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Abstract
Therapeutic vaccines represent a viable option for active immunotherapy of cancers that aim to
treat late stage disease by using a patient's own immune system. The promising results from
clinical trials recently led to the approval of the first therapeutic cancer vaccine by the U.S. Food
and Drug Administration. This major breakthrough not only provides a new treatment modality
for cancer management, but also paves the way for rationally designing and optimizing future
vaccines with improved anticancer efficacy. Numerous vaccine strategies are currently being
evaluated both pre-clinically and clinically. This review discusses therapeutic cancer vaccines of
diverse platforms or targets as well as the preclinical and clinical studies employing these
therapeutic vaccines. We will also consider tumor-induced immune suppression that hinders the
potency of therapeutic vaccines, and potential strategies to counteract these mechanisms for
generating more robust and durable antitumor immune responses.
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I. Introduction
Unlike prophylactic vaccines that are generally administered to healthy individuals,
therapeutic cancer vaccines are administrated to cancer patients and designed to eradicate
cancer cells through strengthening patient's own immune responses (Lollini et al., 2006).
The various immune effector mechanisms mobilized by therapeutic vaccination specifically
attack and destroy cancer cells and spare normal cells. Thus, therapeutic cancer vaccines, in
principle, may be utilized to inhibit further growth of advanced cancers and/or relapsed
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tumors that are refractory to conventional therapies, such as surgery, radiation therapy and
chemotherapy.

In 1891, Dr. William Coley made the first attempt to stimulate the immune system for
improving a cancer patient's condition by intratumoral injections of inactivated
Streptococcus pyogenes and Serratia marcescens (Coley's Toxin) (McCarthy, 2006). The
idea came from the observation of spontaneous remissions of sarcomas in rare-cancer
patients who had developed erysipelas. Despite his reported effective responses in patients,
his work was viewed with skepticism by the scientific community. Todays, the field of
immunology has developed into a highly sophisticated specialty, and the modern science of
immunology has shown that Coley's principles were correct. Indeed, the bacillus camette-
guerin (BCG) that is one similar example as the Coley's Toxin, is still being used
intravesically to treat superficial bladder cancer (Lamm et al., 1991; Morales et al., 1976;
van der Meijden et al., 2003).

Despite considerable efforts to develop cancer vaccines, the clinical translation of cancer
vaccines into efficacious therapies has been challenging for decades. Nonetheless, the U.S.
Food and Drug Administration (FDA) have approved two prophylactic vaccines, including
one for hepatitis B virus that can cause liver cancer and another for human papillomavirus
accounting for about 70% of cervical cancers. More encouragingly, recent advances in
cancer immunology have achieved clinical proof-of-concept of therapeutic cancer vaccine.
Sipuleucel-T, an immune cell based vaccine, for the first time, resulted in increased overall
survival in hormone-refractory prostate cancer patients. This led to FDA approval of this
vaccine with the brand name Provenge (Dendreon) in 2010 (Cheever and Higano, 2011).

Although the challenge of developing an effective cancer vaccine remains (Schreiber et al.,
2011; Zhou and Levitsky, 2012), many diverse therapeutic vaccination strategies are under
development or being evaluated in clinical trials. Based on their format/content, they may be
classified into several major categories, which include cell vaccines (tumor or immune cell),
protein/peptide vaccines, and genetic (DNA, RNA and viral) vaccines. In this review, we
present a synopsis of the history of research in the field of therapeutic cancer vaccines as
well as current state of vaccine therapeutics for treatment of human cancers. In addition, the
obstacles for effective cancer vaccine therapy are also discussed in order to provide future
directions for improvement and optimization of cancer vaccines.

II. Tumor cell vaccines
A. Autologous tumor cell vaccines

Autologous tumor vaccines prepared using patient-derived tumor cells represent one of the
first types of cancer vaccines to be tested (Hanna and Peters, 1978). These tumor cells are
typically irradiated, combined with an immunostimulatory adjuvant (e.g., BCG), and then
administered to the individual from whom the tumor cells were isolated (Berger et al., 2007;
Harris et al., 2000; Maver and McKneally, 1979; Schulof et al., 1988). Autologous tumor
cell vaccines have been tested in various cancers, including lung cancer (Nemunaitis, 2003;
Ruttinger et al., 2007; Schulof et al., 1988), colorectal cancer (de Weger et al., 2012; Hanna
et al., 2001; Harris et al., 2000; Ockert et al., 1996), melanoma (Baars et al., 2002; Berd et
al., 1990; Mendez et al., 2007), renal cell cancer (Antonia et al., 2002; Fishman et al., 2008;
Kinoshita et al., 2001) and prostate cancer (Berger et al., 2007). One major advantage of
whole tumor cell vaccines is its potential to present the entire spectrum of tumor-associated
antigens to the patient's immune system. However, preparation of autologous tumor cell
vaccines requires sufficient tumor specimen, which limits this technology to only certain
tumor types or stages.

Guo et al. Page 2

Adv Cancer Res. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Autologous tumor cells may be modified to confer higher immunostimulatory
characteristics. Newcastle disease virus (NDV)-infected autologous tumor cells were shown
to induce tumor protective immunity in multiple animal tumor models, such as ESb
lymphoma and B16 melanoma (Heicappell et al., 1986; Plaksin et al., 1994). Clinical trials
demonstrated that these modified tumor cells were safe and had a positive effect on
antitumor immune memory in cancer patients (Karcher et al., 2004; Ockert et al., 1996;
Schirrmacher, 2005; Steiner et al., 2004). Immunization with tumor cells engineered to
express IL-12, a key cytokine promoting Th1 immunity, also resulted in strong tumor
suppression in mice accompanied by high IFN-γ production and increased activation of
cytotoxic T lymphocyte (CTL) and natural killer (NK) cells (Asada et al., 2002). In a recent
phase II trial, treatment with renal cell carcinoma transduced with co-stimulatory molecule
B7-1 showed promising antitumor effect, as indicated by 3% pathologic complete response,
5% partial response, 64% stable disease and median survival of 21.8 months (Fishman et al.,
2008).

GM-CSF-transduced autologous tumor cell vaccines (GVAX) have been extensively studied
in preclinical and clinical studies (Armstrong et al., 1996; Dong et al., 1998; Dranoff et al.,
1993a; Dranoff et al., 1997; Dunussi-Joannopoulos et al., 1998; Levitsky et al., 1996;
Sampson et al., 1996; Soiffer et al., 2003; Soiffer et al., 1998; Wakimoto et al., 1996).
Mechanistic studies showed that GVAX recruits dendritic cells (DCs) for presentation of
tumor antigens and priming of CD8+ T cells (Dranoff et al., 1993b; Mach et al., 2000).
GVAX also stimulates the maturation of DCs by upregulating B7-1 expression (Dranoff,
2002; Mach et al., 2000). Immunization with GVAX, when combined with blockade of
CTL-associated antigen 4 (CTLA-4), an immune checkpoint inhibitor (Leach et al., 1996),
promotes the rejection of established murine melanoma by altering the balance of T effector
cells (Teff) and T regulatory cells (Treg) (Quezada et al., 2006; van Elsas et al., 1999).
Enhanced antitumor efficacy was evident when tumor cell vaccine engineered to express
Flt3 ligand (FVAX) was combined with blockade of CTLA4 for the treatment of TRAMP
prostate adenocarcinomas (Curran and Allison, 2009). In addition to CTLA-4, the
programmed death-1 (PD-1) interaction with its ligand PD-L1/L2 or B7-1 also inhibits T
cell activation and cytokine production (Butte et al., 2007). Interestingly, combination
blockade of PD-1 and CTLA-4 synergized with FVAX, but not GVAX, in controlling the
outgrowth of pre-established B16 tumors (Curran et al., 2010), suggesting that blockade of
negative costimulatory pathways favors the expansion of tumor-specific T cells and
maintenance of their effector functions, resulting in shifting the immunosuppressive tumor
microenvironment to an inflammatory/immunostimulatory state. Other than targeting
negative immunoregulatory pathways, GVAX has been formulated with lipopolysaccharide
(LPS), a TLR4 agonist, for the treatment of several murine tumors (Davis et al., 2011).
Intratumoral administration of LPS-absorbed GVAX markedly improved an antitumor
response in comparison with GVAX alone. This enhanced anti-tumor effect correlated with
increased tumor infiltration by activated DCs as well as CD8+ and CD4+ T cells.

B. Allogeneic tumor cell vaccines
Allogeneic whole tumor cell vaccines, which typically contain two or three established
human tumor cell lines, may be used to overcome many limitations of autologous tumor cell
vaccines. These include limitless sources of tumor antigens, standardized and large-scale
vaccine production, reliable analysis of clinical outcomes, easy manipulation for expression
of immunostimulatory molecules and cost-effectiveness.

Canvaxin™ vaccine is an allogeneic whole-cell vaccine consisting of three melanoma lines
combined with BCG as an adjuvant (Morton et al., 1992). In a phase II trial, the median
overall survival (OS) and 5 year rate of survival were significantly higher in stage III
melanoma patients receiving Canvaxin™ as postoperative adjuvant therapy compared to
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control group (56.4 months and 49% versus 31.9 months and 37%; p < 0.001) (Morton et al.,
2002). In another phase II trial in patients with completely resected disseminated stage IV
melanoma, treatment with Canvaxin™ resulted in a 39% 5-year OS compared to the control
arm (20%) (Hsueh et al., 2002). However, two multi-institutional randomized phase III trials
in patients with stage III and IV melanoma failed to achieve a determination of vaccine
efficacy, and therefore, these trials were discontinued (Sondak et al., 2006).

The clinical activity of allogeneic GVAX vaccine has been evaluated for treatment of
recurrent prostate cancer (Simons et al., 2006; Small et al., 2007), breast cancer (Emens et
al., 2009) and pancreatic cancer (Lutz et al., 2011). Although the phase II results of
allogeneic GVAX prostate cancer vaccine trials were encouraging, phase III clinical trials
that were designed to examine GVAX or GVAX in combination with chemotherapies for
the treatment of metastatic castrate resistant prostate cancer (CRPC) failed to achieve a
survival benefit and were terminated (Antonarakis and Drake, 2010; Lassi and Dawson,
2010). Despite these disappointing results, other combination strategies involving GVAX
prostate cancer vaccine and anti-CTLA-4 antibodies (i.e., ipilimumab), an
immunomodulating agent recently approved by the FDA for treatment of metastatic
melanoma, are still being pursued (van den Eertwegh et al., 2012; Wang et al., 2011a).

Initial autologous tumor cell vaccines for non-small cell lung cancer (NSCLC) encountered
manufacturing failures due to the availability of tumor specimens, although the results from
pilot studies were positive (Hege and Carbone, 2003; Nemunaitis et al., 2004; Salgia et al.,
2003). An allogeneic tumor cell vaccine (belagenpumatucel-L) consisting of four NSCLC
lines engineered to secret antisense oligonucleotide to immunosuppressive cytokine TGF-β2
provides a promising strategy for the treatment of NSCLC. A dose-related survival
difference was shown in a randomized phase II trial, in which stage II to IV NSCLC patients
received intradermal injections of three dose levels of belagenpumatucel-L on a monthly or
every-other-month schedule to a maximum of 16 injections (Nemunaitis et al., 2006;
Nemunaitis et al., 2009). The ongoing phase III investigation (STOP trial) involves the use
of belagenpumatucel-L as a maintenance therapy in patients with unresectable stage III/IV
NSCLC who have responded to or have stable disease after first-line platinum-based
chemotherapy. The objective is to compare the overall survival of subjects treated with
belagenpumatucel-L versus those treated with placebo. The study commenced in July 2008
and is expected to enroll 506 patients by October 2012 (Kelly and Giaccone, 2011).

II. DC vaccines
A. The biology of DCs

DCs are the most potent professional antigen-presenting cells (APCs) (Banchereau and
Steinman, 1998). They act as sentinels at peripheral tissues where they uptake, process and
present pathogen- or host-derived antigenic peptides to naïve T lymphocytes at the lymphoid
organs in the context of major histocompatibility (MHC) molecules (Banchereau et al.,
2000; Timmerman and Levy, 1999). The significance of DCs in bridging innate and
adaptive immunity is well established. Indeed, many cancer immunotherapeutic strategies
target DCs directly or indirectly for the induction of antigen-specific immune responses.
Earlier studies showed that different DC subsets direct development of distinct T cell
populations and regulate different classes of immune responses in vivo (Maldonado-Lopez
et al., 1999; Pulendran et al., 1999). An animal study showed that CD8+CD205+ DCs
present antigens through both MHC class I and MHC class II molecules, whereas
CD8−33D1+ DCs utilize the MHC class II presentation pathway (Dudziak et al., 2007). In
addition, targeting antigens to DCs does not always result in immune activation, because
engagement of certain receptor on DCs may induce immune suppression (Li et al., 2012). It
appears that DC maturation signals are critical for avoiding the induction of T cell tolerance
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or augmentation of effective antitumor immunity (Bonifaz et al., 2004; Hawiger et al., 2001;
Idoyaga et al., 2008; Wang et al., 2012; Wei et al., 2009). Extensive studies on the biology
of DCs demonstrate that three interactive signals are generally required for functional
activation of DCs and subsequent innate and adaptive immunity against cancers, including
adequate loading of MHC-peptide complexes to DCs for T cells priming, upregulation of
co-stimulatory molecules such as CD40, CD80, and CD86, and production of cytokines
capable of polarizing a Th1/Tc1 immune responses (Frankenberger and Schendel, 2012).

B. Ex vivo generated DCs as cancer vaccines
The pioneering work of Inaba, Steinman, and colleagues on culturing mouse DCs ex vivo
from bone marrow precursors provided the basis of development of DC vaccines a decade
ago (Inaba et al., 1992). In a similar manner, human DCs can be generated in culture from
CD34+ hematopoietic progenitors or from peripheral blood–derived monocytes (Banchereau
and Palucka, 2005). Preparation of DC vaccines can be achieved by loading tumor-
associated antigens to patients' autologous DCs that are simultaneously treated with
adjuvants. These antigen-loaded, ex vivo matured DCs are administrated back into patients
to induce anti-tumor immunity. Antigens utilized for this purpose include tumor-derived
proteins or peptides (Banchereau et al., 2001; Murphy et al., 1996; Schuler-Thurner et al.,
2002), whole tumor cells (Berard et al., 2000; Geiger et al., 2001; Palucka et al., 2006;
Salcedo et al., 2006) DNA/RNA/virus (Nair et al., 2002; Steele et al., 2011; Su et al., 2005),
or fusion of tumor cells and DCs (Rosenblatt et al., 2011).

One of the first trials testing the immunogenicity of DCs was conducted in metastatic
prostate cancer, in which patients received autologous DCs pulsed with HLA-A0201-
restricted peptides derived from prostate-specific membrane antigen (PSMA). Antigen-
specific cellular responses and reduced PSA levels were observed in some patients
supporting the potential use of this vaccine therapy (Murphy et al., 1996). DC vaccines have
been tested in clinical trials for the treatment of prostate cancer (Kantoff et al., 2010a; Small
et al., 2000; Small et al., 2006), melanoma (Lesterhuis et al., 2011; Nestle et al., 1998;
Palucka et al., 2006; Romano et al., 2011; Thurner et al., 1999), renal cell carcinoma (Holtl
et al., 1999), and glioma (Okada et al., 2011; Yu et al., 2001). However, this autologous
vaccine regimen consists of leukaphereses to isolate peripheral blood mononuclear cells
(PBMCs) from the patient and cell culture processing, which thus limits the number of
vaccinations.

The Sipuleucel-T (Provenge™) was approved by the US FDA in 2010 for the treatment of
asymptomatic metastatic castrate-resistant prostate cancer (mCRPC) (Longo, 2010). This
autologous vaccine mainly consists of APCs from PBMCs that have been incubated with
PA2024 that contains prostatic acid phosphatase (PAP, a prostate antigen) fused to GM-
CSF. Although no difference in time to progression was observed, a survival advantage was
achieved, with a statistically meaningful 4.1-month improvement in median survival in the
active arm with respect to the placebo arm (25.8 vs. 21.7 months). In view of its favorable
toxicity profile and manageable route of administration, the success of Sipuleucel-T as the
first therapeutic cancer vaccine opens exciting new paradigms for prostate cancer and other
cancers.

C. Modification of DCs to improve vaccine potency
Despite the clinical success of APC-based prostate cancer vaccine, the modest antitumor
efficacy of Sipuleucel-T emphasizes the need for improvement and optimization of this
approach. Considering that T cell activation is finely controlled by co-stimulatory molecules
expressed on DCs, modification of the expression levels of activating or inhibitory
molecules could enhance the DC vaccine potency. CD40 stimulation on DCs provided by
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activated CD4+ T cells is required for DC licensing and cross-priming of CD8+ T cell
responses (Quezada et al., 2004). CD40L overexpression in mouse DCs via virus
transduction (Feder-Mengus et al., 2005; Kikuchi et al., 2000; Koya et al., 2003) or mRNA
electroporation (Tcherepanova et al., 2008) led to elevated expression of B-7 molecules and
enhanced production of IL-12p70, both of which are crucial for Th1-based antitumor
immunity. Similarly, CD40L-expressing human DCs also resulted in increased activation of
T cell reactivity with the poorly immunogenic tumor antigens, such as glycoprotein 100
(gp100) and Melan A (Bonehill et al., 2009; Knippertz et al., 2009). Modulation of other co-
stimulatory molecules, such as CD70, GITRL, 4-1BBL (CD137L) and OX40L (Bonehill et
al., 2008; Dannull et al., 2005; Grunebach et al., 2005; Tuyaerts et al., 2007), or pro-
inflammatory factors, such as IL-12p70, IL-2, IL-18, CCR7 and CXCL10 also enhances DC
functions by promoting its maturation/activation, migration and its capacity to stimulate
antigen-specific Th1 and CTL responses (Iinuma et al., 2006; Kang et al., 2009; Minkis et
al., 2008; Ogawa et al., 2004; Okada et al., 2005).

While activating molecules expressed on DCs are involved in a pro-inflammatory or
antitumor T cell response, certain suppressive molecules contribute to T tolerance or
suppression. The ubiquitin-editing enzyme A20 negatively regulates both TLR and TNF
receptor signaling-induced maturation of DCs and subsequent activation of CD4+ T cells
and CTLs in mouse models (Song et al., 2008). A20 silencing in human DCs also facilitates
the development of IFN-γ producing Th1 cells and antigen specific CD8+ T cells (Breckpot
et al., 2009). Suppressor of cytokine signaling 1 (SOCS1), an immunosuppressive molecule
induced by cytokines, such as IFN-γ, IL-12, IL-2, IL-7 and GM-CSF, has also been shown
to inhibit DC functions through signal transducer and activator of transcription (STAT)
signaling and impede antitumor immunity (Palmer and Restifo, 2009; Shen et al., 2004).
Recently, our studies revealed that scavenger receptor SRA/CD204 represents a newly
identified immune regulator. SRA/CD204 attenuates TLR4-engaged NF-κB-TRAF6
signaling pathways in DCs (Yu et al., 2011) and downregulates the immunogenicity of DCs
and CTL-mediated antitumor immunity against several mouse tumors (Wang et al., 2007b;
Yi et al., 2009; Yi et al., 2012). The absence or genetic silencing of SRA/CD204 profoundly
enhances the immunostimulating, antigen-presenting functions of DCs and consequent
antitumor immune responses involving IFN-γ and CTLs (Guo et al., 2012a; Guo et al.,
2012b; Yi et al., 2011). These findings support the concept of targeting SRA/CD204 as a
strategy to optimize the potency of current DC vaccines that may be used alone or in
combination with conventional therapies, such as radiotherapy.

III. Protein/peptide-based cancer vaccines
A. Tumor-associated antigens as therapeutic targets

The availability of patient's samples or specimens and the complex procedure of preparing
individualized vaccines greatly limit the broad use of autologous cancer vaccines, including
whole tumor cells or DCs. Recombinant vaccines, which are based on peptides from defined
tumor-associated antigens (TAAs), and usually administered together with an adjuvant or an
immune modulator, clearly have advantages. MAGE-1 is the first gene that was reported to
encode a human tumor antigen recognized by T cells (van der Bruggen et al., 1991). The
identification of TAAs has provided opportunities for design of targeted therapeutic
vaccines, and these antigens may be classified into several major categories. Cancer-testis
antigens, such as MAGE, BAGE, NY-ESO-1 and SSX-2, are encoded by genes that are
normally silenced in adult tissues but transcriptionally reactivated in tumor cells (De Smet et
al., 1994; Gnjatic et al., 2010; Hofmann et al., 2008; Karbach et al., 2011). Tissue
differentiation antigens are those of normal tissue origin and shared by both normal tissue
and tumors, such as melanoma (gp100, Melan-A/Mart-1 and tyrosinase) (Bakker et al.,
1994; Kawakami et al., 1994; Parkhurst et al., 1998), prostate cancer (PSA, PAP) (Correale
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et al., 1997; Kantoff et al., 2010a) and breast carcinomas (mammaglobin-A) (Jaramillo et al.,
2002). Similar to these differentiation-associated antigens, several other tumor antigens,
such as CEA (Tsang et al., 1995), MUC-1(Finn et al., 2011; Kufe, 2009), HER2/Neu (Disis
et al., 2009), tumor suppressor genes (p53) (Azuma et al., 2003), hTERT (Vonderheide et
al., 1999) and certain anti-apoptotic proteins (i.e. livin and survivin) (Schmidt et al., 2003;
Schmollinger et al., 2003) are also highly elevated in tumor tissues compared to normal
counterparts. Unique tumor-specific antigens are often referred to mutated oncogenes (ras,
B-raf) (Brichard and Lejeune, 2008; Parmiani et al., 2007). Targeting these tumor-specific
antigens involved in driving the neoplastic process has the advantage of resistance to
immunoselection with potential to be more effective. Clinical trials are underway to test
vaccines that target relatively few RAS mutations found in colorectal and pancreatic
cancers. However, the tremendous effort required for the identification of such candidate
mutations may hamper their broad clinical use (Fox et al., 2009). It is also difficult to target
a wide array of frame shift mutations and unique mutations that occur in individual tumors.
Other antigens for potential vaccine targets include molecules (SOX-2, OCT-4) that are
associated with cancer “stem cells” (Dhodapkar et al., 2010; Dhodapkar and Dhodapkar,
2011; Spisek et al., 2007) and/or the epithelial–mesenchymal transition (EMT) process
(Polyak and Weinberg, 2009).

Protein/peptide-based vaccines are more cost effective than autologous or individualized
vaccines. However, they also have a potential drawback because they target only one
epitope or a few epitopes of the TAA. It is generally believed that induction of both antigen-
specific CTLs and antigen-specific CD4+ helper T cells is necessary for a cancer vaccine to
be optimally efficacious. Some polypeptide vaccines (e.g., Stimuvax) potentially contain
both CD4 and CD8 epitopes. Other approaches to enhance immunogenicity of a self-antigen
are to alter the peptide sequence of TAAs to introduce enhancer agonist epitopes, which
increase peptide binding to the MHC molecule or the T-cell receptor, resulting in higher
levels of T-cell responses and/or higher avidity T cells (Dzutsev et al., 2007; Hodge et al.,
2005; Hou et al., 2008; Jordan et al., 2010; Rosenberg et al., 1998).

Most peptide-based vaccines in clinical trials target cancer-testis antigens, differentiation-
associated antigens, or certain oncofetal antigens (CEA, MUC-1). Although these vaccines
were able to induce antigen-specific T cell responses, clinical outcomes have been
disappointing (Buonaguro et al., 2011). In the Phase III study that led to the approval of
ipilimumab (Hodi et al., 2010), no difference in overall survival was observed in patients
with unresectable stage III or IV melanoma between the ipilimumab group and ipilimumab
plus gp100 group. However, the encouraging results came from recent randomized Phase III
trial involving patients with stage IV or locally advanced stage III cutaneous melanoma
(Schwartzentruber et al., 2011). The group treated with the gp100 (210M) peptide in
Montanide ISA-51 adjuvant plus IL-2 demonstrated a statistically significant improvement
in overall clinical response (16% vs. 6%, P = 0.03) as well as longer progression-free
survival (2.2 months vs. 1.6 months, P = 0.008) compared with the IL-2 group. The median
overall survival was also longer in the gp100 peptide vaccination plus IL-2 group than in the
IL-2 group (OS = 17.8 vs. 11.1 months; P = 0.06) (Schwartzentruber et al., 2011). Indeed,
this was the first phase III trial to demonstrate a clinical benefit for a peptide vaccine in
melanoma. The unique findings in this trial were not observed in three previous independent
phase II clinical trials (Sosman et al., 2008).

B. Immunostimulatory adjuvants for protein/peptide-based vaccines
Given that TAAs are poorly immunogenic in nature, an immunostimulatory adjuvant is
essential for generation of an effective immune response. Aluminum salts (alum) have been
used as adjuvants with great success for almost a century and have been particularly
effective at promoting protective humoral immunity. However, alum is not optimally
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effective for diseases where cell-mediated immunity is required for protection. The
recognition over the past two decades that activation of innate immunity is required to drive
adaptive immune responses has radically altered theories as to how adjuvants promote
adaptive immunity. In particular, the pioneering work of Charles Janeway demonstrated that
adaptive immune responses are preceded by, and dependent on, innate immunity receptors
triggered by microbial components (Janeway, 1992). Recognition of conserved moieties
associated with pathogen or pathogen-associated molecular patterns (PAMPs) via pattern
recognition receptors, e.g., toll-like receptors (TLRs), engages coordinated innate and
adaptive immunity against microbial pathogen or infected cells (Kawai and Akira, 2011).
TLR-mediated activation of antigen-presenting cells, e.g., DCs, is a crucial step in this
process. Indeed, many established and experimental vaccines incorporate PAMPs, not only
to protect against infectious diseases, but also as part of therapeutic immunizations against
cancer (Wille-Reece et al., 2006). The use of these molecularly and functionally defined
molecules as adjuvants greatly facilitates the rational design of vaccines.

Supporting this view, long-used BCG for the treatment of bladder carcinoma has been
relatively effective and shown to activate TLR2 and TLR4 (Heldwein et al., 2003; Uehori et
al., 2003). LPS, a natural ligand of TLR4, was reported to possess anticancer properties as
early as the 1960s (Mizuno et al., 1968; Prigal, 1961). Monophosphoryl lipid A (MPL) is a
chemically modified derivative of S. minnesota endotoxin that exhibits greatly reduced
toxicity, but maintains most of the immunostimulatory properties of LPS (Mata-Haro et al.,
2007). A plethora of studies have shown that MPL potently boosts a patient's immune
response against viral and tumor-associated antigens (Schwarz, 2009). FDA approved the
Cervarix vaccine formulated with MPL and aluminum salt as a prophylactic vaccine against
human papillomavirus (Schiffman and Wacholder, 2012). Imiquimod (a TLR7 agonist) was
approved by FDA in 2004 for use in humans against actinic keratosis and superficial basal
cell carcinoma (Hoffman et al., 2005). These TLR agonists have strong potential in
promoting the immunogenicity of weakly immunogenic TAAs. Indeed, several peptide/
protein-based cancer vaccines combined with TLR agonists are being tested in clinical trials;
these include Ampligen targeting TLR3 (NCT01355393), Histonol targeting TLR3
(NCT00773097, NCT01585350, NCT01437605), MELITAC 12.1 targeting TLR4
(NCT01585350) and Resiquimod targeting TLR9 (NCT00960752). The family of PRRs has
greatly expanded in recent years, so there is tremendous effort being expended to investigate
the role of innate immune pathways in defining the mechanisms of adjuvant action as well
as roles of other PRRs (e.g., NLR, RLR) in adjuvant activity of therapeutic cancer vaccines.

In addition to sensing pathogen-associated signals, PRRs also recognize endogenous
`alarmins', such as stress/heat shock proteins (HSPs) and HMGB-1(Bianchi, 2007; Lotze et
al., 2007; Todryk et al., 2000). As intrinsic and highly conserved protein components of the
cell, these damage-associated molecular patterns (DAMPs) also communicate the nature and
magnitude of cellular injury to the host immune system. Although HSPs are known to act as
molecular chaperones that participate in intracellular protein quality control (Calderwood et
al., 2009; Lindquist and Craig, 1988; Mayer and Bukau, 2005), studies for the last two
decades have established the concept that certain HSPs are capable of integrating both innate
and adaptive immune responses, and can be utilized as immunostimulatory agents for cancer
immunotherapy (Calderwood et al., 2005; Murshid et al., 2008; Srivastava, 2002a, b; Wang
et al., 2006b).

Based on the early observations by Srivastava and his colleagues that HSPs isolated from
cancer cells were able to induce tumor immunity (Srivastava et al., 1986; Udono et al.,
1994), it was proposed that the immmunogenecity of HSPs was primarily attributed to their
ability to bind antigenic peptides and transport these peptides to APCs for T cell priming
(Srivastava, 2002a; Srivastava, 2005). This is consistent with the well-recognized capacity
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of chaperones to bind polypeptide chains in response to physiological stress (Welch, 1993).
To date, antitumor immunity elicited by HSPs, including the cytosolic heat shock proteins
Hsp70, Hsp90, Hsp110, or the ER resident Grp94/gp96, Grp170 and calreticulin, has been
shown against a variety of tumors of different histologic origins such as fibrosarcomas, lung
carcinomas, melanomas, colon cancers, B cell lymphoma and prostate cancer (Graner et al.,
2000; Janetzki et al., 2000; Srivastava et al., 1986; Tamura et al., 1997; Vanaja et al., 2000;
Wang et al., 2001; Yedavelli et al., 1999). Interestingly, HSPs (e.g., Hsp70) prepared from
DC-tumor fusion cells were shown to stimulate an enhanced T cell response and antitumor
immunity compared to tumor-derived HSPs (Enomoto et al., 2006; Gong et al., 2010).
Purification of chaperones from a cancer is believed to co-purify an antigenic peptide
`fingerprint' of the cell of origin. Thus, vaccination with chaperone-peptide complexes
derived from a tumor circumvents the need to identify CTL epitopes from individual
cancers. This unique advantage extends the use of chaperone-based immunotherapy to
cancers where specific tumor antigens have not yet been characterized.

The first autologous HSP vaccine, Oncophage (also known as HSP-peptide complex 96,
HSPPC-96, Vitespen), has been examined in clinical trials of various types of malignancies,
including metastatic colorectal carcinoma (Mazzaferro et al., 2003; Rivoltini et al., 2003),
metastatic melanoma (Pilla et al., 2006; Testori et al., 2008), non-Hodgkin Lymphoma
(Younes, 2003), RCC (Jonasch et al., 2008; Wood et al., 2008). Despite the positive results
from early phase trials, the phase III trial conducted in Stage IV melanoma patients failed to
demonstrate survival benefits (Testori et al., 2008). However, introspective analysis revealed
overall survival benefit within the early stage IV melanoma patients (M1a, distant skin,
subcutaneous or nodal metastasis; M1b, lung metastasis) (Testori et al., 2008). Similarly, no
difference in recurrence-free survival between vaccination group and observation (control)
group was observed in a separate phase III trial of RCC; although stage I and II patients
seemed to benefit from vaccination (Wood et al., 2008). Further analysis of the data showed
that patients with Stage I/II and T1/2/3a RCC had a recurrence-free survival of about 45%
compared with the control group (Yang, 2008). As a result, Gp96 based vaccine
(Oncophage/Vitespen) was approved in 2008 by the Russian Ministry of Health for adjuvant
treatment of RCC (Carlson, 2008).

To overcome technical difficulties (tumor specimen requirement, time-consuming
preparation, etc.) associated with the conventional autologous HSP vaccine approaches, we
have developed a chaperoning technology to formulate recombinant HSP vaccines. This
platform takes advantage of exceptional protein-holding capability of large HSPs (Hsp110,
Grp170) (Easton et al., 2000; Oh et al., 1997; Park et al., 2003; Subjeck and Shyy, 1986),
and generates chaperone complexes of the large HSP and clinically relevant tumor antigens
(e.g., gp100, HER-2/Neu) in vitro (Manjili et al., 2002; Manjili et al., 2003; Park et al.,
2006; Wang et al., 2007a; Wang et al., 2006a; Wang et al., 2003; Wang et al., 2010). The
whole protein antigen employed in this approach contains a large reservoir of potential
peptides that allow the individual's own MHC alleles to select the appropriate epitope for
presentation, and increases the chance of polyepitope directed T and B cell responses. This
synthetic approach can serve as a model to develop many different antigen targets, either
alone or in combination vaccines (Wang et al., 2010). The promising preclinical results have
led to a phase I clinical trial of recombinant chaperone vaccine targeting melanoma that is to
be launched soon.

The immunological function of chaperones that has received the most attention thus far is
the ability to shuttle peptides into the endogenous presentation pathway of professional
APCs. Several receptors e.g., CD91, LOX1, SRA and SREC have been identified to be
involved in the HSP-facilitated cross-priming event (Basu et al., 2001; Berwin et al., 2004;
Berwin et al., 2003; Binder et al., 2000; Delneste et al., 2002; Facciponte et al., 2007; Gong
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et al., 2009; Murshid et al., 2010; Theriault et al., 2006). Intriguingly, our recent work
revealed that SRA absence markedly improved the therapeutic efficacy of the Hsp110/
Grp170-gp100 vaccines in mice established with B16 melanoma (Qian et al., 2011; Wang et
al., 2007b), suggesting the complex network of HSP-binding receptors and their potential
distinct effects on HSP vaccine-induced immune responses.

IV. Genetic vaccines
Another strategy to deliver antigen or antigen fragments in vivo is to utilize viral or plasmid
DNA vectors carrying the expression cassettes. Upon administration, they transfect somatic
cells (myocytes, keratinocytes) or DCs that infiltrate muscle or skin as a part of the
inflammatory response to vaccination, resulting in a subsequent cross-priming or direct
antigen presentation. One major advantage of genetic vaccines is the easy delivery of
multiple antigens in one immunization and activation of various arms of immunity
(Aurisicchio and Ciliberto, 2012).

A. DNA vaccines
DNA vaccines are bacterial plasmids that are constructed to function as shuttle system to
deliver and express tumor antigen (full-length, short peptides) for generating targeted
cellular and humoral immunity (Liu, 2011). The transgene is usually driven by the
cytomegalovirus immediate early promoter and its adjacent intron A sequence to ensure
transcription efficiency. Elevated expression of encoded antigen can be achieved by
optimization of codon-usage, such as substitution of codons for rare tRNA (Stratford et al.,
2000). The backbone of bacterial DNA itself acts as PAMPs to stimulate the activation of
immune cells through TLRs or other innate pattern recognition molecules (Barber, 2011;
Beutler et al., 2006; Spies et al., 2003).

The ability to incorporate multiple genes into the vector creates opportunities to modulate
intracellular routing and modification of antigens as well as subsequent immune outcome.
Addition of a leader sequence targeting antigens to the endoplasmic reticulum (ER) induced
a humoral response (Walter and Johnson, 1994), and also facilitated generation of CD8+ T-
cell responses, probably due to retrograde transfer of antigen from the ER to cytosol and
direct delivery of DNA to APC at the immunization site (Rice et al., 2008). Fusing the single
chain Fv of idiotypic immunoglobulin to fragment C derived from tetanus toxin in DNA
vaccines results in the activation of fragment C-specific CD4+ T helper cells, which
facilitate anti-Id B cells to produce high levels of anti-Id antibodies for immune protection
against lymphoma (King et al., 1998; Spellerberg et al., 1997).

In addition, DNA vaccines can be rationally combined with other immunostimulatory
agents, such as TLR agonists, to optimize antibody responses. DNA cancer vaccine targeting
HER-2/Neu or CEA, when used in conjunction with a novel TLR9 agonist IMO
(Aurisicchio et al., 2009), or a TLR7 agonist SM360320 (Dharmapuri et al., 2009), resulted
in greater antibody titers and antibody-dependent cellular cytotoxicity activity, which led to
improved control of HER2-positive mammary carcinoma or CEA-positive colon carcinoma
in murine models. In a therapeutic setting, active immunization with HER-2/Neu DNA
vaccine synergized with anti-HER-2/Neu monoclonal antibodies for enhanced inhibition of
established mouse breast tumors (Orlandi et al., 2011).

Achieving an effective and durable CTL response remains the ultimate goal of cancer
vaccines. Generation of CD4+ T cell helps via a class II MHC-dependent pathway is
important for amplification of CD8+ T cell responses and maintenance of memory during
DNA vaccination (Maecker et al., 1998). Given poor immunogenicity of self TAAs , fusion
of the TAAs to non-self antigens or molecules, such as virus × coat protein (Savelyeva et al.,

Guo et al. Page 10

Adv Cancer Res. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2001), GFP (Wolkers et al., 2002), a modified fragment C of tetanus toxin (Rice et al., 2002;
Rice et al., 2006; Rice et al., 2001) can provide T helper signals to CTLs, resulting in
enhanced cross-presentation of TAAs and antitumor immunity against several murine
tumors. DNA vaccines that were designed to target tumor antigens to costimulatory B7
molecules on APCs by fusing the extracellular domain of CTLA-4 to HER-2/Neu induced
protective humoral and cellular immune responses, which delayed onset of HER-2/Neu-
driven mammary carcinoma (Sloots et al., 2008).

DNA vaccines have also been tested for immune targeting of stable, proliferating endothelial
cells in the tumor vasculature. A DNA vaccine with the expression cassette for vascular-
endothelial growth factor receptor 2 (FLK-1) promoted CTL-mediated killing of endothelial
cells, resulting in potent therapeutic efficacy against several murine tumors (melanoma,
colon carcinoma and lung carcinoma) and reducing the dissemination of pulmonary
metastases (Niethammer et al., 2002). Oral administration of a xenogenic DNA vaccine
encoding human tumor endothelial marker 8 (TEM8) effectively suppressed tumor
angiogenesis and protected mice from subsequent challenge with a lethal dose of tumor cells
(Ruan et al., 2009). Mice immunized with a DNA vaccine encoding human papilloma virus
type-16 (HPV-16) E7 fused with calreticulin (CRT) developed a strong tumor-specific CD8+

T cell response and also showed a dramatic reduction in microvessel density in lung tumor
nodules, suggesting the enhanced antitumor effect involves dual immune-mediated attack of
both cancer cells and endothelial cells (Cheng et al., 2001). Other DNA vaccine approaches
targeting the angiostatin receptor angiomotin also augmented immune-mediated blockade of
angiogenesis and tumor inhibition. Interestingly, the increased tumor vessel permeability
following DNA vaccination further enhanced the antitumor effect of a chemotherapeutic
agent, doxorubicin (Arigoni et al., 2012; Holmgren et al., 2006).

Although DNA vaccine platforms have shown promise in preclinical studies (Xiang et al.,
2008), they fail to translate from mice and rats to non-human primates and humans (Liu and
Ulmer, 2005; Rice et al., 2008). DNA vaccines are facing the obstacle of translation into the
clinic due to efficacy rather than toxicity. However, new constructs and methods of
administration may enhance their utility. In addition to subcutaneous or intradermal
injection, DNA vaccines can be injected directly into the lymph nodes to increase antigen
uptake by APCs and promote local inflammatory signals. This is currently being tested in
Phase I/II trials for melanoma and other cancers (Ribas et al., 2011; Weber et al., 2011).
Other approaches or carrier modalities, including gene gun, electroporation, ultrasound,
laser, liposome, microparticles and nanoparticles, have been used to enhance antigen
expression and DNA vaccine efficacy (Bins et al., 2005; Buchan et al., 2005; Dupuis et al.,
2000; Greenland and Letvin, 2007).

B. RNA vaccines
Messenger RNA (mRNA) from autologous tumor tissues can also be used to induce a
specific CTL response (Carralot et al., 2005; Scheel et al., 2005; Wolff et al., 1990).
Administration of total RNA as a vaccine potentially generates immune responses against
various tumor antigens to reduce the possibility of tumor escape. Unlike DNA vaccines,
RNA vaccines are less likely to cause side effects or autoimmune diseases due to their rapid
degradation and clearance. RNA vaccination is usually carried out together with other agents
for stabilization or adjuvant effects, such as liposomes or protamines (Espuelas et al., 2005;
Fotin-Mleczek et al., 2012; Qiu et al., 1996; Scheel et al., 2005). Chemical modification of
the phosphodiester backbone (phosphorothioate RNA) can also provide a `danger' signal for
stimulating the DCs through the MyD88 pathway (Scheel et al., 2004). Other modifications
of RNA vaccines by integrating an RNA replicase polyprotein derived from the Semliki
forest virus to generate “self-replicating” RNA (Ying et al., 1999) or using β-globin UTR to
stabilize the RNA vaccine (Carralot et al., 2004) also lead to enhanced antigen-specific
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immune responses. RNA-based cancer vaccines have only been clinically tested in phase I/II
trials with patients with melanoma (Weide et al., 2008; Weide et al., 2009) or RCC
(Oshiumi et al., 2003).

C. Viral-based vaccines
The rationale for using viruses as immunization vehicles is based on the phenomenon that
viral infection often results in the presentation of MHC class I/II restricted, virus-specific
peptides on infected cells. The viral vectors with low disease-causing potential and low
intrinsic immunogenicity are engineered to encode TAAs or TAAs combined with
immunomodulating molecules.

The first and most extensively evaluated viral-based vectors in cancer vaccine trials are from
the poxviridae family, such as vaccinia, modified vaccinia strain Ankara (MVA), and the
avipoxviruses (fowlpox and canarypox; ALVAC) (Marshall et al., 1999; Marshall et al.,
2000; Walsh and Dolin, 2011). Poxviruses have the ability to accommodate large or several
transgene inserts (Moss, 1996). Poxvirus replication and transcription are restricted to the
cytoplasm, which minimizes risk to the host of insertional mutagenesis. It is believed that
induction of a local inflammatory response by the host TLRs and other properties of
vaccinia or MVA contribute to the enhanced immune response reactive with inserted TAAs
in preclinical studies.

One promising viral cancer vaccine is PROSTVAC developed by Bavarian Nordic. This
“off-the-shelf” platform consists of a replication-competent vaccinia priming vector and a
replication-incompetent fowlpox-boosting vector. Each vector contains transgenes for PSA
and three costimulatory molecules (CD80, CD54 and CD58) that are collectively designated
TRICOM (Hodge et al., 2005). In double-blinded, placebo-controlled phase II trial,
PROSTVAC improved median overall survival relative to the control vector (25.1 vs. 16.6
months, P = .006) (Kantoff et al., 2010b). Similar improvement in the median overall
survival was also observed in a second PROSTVAC single-arm phase II study (Gulley et al.,
2010). The pivotal phase III trial following these encouraging data from phase II studies are
ongoing (NCT01322490).

Trovax is a MVA vector-based cancer vaccine targeting renal cell carcinoma antigen 5T4.
Phase III clinical trials of Trovax in metastatic renal cancer patients failed to meet the
primary endpoint of overall survival (Amato et al., 2010). Another MVA vector-based
vaccine TG4010 consists of expression cassettes encoding MUC1 antigen and IL-2. In a
phase II trial of renal cell carcinoma, TG4010 combined with interferon-α2a and IL-2
resulted in 22.4 months mean overall survival compared with 19.3 months for all patients.
MUC-1-specific CD8+ T cells were associated with the prolonged survival (Oudard et al.,
2011). A separate phase II trial of TG4010 combined with first-line chemotherapy (cisplatin
plus gemcitabine) in advanced NSCLC demonstrated a significant 6 months increase in
median survival (17.1 months in the experimental arm vs.11.3 months in the control arm).
Activated NK cells were identified as predictive biomarkers for positive clinical outcome
(Quoix et al., 2011). A confirmatory phase IIb/III trial of TG4010 for treatment of advanced
stage (IV) NSCLC is ongoing (NCT01383148).

Recombinant adenovirus is another system that can be used as carriers for genetic
vaccination. Adenoviruses are easy to engineer and propagate to high yields for clinical use.
They also have the advantage of transducing both dividing and non-dividing cells for high
expression of transgenes. Indeed, adenoviruses are used extensively as cancer gene
therapeutic agents (Das et al., 2012; Liu et al., 2008; Raty et al., 2008). Although clinical
evaluations of adenovirus platforms have been hindered by preexisting antiviral immunity,
adenovirus vectors expressing various TAAs (PSA, HER-2/Neu) are currently being tested
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for their immunological and clinical efficacy (NCT00583024, NCT00197522). Newer less
immunogenic variants of adenoviruses and local delivery of adenovirus-based vaccines may
circumvent this issue.

Herpes simplex virus type 1 (HSV-1) is an enveloped dsDNA virus with the ability to infect
a wide variety of cell types, and to incorporate single or multiple transgenes. An oncolytic
HSV-1 encoding granulocyte macrophage colony-stimulating factor (GM-CSF;
OncovexGM-CSF) for direct injection into accessible melanoma lesions resulted in a 28%
objective response rate in a Phase II clinical trial (Senzer et al., 2009). Responding patients
demonstrated regression of both injected and noninjected lesions highlighting a dual
mechanism of action of OncovexGM-CSF which includes both a direct oncolytic activity in
injected tumors and a secondary immune-mediated antitumor effect. The OncovexGM-CSF

Pivotal Trial in Melanoma (OPTIM), randomized Phase III clinical trial, has been initiated
to evaluate OncovexGM-CSF in patients with unresectable, metastatic melanoma (Kaufman
and Bines, 2010).

Like viral vectors, bacteria and yeasts have shown utility as vaccine vehicles in preclinical
studies, and may also be modified for immunizing cancer patients. Attenuated recombinant
Listeria monocytogenes has been shown to induce both innate and adaptive antitumor
immune responses (Singh and Paterson, 2006, 2007). Saccharomyces cerevisiae is
inherently nonpathogenic and can be easily engineered and propagated for preparation of a
TAA-targeted vaccine (Remondo et al., 2009; Wansley et al., 2008).

VI. Cancer vaccine therapy combined with other treatment modalities
Given the existence of such diverse vaccine platforms that potentially engage the innate and
adaptive immune components, it is feasible and attractive to use combinatorial cancer
vaccine therapy. In addition to cancer vaccines, a wide range of other promising
immunotherapeutic modalities is being tested or approved for cancer treatment. These
include adoptive cell transfer of ex vivo expanded tumor infiltrating lymphocytes
(Rosenberg et al., 1994), use of therapeutic antibodies (e.g., trastuzumab) for antagonizing
oncogenic pathways and triggering antibody dependent cytotoxicity and phagocytosis (Disis
et al., 2009; Zhou and Levitsky, 2012), and administration of immune modulating antibodies
targeting both co-inhibitory and co-stimulatory receptors on activated T cells or the
corresponding ligands on APCs as well as tumor cells to enhance antitumor immune
responses (Peggs et al., 2007; Wolchok et al., 2010). Therefore, a consensus view in cancer
immunotherapy is developing that applications of rational combinations of multiple
modalities targeting distinct aspects of tumor and immune pathways will achieve durable
antitumor effects and more effective therapeutic outcomes.

A recent study demonstrated that recombinant CEA vaccines based on different poxviral and
yeast platforms activated different T-cell repertoire and cytokine profiles, resulting in
enhanced antitumor activity in mice (Boehm et al., 2010). Preclinical studies also showed
that cancer DNA vaccine targeting CEA in combination with multiple co-stimulatory
molecules (B7-1, ICAM-1, LFA-3 and GM-CSF) amplified T cell response and greatly
enhanced antitumor responses (Grosenbach et al., 2001). Cancer vaccines combined with the
administration of cytokines, such as IL-7 (Pellegrini et al., 2009), IFN-α (Pace et al., 2010;
Sikora et al., 2009), can synergize to induce immune stimulation of DCs and T cells as well
as antagonize Treg-mediated immune suppression, which leads to optimized and improved
antitumor immune efficacy.

The recent FDA approval of anti-CTLA-4 antibodies (ipilimumab) for metastatic melanoma
undoubtedly supports the rational combination of this immune checkpoint inhibitor with
other vaccine therapies (Hodi et al., 2010; Lipson and Drake, 2011; Wang et al., 2011a).
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Although no significant difference in the OS was seen in the recent phase III trial between
the ipilimumab alone group and the ipilimumab plus gp100 vaccine group (Hodi et al.,
2010), ipilimumab has been shown in several preclinical and clinical studies to enhance the
avidity of T cells and to enhance antitumor effects in combination with vaccines (Brahmer et
al., 2010; Chakraborty et al., 2007; Hodi et al., 2003; van Elsas et al., 1999; Yuan et al.,
2008). In addition, administration of ipilimumab after vaccination with GVAX generated
clinically meaningful antitumor immunity in a majority of metastatic melanoma patients
(Hodi et al., 2008). Clinical trials evaluating different combinations of ipilimumab with
vaccines are planned or ongoing in the adjuvant and metastatic setting for treatment of
different types of cancer (ClinicalTrials.gov Identifier: NCT01302496, NCT00124670,
NCT00836407).

Other promising candidates for immune modulation to enhance clinical vaccine efficacy
include antibodies against PD-1 or PD-1L1 (Brahmer et al., 2010; Curran et al., 2010;
Sakuishi et al., 2010), lymphocyte-activation gene-3 (LAG-3), T cell immunoglobulin
mucin-3 (Tim-3) (Fourcade et al., 2010; Sakuishi et al., 2010), CD40 (Advani et al., 2009;
Beatty et al., 2011), and inhibitors of transforming growth factor β (TGF-β) (Bogdahn et al.,
2011; Bueno et al., 2008). The combination of PD-1 blockade with GM-CSF-secreting
tumor cell immunotherapy leads to significantly improved antitumor responses in preclinical
models (Li et al., 2009).

Emerging evidence from preclinical or clinical studies also support the idea of combining
cancer vaccines with conventional therapies (radiation, chemotherapy) to achieve additive or
synergistic effects, even though the dose and scheduling of the combining agent require
additional studies for optimization. Certain chemotherapeutic agents (e.g., doxorubicin) can
induce immunogenic cancer cell death, resulting in enhanced cross-priming of TAA-specific
T cells and subsequent antitumor immunity (Apetoh et al., 2007; Ghiringhelli et al., 2009;
Kepp et al., 2011; Tesniere et al., 2010; Zitvogel et al., 2010). Low doses of
cyclophosphamide and doxorubicin also enhance the therapeutic efficacy of GM-CSF
secreting whole tumor cell vaccines in tumor bearing mice and cancer patients, probably due
to their ability to diminish the number of Tregs (Emens et al., 2009; Machiels et al., 2001).
Docetaxel has been reported to increase the expression of TAAs, peptide-MHC complexes,
and the death receptors expressed on tumor cells, thus sensitizing tumors to vaccine-induced
T cell killing (Garnett et al., 2008). In addition, certain small molecule targeted therapeutics,
such as BCL-2 inhibitor (Farsaci et al., 2010), B-raf inhibitor (Boni et al., 2010) and the
tyrosine kinase inhibitor sunitinib (Farsaci et al., 2012; Finke et al., 2008; Ko et al., 2009)
demonstrate the ability to enhance T cell functions and antitumor efficacy in preclinical
studies. Recent studies also showed that the mTOR inhibitor rapamycin promotes
production of IL-12 and development of memory CD8+ T cells, leading to enhanced vaccine
potency (Araki et al., 2009; Ohtani et al., 2008; Wang et al., 2011b).

Local radiation not only debulks the tumor, but also generates an inflammatory
microenvironment, thereby promoting presentation of dying tumor-released TAAs by DCs
and subsequent T cell priming (Guo et al., 2012b; Hodge et al., 2008). In addition, radiation
renders tumor cells more susceptible to attack by tumor-specific CTLs (Chakraborty et al.,
2003; Garnett et al., 2004; Reits et al., 2006). Indeed, radiation therapy combined with a
PSA-targeted vaccine displayed a favorable toxicity profile and generated significant T cell
responses in prostate cancer patients (Gulley et al., 2005; Lechleider et al., 2008). Moreover,
the preclinical and clinical evidence indicates potential benefits of hormonal therapy in
combination with vaccine therapy (Arredouani et al., 2010; Mercader et al., 2001).
Randomized clinical trials of PROSTVAC vaccine also suggest that vaccination combined
with nilutamide hormone therapy potentially results in improved survival in patients with
non-metastatic prostate cancer (Madan et al., 2008).

Guo et al. Page 14

Adv Cancer Res. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://ClinicalTrials.gov


VII. Lessons learned from cancer vaccine trials
In contrast to other cytotoxic therapies, cancer vaccines have demonstrated minimal toxicity
in all clinical trials that have been reported to date. Despite expression of many target TAAs
in normal tissues, little evidence of autoimmunity has been observed, with the exception of
vitiligo that is seen in patients receiving some melanoma vaccines (Banchereau et al., 2001;
Luiten et al., 2005). Therapeutic cancer vaccines of different forms are being actively
evaluated in the clinic. Ongoing Phase III trials are summarized in Table 1.

Clinical studies have now shown that patients who have received less prior chemotherapy
are generally more responsive to vaccines (von Mehren et al., 2001). Thus, vaccine
treatment of patients with a lower tumor burden may result in significantly improved
outcomes (Gulley et al., 2011), highlighting the importance of selection of appropriate
patient populations to be used in randomized vaccine trials. Strikingly, the mechanism of
action and kinetics of clinical responses following vaccine therapy appear to differ
significantly from that of chemotherapy (Stein et al., 2011). It may be explained by the time
needed to establish the immune response, which is followed by continuing tumor cell
destruction and cross-priming of T effector cells reactive with additional TAAs. Thus,
antitumor activity of vaccine-induced immune activation over a long period results in a
slower tumor growth rate and improved overall survival, even though patients fail to show
substantial reductions in tumor burden and an improvement in relapse-free survival (Madan
et al., 2010). Similar findings have been reported in the clinical trials evaluating ipilimumab
treatment of metastatic melanoma, in which patients treated with ipilimumab showed a
statistically significant advantage in overall survival without a statistically significant
difference in time to progression (Hodi et al., 2010).

These findings indicate that traditional response criteria may not be adequate for evaluating
clinical responses to vaccine therapy or immunotherapy. Classic Response Evaluation
Criteria in Solid Tumors (RECIST criteria) were initially developed to monitor patients
treated with cytotoxic chemotherapies (Therasse et al., 2006). Indeed, new guidelines or
“immune response criteria” for the evaluation of immunotherapeutic activity in solid tumors
have been developed to better classify and evaluate clinical activity (Wolchok et al., 2009).

Numerous studies have demonstrated that analysis of the immune infiltrates in cancer
biopsies and “immune signature” can serve as independent prognostic predictors for survival
(Ascierto et al., 2011; Ascierto et al., 2012; Camus et al., 2009; Galon et al., 2006). Future
efforts should be focused on the identification and validation of diagnostic biomarkers in
response to vaccine treatment. Obtaining information on the biomarkers of immune and
clinical responsiveness to effective treatment will greatly facilitate the clinical development
of therapeutic cancer vaccines.

VIII. Tumor-induced immune suppression and tumor microenvironment
Tumor-induced immunosuppressive mechanisms in the tumor microenvironment (TME) are
one of the major reasons for the limited current success of therapeutic cancer vaccines. The
original immuosurveillance concept proposed to interpret the cross-talk between the immune
system and the tumor (Burnet, 1970) has been elaborated on by Schreiber et al. proposing
the cancer `immunoediting' theory (Dunn et al., 2002; Dunn et al., 2004). In this model, it is
suggested that tumor cells that escape initial immunosurveillance may enter an equilibrium
phase where they are kept in check by the immune system; as soon as the immune response
is suppressed or epigenetic changes in the quiescent tumor cells result in antigen loss or
HLA loss, tumor escape and recurrence will occur. It is also believed that tumor
`immunoediting' also occurs during vaccination therapy of established tumors and
contributes to tumor progression or relapse (Schreiber et al., 2011).
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These immunosuppression mechanisms constitute the principle obstacles for the
development of effective therapeutic cancer vaccines (Fig. 1). Tumor cells can change
themselves by alterations in the antigen processing-presenting machinery, loss of antigen or
induction of anti-apoptotic mechanisms (Dunn et al., 2002; Khong and Restifo, 2002;
Racanelli et al., 2010; Respa et al., 2011; Seliger et al., 2010). The lack of T-cell co-
stimulatory molecules on most solid tumors and chronic exposure to TAAs may enable
activated T cells to become anergized during activation (Kim and Ahmed, 2010). The TME
contains a range of immunosuppressive leukocyte populations, including myeloid derived
suppressor cells (MDSCs), tumor-associated macrophages (TAMs) and Tregs. Analysis of
PBMCs from patients with different types of cancer has also shown increased levels of
MDSCs and Tregs with increased suppressive functions (Cesana et al., 2006; Vergati et al.,
2011). These suppressive cells, tumor cells, and TAMs residing in the TME also release a
number of immunosuppressive soluble factors, including TGF-β, IL-10, indoleamine-
pyrrole 2,3 dioxygenase (IDO), galectin, and vascular endothelial growth factor (VEGF),
which promote and establish an immunosuppressive state at the tumor site (Vesely et al.,
2011).

MDSCs are immature myeloid cells that express CD11b and Gr-1 markers in tumor-bearing
mice (Peranzoni et al., 2010). These include monocytic MDSCs and polymorphonuclear
MDSCs (granulocytic MDSCs). In cancer patients, MDSCs are characterized as LIN−HLA-
DR−CD33+CD11b+ cells in blood. There is a positive correlation between the frequency of
MDSCs and advanced-stage tumors (Diaz-Montero et al., 2009; Kusmartsev et al., 2008;
Raychaudhuri et al., 2011). MDSCs inhibit T cell activation via arginase, inducible nitric
oxide synthase (iNOS), reactive oxygen species (ROS) or reactive nitrogen species (RNS)
(Movahedi et al., 2008; Youn et al., 2008). Various mechanisms are involved in MDSC-
mediated immune suppression, which include depletion of nutrients necessary for
lymphocytes (Rodriguez et al., 2004; Srivastava et al., 2010), generation of oxidative stress
to induce the loss of TCR ζ-chain expression on T cells (Schmielau and Finn, 2001) and
disruption of IL-2 receptor signaling (Mazzoni et al., 2002), interference with lymphocyte
trafficking (Hanson et al., 2009; Molon et al., 2011), or promoting activation of Tregs by
CD40-CD40L ligation (Pan et al., 2010) and production of IL-10 or TGF-β (Huang et al.,
2006). Contact-dependent mechanisms of T cell suppression have also been reported in a
mouse tumor model (Morales et al., 2009).

Macrophages are derived from circulating monocytes and terminally differentiate in various
tissues. They express various surface markers and function differently in response to the
local environmental cues (Mosser and Edwards, 2008). It is well known that TAM facilitate
tumor progression and is associated with poor clinical outcomes (Mantovani and Sica, 2010;
Qian and Pollard, 2010). TAMs are M2-like or alternatively activated macrophages that
facilitate tumor angiogenesis and promote tumor invasion or metastasis (Lin et al., 2006;
Qian et al., 2009). TAMs also promote tumor growth by producing IL-10 to drive the
development of IL-4-expressing Th2 cells, which provides a positive feedback for
stimulating TAM expansion (DeNardo et al., 2009). CCL22 produced by TAMs recruits
Tregs to suppress CTL function (Curiel et al., 2004). Expression of PD1 ligand (PD1L) on
monocytes/macrophages can induce apoptosis of activated T cells (Kuang et al., 2009).

Tregs not only suppress physiological and pathological immune responses against self, non-
self and quasi-self-tumor antigens, but also are able to attenuate antitumor functions of
CD4+ helper T cells, NK cells, NKT cells and CD8+ T cells (Sakaguchi, 2004; Shevach,
2002). A large number of Tregs can be recruited into the TME of tumor bearing mice or
cancer patients, due to the self antigens released by dying tumor cells and inflammatory
TME (Nishikawa et al., 2005; Pardoll, 2003). An increased presence of CD4+CD25+Foxp3+

Tregs over CD8+ T cells at the tumor site correlates with poor prognosis and therapeutic
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outcomes in cancer patients (Bates et al., 2006; Curiel et al., 2004; Sato et al., 2005).
Although not clearly defined, expression of the inhibitory surface molecules CTLA-4 and
PD-1, secretion of the immunosuppressive soluble factors TGF-β, IL-10 and IL-35 as well
as certain cytolytic molecules may mediate immunosuppression by Tregs (Vignali et al.,
2008).

In addition to the immunosuppressive TME, the immune counteracting mechanisms engaged
during cancer vaccine responses may also compromise antitumor responses and contribute
to tumor escape. Tregs can be expanded in response to viral-based vaccination or multiple
cycles of GVAX vaccines (LaCelle et al., 2009; Zhou et al., 2006; Zhou and Levitsky,
2007). Anti-CTLA-4 antibodies abrogate Treg-mediated suppression by decreasing Tregs in
the TME, but expanding the overall Tregs (Kavanagh et al., 2008; Quezada et al., 2006).
Widely used TLR agonists as vaccine adjuvants (Caramalho et al., 2003; Conroy et al.,
2008; Crellin et al., 2005) and PD-1 blockade (Currie et al., 2009) also enhance the
proliferation or amplify the suppressive function of Tregs. GM-CSF-based cancer vaccines
could potentially attenuate antitumor responses by expanding MDSCs in animal models of
cancer (Serafini et al., 2004) and in cancer patients (Filipazzi et al., 2007; Slingluff et al.,
2009). Other factors induced following vaccination include IL-6, IL-17 and IL-1β, which
drive the expansion of MDSCs due to their regulatory properties (Bunt et al., 2007; He et al.,
2010; Rider et al., 2011). Therefore, innovative strategies are mandatory for overcoming
these tumor-dependent and -independent immunoregulatory or immunosuppressive
mechanisms or pathways to achieve beneficial clinical outcomes in cancer vaccine therapy.

VIV. Concluding remarks
Effective, safe and enduring cancer treatments constitute major challenges of medical
sciences, with therapeutic cancer vaccines emerging as attractive approaches for provoking
long-lasting protective antitumor immunity. Recent approval of the first therapeutic cancer
vaccine will pave the way for developing innovative, next generation of vaccines with
enahnced antitumor potency. Based on current data from clinical trials and the safety
profiles of therapeutic vaccines, they will most probably be used in the adjuvant or
neoadjuvant setting for the treatment of patients with minimal residual disease or more
indolent metastatic disease, or those patients with a high risk of recurrence. Ultimate
translation of cancer vaccines into clinically available medications with broad applications
will require overcoming the immune tolerance/suppression pathways in the TME. A better
understanding of host-tumor interactions and tumor immune escape mechanisms are
required to develop effective cancer vaccines. Identification of unique tumor gene or protein
products responsible for transformation of normal cells into tumor cells and promoting
cancer progression will also uncover new potential targets for vaccine therapy. In addition,
`immune signatures' will have to be established and exploited to define patient populations
who will most likely respond to and benefit from vaccine therapies. Strategically combining
vaccine strategies with other agents or approaches that synergistically enhance antitumor
immunity and/or engage complementary antitumor responses should also lead to further
improved clinical outcomes.
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Figure 1. Counteracting tumor-induced immune suppression to achieve effective cancer vaccine
therapy
Active immunization with therapeutic vaccines generally targets the host DCs for effective
presentation of tumor-associated antigens and subsequent priming of CD8+ CTLs and CD4+

T helper cells. These tumor-specific T effector cells together with other innate immune cells
can result in inhibition or destruction of cancer cells. In the tumor microenvironment, cancer
cells produce immunosuppressive soluble factors (TGF-β, IL-10, IDO, galectin and VEGF)
and expand or recruit immune regulatory cells (MDSCs, Tregs and TAMs), which establish
an immunosuppressive state at the tumor site. This complex molecular and cellular network
attenuates vaccine-induced antitumor immune responses and promotes tumor escape from
immune attack. To overcome the immune suppressive mechanisms, novel immune
modulators (anti-CTLA-4 and anti-PD1 antibodies) may be used to enhance vaccine potency
and restore durable antitumor immunity. Cancer vaccines can also be combined with
conventional cancer treatments, such as radiotherapy and chemotherapy, to engage
multivalent antitumor effects for optimized therapeutic efficacy.
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Table 1

Ongoing phase III trials of therapeutic cancer vaccines

Vaccines Description Cancer type NCI ID

DC/APCs

AGS-003 autologous DCs transfected with tumor and CD40L
RNAs

RCC NCT01582672

DCVax®-L autologous DCs loaded with tumor lysate GBM NCT00045968

Cvac autologous DCs pulsed with MUC1-mannan fusion
protein

EOC NCT01521143

Peptides/proteins

GV1001 hTERT peptide NSCLC NCT01579188

GV1001 hTERT peptide Pancreatic Cancer NCT00425360

NeuVax™ HER2/neu peptide combined with GM-CSF Breast Cancer NCT01479244

N/A MAGE-A3 and NY-ESO-1 peptides combined with GM-
CSF

Multiple Myeloma NCT00090493

Stimuvax liposome-encapsulated synthetic peptide derived from
MUC-1

NSCLC NCT01015443

Rindopepimut hEGFR variant III specific peptide conjugated to KLH GBM NCT01480479

POL-103A protein antigens from 3 melanoma cell lines with alum
adjuvant

Melanoma NCT01546571

Virus vectors

PROSTVAC recombinant fowlpox/vaccinia virus encoding hPSA and
TRICOM

Metastatic Prostate Cancer NCT01322490

CG0070 oncolytic adenovirus encoding GM-CSF Bladder Cancer NCT01438112

INGN 201 adenovirus encoding p53 SCCHN NCT00041613

INGN 201 adenovirus encoding p53 combined with cisplatin and
fluorouracil

SCCHN NCT00041626

TG4010 modified vaccinia virus encoding human MUC1 and IL-2 NSCLC NCT01383148

EGFR, epidermal growth factor receptor; EOC, epithelial ovarian cancer; GBM, glioblastoma; GM-CSF, granulocyte-macrophage colony-
stimulating factor; hPSA, human prostate specific antigen; hTERT, human telomerase reverse transcriptase; KLH, keyhole limpet hemocyanin;
MUC1, mucin 1; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; SCCHN, squamous cell cancer of the head and neck; TRICOM,
recombinant vaccinia virus vaccine encoding three co-stimulatory molecule transgenes B7.1, ICAM-1, and LFA-3.
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