
robot for children with autism to ameliorate their skill of joint
attention. The robot conducts a goal-directed based interaction
to establish engagement between the child and robot in order to
establish a beneficial learning environment for autistic children.
An unsupervised Mixture Gaussian-based cluster method is
proposed to detect the child’s intention in real time to process
the goal-directed task smoothly. The novelty of this approach is
that does not require the use of any training data or a trained
model to detect the child’s intention. Our autonomous robotic
system is tested with several autistic children at a School for the
Disabled in Nagoya, Japan. The results of the initial interaction
showed that the children enjoyed interaction with and feedback
from the robot, which confirmed that the robot can be used
as mediator or an object of joint attention. The unsupervised
approach was able to detect the children’s intention at every
time segment to process the goal-directed task with a higher
accuracy rate. The results of the goal-directed task showed
that the proposed interaction was highly effective in enhancing
their joint attention. Since most of the children attempted to
imitate the robot’s gestural behaviors and used a variety of
learning patterns to attend to the robot’s fingered object in the
environment to obtain joint attention with robot.

I. INTRODUCTION

Both computer-based and robotic systems have been used

to show that it is possible to create a learning environment

to improve the skills of autistic children in the social inter-

action and understanding. Children diagnosed with autism

suffer from Autistic Spectrum Disorder (ASD) to varying

degrees. ASD typically impairs a child’s non-verbal and

verbal communication skills, making it difficult for them to

maintain eye contact, to understand other people’s emotions,

intentions, and behaviors. New research has been carried out

in the use of interactive technologies [1][2] for the purpose

of creating a beneficial learning environment as a therapeutic

device to enhance autistic children’s impaired skills [3][4].

These systems have focused on developing an interactive

scenario to enable autistic children to engage in and enjoy

technologies to improve their natural social interaction [5][6].

Michud [7] developed a variety of mobile robots for

children with autism to encourage them to establish social

interaction with a robot. The children acquired a simplified,

safe, and predictable environment to enjoy a robot’s feedback

and interactions. Nadel [8] developed a robotic system which

is capable of having a simple imitation interaction using
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a turn-taking game to encourage social interaction. Most

existing robotic systems are used for establishing child-robot

interaction for attaining social interaction with a robot [9][7].

Recently, autistic researchers have investigated the factors

leading to impaired skills in non-verbal communication.

Siller & Sigman [10] have discovered that a lack of skill in

joint attention (JA) has a strong effect on the impaired non-

verbal skills of autistic children. An incapability of following

a partner’s gaze, head turning, and eye contact have been

disclosed as factors leading to a lack of joint attention

skills, since the improvement of a child’s joint attention

has become fundamental point to improve their non-verbal

communication skills, which are essential for social learning.

The design of desirable interactive scenarios (contexts)

is a big challenge. In particular, it is difficult to infer and

generalize scenarios to increase the impaired skills of autistic

children [2]. Indeed, each child has different impaired skills

and their own interests, which are difficult to understand

unless their behaviors are observed long-term. Robins [11]

conducted various interactive scenarios for autistic children

to examine their patterns of engagement, interest, and joint

attention. This study attempted to build interaction between

a child, caregiver, and robot for the purpose of increasing the

child’s social skills. The robot expressed both a variety of

physical and auditory motions to obtain the child’s attention,

and a caregiver pointed out the robot’s performance to

achieve the child’s joint attention. Here, the robot was used

as the object of joint attention. Each of the experiments

was recorded as video, with the behaviors of the child

corresponding to the scenarios later being analyzed. But a

study by [12] suggested that it is important to consecutively

increase the complexity of toys, e.g., the interaction. Robins

[11] also points out that it is important to adapt or provide

feedback from the robot by considering the current behaviors

of the child. In this study, the robot lacked the ability to

trace the child’s eye gaze data or to recognize their behavior

in real time, which caused the robot to gradually change

the complexity of the interaction by considering the child’s

performances and behaviors.

Most existing robotic systems have explored the use of

a toy-based robot as a social partner for children with

autism. In recent decades, there has been a need to develop

a robotic system capable of having complex interaction

patterns and feedback for processing therapeutic intervention.

An important feature in the therapeutic process is for the

robot to autonomously change the interaction and provide

feedback according to the behaviors of the child [12]. In this

sense, the robot has to recognize the current attention of the

child according to their eye gaze information.
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Our approach is toward developing a child joint atten-

tion through a robot-assisted therapeutic process based on

interactions between the child, the teacher, and the robot.

Considering the aforementioned challenges, we propose an

interactive scenario with an unsupervised clustering method

to detect a child’s intentions in real time for the purpose

of processing the interactions without the use of training

data. The proposed robotic system is helpful for use with any

autistic children experiencing varying levels of impaired joint

attention. The proposed unsupervised approach is capable of

detecting a child’s intention when the child has a complex

eye gaze pattern without the use of a trained model. The

robot adjusts to various interactive styles, provides feedback,

and gradually changes its interaction pattern based on the

performance of the child’s joint attention.

II. SCENARIO FOR ROBOT-ASSISTED INTERACTION

Fig. 1. The steps of the proposed interactive scenario for improving the
JA skills of autistic children.

Tove [13] found that children feel awkward in maintaining

eye contact in human-child interactions. However, while they

attended to interactions with the robot, they did not seem

to have any difficulties looking into artificial eyes (i.e., the

robot’s eyes) - the reason being that humans used several

communication channels (gesture, voice, eye, and facial)

when they communicated, while the robot had fewer commu-

nication channels with which to easily understand for autistic

children. Thee factors we can used to create a better learning

environment through robotic systems. Indeed, we can create

an interaction-based robotic system as a therapeutic device

for children with autism.

Our learning process is based on interactions between the

teachers, child, and robot (Figure 1). In the initial stage, how-

ever, the robot performs a dance motion, music, and vocal

interaction to arouse the child’s interest. During this stage,

the teacher also interacts with the child to escalate the child’s

interest. The robot interaction is divided into two phases: an

attraction phase and a joint attention (JA) task phase. During

the first phase, the robot gives a formal welcome by calling

out each child’s name, introducing itself, dancing to music,

and administering a type of auditory interaction to attract the

children’s attention. During the process, the robot records the

child’s eye gaze data and uses an unsupervised approach to

detect the child’s intention during every time segment. After

the robot attracts a child’s interest, it gradually increases the

complexity of the interaction by introducing the JA task to

the child.

The JA task is based on following process: first, the robot

fingers an object on a table and the child must attend to a

similar object that has been pointed out by the robot. In the

initial stage, a teacher also participates in the interaction.

If the child does not understand the process, the teacher

provides support to help the child attend to the object. If

the child achieves JA with the robot, the robot expresses a

joyful motion and asks the child to perform additional tasks.

If the child is unable to achieve JA with the robot, the robot

repeats a similar interaction. During each stage, the child’s

eye gaze data is recorded along with the JA performance,

including the time it took the child to look at an object and

the time during which the child was attracted to the robot.

According to the child’s JA performance, the robot attempts

a different kind of trial by changing the direction of the

object’s position.

III. TRACKING A CHILD’S ATTENTION FROM EYE-GAZE

VECTOR

Our approach traces eye-gaze information from a camera

located on the table (fixed camera), which is more useful to

trace their eye gaze information continuously instead of using

the robot’s eye camera. The reason for this is that during the

interaction the robot must move its head, which makes it

impossible to trace child’s eye gaze behavior continuously.

This type of strategy must always be used when dealing

with disabled children. The robot reacts as it obtains eye

gaze information from the robot’s eye camera, rotating its

head and gestures toward to the child’s eye gaze direction. To

estimate the eye gaze information, images from two cameras

were analyzed in real-time, and reference features were set

up on the face. Estimated at a rate of 60 Hz, these features

are used for tracking the corners of the eyes and mouth.

The FaceLab system uses two cameras to help estimate

the 3D coordinates of each feature. Verification of the gaze

direction is based on both head pose and position of the

irises of the eyes. By calculating the position of the iris,

the horizontal and vertical rotations can be estimated, i.e.,

the gaze direction. Instead of considering both the left and

right eye data separately, we were interested in estimating

just a single eye gaze vector to represent both the left

and right eye data. With the position of right eye iris as

(PRE = (xRE , yRE , zRE)) and the position of the left eye

iris as (PLE = (xLE , yLE , zLE)), the average position of

irises is estimated as PE = (PRE + PLE)/2. We used PE

as an origin of the gaze vector. The angles of the irises

were estimated through the average pitch and yaw of both

the left and right irises’ angles: [θP = (θRP + θLP )/2],
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[θY = (θRY + θLY )/2], where the right iris pitch θRP , left

iris pitch θLP , right iris yaw θRY , and left iris yaw θLy.

Then, the vector gaze is estimated as

V = (− sin θY cos θP , sin θP ,− cos θY cos θP )T (1)

In the current scenario, we were interested in estimating

the child’s attention on a shared visual space (table environ-

ment). The crossing point of the eye gaze vector and table

space were considered as the current attention of the child,

which is estimated through

Pcross = PE + V. (2)

The eye gaze was used to acquire a sufficient variation

in eye gaze data (Pcross(x), Pcross(z)), which helped to

precisely detect the current intention of the child.

A. An Unsupervised Approach to Detect a Child’s JA to the

Object

Existing approaches for obtaining a robot’s joint attention

utilize a considerable amount of a caregiver’s data in order

to construct a learning algorithm to detect a caregiver’s

intention [14][15][16]. Moreover, these approaches are only

capable of detecting a caregiver’s intention using simulated

head pose patterns. Nevertheless, the training and creating

of an accurate model for a complex eye gaze pattern is still

difficult, because a complex eye gaze pattern may contain

a combination of several eye gaze patterns that attend to

several objects. Consequently, it is still difficult to construct

boundaries for model parameters in order to classify a child’s

object of interest according to eye gaze data. A difficult task

in developing a robotic system for children with autism is

the need to collect eye gaze data to train a recognition model

of the child’s intention. The reason is that it is difficult to

provide instructions and for the child to remain at the same

place long enough to obtain training data from them. Also,

due to the unpredictability of a child’s eye gaze patterns, it

is difficult to train a machine-learning algorithm to detect

their intentions. In light of these realities, our approach

segments the eye gaze data for the purpose of predicting

the current state of attention based on a Mixture Gaussian-

based unsupervised clustering. The novel part of this research

is the development of an unsupervised approach to detect

children’s intentions with the performance of their joint

attention without using any training data from the autistic

children.

Our proposed approach is described in Figure 2. At the

present time, our approach segments the eye gaze data at

every 30 frames. Each of the segments is considered as

separate to apply the unsupervised approach to detect a

child’s intention. We used cross points (Pcross(x), Pcross(z))
of the child’s eye gaze vector in the table space. The cross

point data includes an initial number of clusters and are

used as input data in the agglomerative clustering algorithm.

The estimated clusters are considered as a component of the

Mixture Gaussian, and the parameters (mean and variance)

Fig. 2. The proposed unsupervised Mixture Gaussian Cluster for detecting
a child’s attention from the eye gaze segment, C1(µ1, σ1), represent the
mean (µ1) value and standard deviation (σ1) for cluster 1.

are estimated using the Expectation-Maximization (EM).

Consequently, we repeat the same procedure, merging the

close clusters to find the optimum number of clusters for a

given eye gaze segment. To abridge the number of clusters,

all pairs of clusters (the mean value of the cluster) are

compared in order to find the closest clusters. If the distance

between the mean values of the clusters (ℓij) is less than

the threshold distance (ℓij < δ), these groups become linked

and are merged into a single group. The distance between the

mean values are computed through the following equation,

where µi and µj are the mean values of cluster Ci and

Cj . Each of the steps is used to estimate the Minimum

Description Length (MDL), and the minimum of the MDL

is used to decide the number of clusters that are optimum to

the child’s eye gaze.

ℓij = {d(µi, µj) : µiǫCi, µjǫCj} (3)

The MDL can be estimated by the following equation,

where Pyn|xn
(yn|k, λ) is the probability density function for

the eye gaze data, L is the number of continuously valued

real numbers required to specify the parameter λ, M is the

number of the dimension in an eye gaze vector, and N is

the number of eye gaze frames in the segment.

MDL(K, λ) = −log(Pyn|xn
(yn|k, λ))+

1

2
Llog(NM) (4)

The probability density function Pyn|xn
(yn|k, λ) is es-

timated using the following steps. Suppose Y is the 2 −
dimensional random vector (cross point in the table,

(Pcross(x), Pcross(z))) that can be the model using a GM

distribution. Let us assume that the current model contains

K clusters. Then, the following parameters are necessary

for estimating the parameter of the kth cluster: πk is the

probability that a cross point data (eye gaze vector) has

cluster k, µk is the dimensional mean vector for cluster k,
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and Rk is the 2× 2 covariance matrix for cluster k. In addi-

tion, when K denotes the number of the cluster, we use the

notation of π, µ, and R to denote the parameter sets (πk)K
k=1,

(µk)K
k=1, and (Rk)K

k=1. K and λ = (π, µ, R) denote the

set of all parameters for defining the MG distribution. Here,

each of the clusters is annotated to predict the child attention

according to the eye gaze data, which are crossed with the

table space. Suppose Y1, Y2...YN (where Yi = (Pcross(xi),

Pcross(zi))) is N sample size of the cross point from the

information class (selected time interval data) of interest.

Also, assume that for each cross point Yi the cluster of that

cross point is given by the random variable Xn, which is

usually unknown but useful for analyzing the problem. Here,

we will assume that each cluster has a multivariate Gaussian

distribution, which is the probability density function for the

cross point Yn, assuming that Xn = k is given by

Pyn|xn
(yn|k, λ) =

1

(2π)M/2
|Rk|

−1/2

exp(−
1

2
(yn − µk)tR−1

k (yn − µk))

(5)

We do not know the cluster Xn of each sample. Therefore,

to compute the density function of Yn given the parameters

λ, we must apply the definition of the conditional probability

and sum over k:

Pyn
(yn|λ) = ΣK

k=1Pyn|xn
(yn|k, λ)πk (6)

Then, the log likelihood value can be estimated consider-

ing the entire sequence by

log Py(y|K, λ) = ΣN
n=1 log ΣK

k=1Pyn|xn
(yn|k, λ)πk, (7)

where Y = (Yn)N
n=1.

Each of the clusters is characterized by the mean and

variance values. The robot predicts the current state of child

attention by referring to the mean value of the cluster at each

time segment without any training data.

IV. RECOGNITION OF A CHILD’S JOINT ATTENTION

After recognizing the child’s attention in the environment,

the robot needs to combine that information with the robot’s

fingered object to check the performance of the child’s joint

attention. To accomplish the above task, our approach creates

a static geometrical model for each of the objects (Figure

3). When the child reaches for an object in the environment,

eye gaze data is obtained around the area of the interested

object with a d radius circle. Outwardly, each of the models

has a static geometrical model that is established with the

d (currently we used d value as 10cm, which is based

on the preliminary experimental results) radius circle. The

recent intention of the child (mean value of the cluster) is

compared with the objective models at each time segment. If

the current mean value is inside the object’s model, then we

can predict that the child has obtained joint attention with

the robot. However, the robot uses the following procedure to

check whether the mean value of the cluster is inside of the

Fig. 3. The figure depicts the Mixture Gaussian-based unsupervised cluster
for detecting the child’s intention at each time segmentation. µi, i =
1, 2, ..n represents the mean values of the cluster, which are considered
as the child’s intention. Finally, the child’s intention is compared with
the object model to recognize the child’s joint attention, gray hatching
representing the geometrical boundary for objects.

object model: suppose the point of the mean value (child’s

intention) is represented as p = (Pcross(µx), Pcross(µy)), then

the center of the circle (defined geometrical model for object)

is represented as C = (cx, cy). Later, the distance (dpc) of a

given mean point and center of the circle are computed. The

robot uses the following rule to decide the child’s attention

to the robot’s fingered object: if dpc <= r, pǫCp and Cp,

the cluster contains more than 30 frames.

V. EXPERIMENT SETUP

The main focus of this research was to develop a variety

of modalities for an autonomous robot to interaction with

autistic children in real time. In particular, we propose an

unsupervised approach to detect a child’s intention with their

joint attention (performances) without the use of any training

data or trained model. The objective of the following exper-

iment was to assure the effectiveness of proposed interactive

scenario and performance of the proposed unsupervised

modalities to improve their joint attention when interacting

with robot. The interactive scenario attempts obtain a child’s

JA with a robot, providing leverage in improving their JA

with a human, as well as help them to improve their social

communication skills.

In order to carry out the experiment to examine the

effectiveness of the assistive robot as a therapeutic device

for autistic children, collaboration was arranged with the

Tempaku School for the Disabled. The experiment included

five students, two teachers, two operators, and a HOAP-3

robot. Each of the children had Autistic Spectrum Disorder

(ASD), and ranged in age from ten to eleven years old. All

participants had been receiving intensive behavioral interven-

tion from the school using specially designed educational

techniques. These techniques were tailored to the child’s

needs and level of behavioral disabilities. All the children

had problems with language, possessed a limited use of

non-verbal communication, and avoided social interaction
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and communication with other humans. In addition, all the

children lacked well-developed joint attention skills and were

observed to inconsistently respond to a teacher’s instruction

for joint attention. Each of the children participated in three

interaction trials with the robot. The robot interaction was

divided into two phases: an attraction phase and a JA task

phase.

A. First Phase of Robot’s Interaction with the Child

In the initial phase of the interaction, the robot expresses

an interactive dance with vocals to attract the child’s atten-

tion. The robot’s attractions are very important to motivate

the children to engage in interaction. The camera system

enabled 60 frames per second during the robot’s attraction,

with a total of approximately 900 frames of child eye gaze

data being recorded. A typical problem with autistic children

is their inability to have eye contact and interaction with

others. During the attraction, the robot records the child’s eye

gaze data by keeping tract of how long the frames are of the

child looking at the robot, the number of frames the child’s

eye gaze data is not recorded, and when the children looks

away from the robot. Figure 4 shows the above information

of every student who participated. According to the overall

results, the students spent from between 72.7%- 88.7% of

the time being attracted by the robot. During the interaction,

a student was sometimes too far from the camera’s range so

that the time system was unable to record their eye gaze data.

However, the total percentage of such cases was still quite

low (3.6%-15.6%). The highest number of errors (15.6%)

occurred due to the child being away from the camera range.

These statistics are quite remarkable, as they show that our

combined design of motion, music, and vocal interactions of

the robot was capable of successfully attracting the students’

attention. The children had eye contact with the robot and the

robot was effectively utilized as a mediator or object of JA.

According to their behavioral history at the disabled school,

when teachers performed assessment-based teaching, they

failed to receive the children’s attention. A robot’s attractive

points (vocal, music, and motion) help to attract children’s

attention, and continued engagement helps to create a better

learning environment for autistic children.

B. Robot Engaged in a Joint Attention Task with a Child

After attracting the child, the robot tries to motivate the

child and gradually increases the complexity of interaction

as it introduces the joint attention task to the child. The

robot creates a simple task for the child to achieve JA: the

robot first points to an object in the environment to motivate

the child to achieve joint attention to that object. According

to the JA performance of the child, the robot changes the

position of the object to achieve JA from different directions

in the environment. In each of the trials, the robot provides

attractive feedback (motion and vocal) to the child to continu-

ally engage them in interaction. To examine the performance

of the proposed unsupervised algorithm, we counted how

many times the robot could detect the object a child was

looking at. Sixteen interactive trials were conducted. Each

Fig. 4. Results showing the number of frames the children either looked
at or away from the robot, including noisy data during the robot’s attraction
(during the first phase of the interaction).

student typically performed three (3 * 4 students = 12 trials)

trials, and there were four times when the children did not

look at the object. From the 16 trials, the unsupervised

approach predicted 12 trials with a 75% accuracy rate, which

was quite remarkable when dealing with the autistic children

in real time.

Fig. 5. A depiction of the number of times the children had joint attention
with robot during each trial.

The robot required 11 seconds to process the JA task.

Figure 5 shows how long (frames) the child looked at the

fingered objects of the robot. The results show that all the

students spent less time (number of frames) in the initial

trial. However, in the next two trials their times gradually

increased (number of frames) except for student B during

trial2. The key point to consider here is that when the

children have adapted to the robot, they more comfortably
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exposed themselves and enhanced their JA skills while being

engaged with robot.

As shown in Figure 6, during the initial stage, the teacher

guided the students in obtaining joint attention with the robot.

However, in the final trial, the child was able to imitate the

robot’s finger, which would have verified understanding of

the robot’s hand direction in obtaining joint attention with the

robot. The results indicated that the robot’s fingering gesture

was dependable as a tool to trigger JA.

Figure 7 shows the eye gaze pattern as the child D
attends to the robot’s preferred object to achieve JA, with

these patterns numbered in seven steps. In the first step,

the child looks at the robot and attempts to understand the

robot’s request (regions 1 and 2). Next, the child follows

the direction of the robot’s hand toward an object while

maintaining this gaze for some time (regions 3 and 4). We

again return to the robot’s space in order to reconfirm the

robot’s request, but we cannot show the data here as they

belong to a different coordinate space (i.e., the robot’s space).

The child once again follows the robot’s hand (shown as

numbers 5 and 6) to reach the robot’s preferred object in

number 7. This was an interesting result in the experiment.

Indeed, the child was able to learn how to obtain joint

attention with the robot while being engaged with it.

VI. CONCLUSION

We developed a variety of modalities with interactive

scenarios to realize the effectiveness of our proposed assistive

robot. The main purpose of the study was to recognize a

child’s intention with performance of JA attention through an

unsupervised approach. Our proposed unsupervised approach

was useful in detecting the above information without the use

of any training data and trained model. It can be a great chal-

lenge to obtain training data from disabled children. But our

proposed robotic system was capable of interacting with the

children without training the system. A secondary purpose

of our research was to understand what kind of interactive

scenario is most useful to improve their enjoyment with JA

when they interact with robot. This kind of experience should

be helpful for children to improve their JA with humans as

they learn how to cope with society. The step-by-step and

long-term interactions are essential for them to obtain these

skills. The results of our experiment, as is discussed below,

revealed that it was possible to use a therapeutic system as

robot for children with autism.

The results showed that our proposed approach was capa-

ble of detecting the children’s intentions with a high accuracy

rate. The first phase results of the interaction showed that

for a majority of the time (72.7%- 88.7%) the children

paid attention to the robot. Even the eye gaze data patterns

revealed that the children spent most of the time looking

at the robot’s facial area, and when the robot displayed a

motion, the child paid attention to the robot’s movements.

These results indicate that the interactions with the robot

were capable of motivating the children to increase their eye

contact and engage the robot more robustly. The data shown

in Figure 5 reveal the children spent a short amount of time

looking at the object indicated by the robot during the initial

trial of the JA task. However, once adjusting to the robot, the

children spent a considerable amount of time looking at the

objects indicated by the robot, resulting in JA with the robot.

An interesting eye gaze pattern was discovered with child D
in Figure 7. First, the child attended to the robot’s request

by looking at the robot’s fingered object on the table, since

the child’s eye gaze indicated an initial glance at the robot’s

face and hand, with attention then given to the direction of

the robot’s arm. The child looked sequentially at the object,

made repeated attempts to clarify the robot’s arm direction,

and finally attended to the object indicated by the robot. The

eye gaze pattern data revealed that the children learned how

to adjust their eye gazes in order to have joint attention with

the robot.
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