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Abstract: Stroke is a major cause of death and disability across the world, and its detrimental
impact should not be underestimated. Therapies are available and effective for ischemic stroke
(e.g., thrombolytic recanalization and mechanical thrombectomy); however, there are limitations
to therapeutic interventions. Recanalization therapy has developed dramatically, while the use of
adjunct neuroprotective agents as complementary therapies remains deficient. Pathological TAR
DNA-binding protein (TDP-43) has been identified as a major component of insoluble aggregates in
numerous neurodegenerative pathologies, including ALS, FTLD and Alzheimer’s disease. Here, we
show that increased pathological TDP-43 fractions accompanied by impaired mitochondrial function
and increased gliosis were observed in an ischemic stroke rat model, suggesting a pathological role
of TDP-43 in ischemic stroke. In ischemic rats administered rapamycin, the insoluble TDP-43 fraction
was significantly decreased in the ischemic cortex region, accompanied by a recovery of mitochondrial
function, the attenuation of cellular apoptosis, a reduction in infarct areas and improvements in
motor defects. Accordingly, our results suggest that rapamycin provides neuroprotective benefits not
only by ameliorating pathological TDP-43 levels, but also by reversing mitochondrial function and
attenuating cell apoptosis in ischemic stroke.

Keywords: TDP-43; rapamycin; ischemic stroke

1. Introduction

Stroke is the second leading cause of death in the World Health Organization’s
2-2-global health estimate, leading to severe long-term disability and death worldwide,
and incurring huge social costs. Stroke is therefore a serious health problem that requires
further attention to attenuate death and disability. Among all strokes, approximately 87%
are ischemic strokes, which are usually caused by blood clots that occlude the blood sup-
ply from the cerebral artery in the brain and initiate ischemic cascades [1]. Reperfusion
after ischemia, which involves the instant recanalization of occluded vessels by mechan-
ical or chemical therapies, is essential for preventing irreversible brain damage and has
been proven to be the most effective therapy for stroke treatment. However, reperfusion
after ischemic stroke may reverse the benefits of endovascular recanalization by exacer-
bating brain injury, resulting in the extension of brain damage, which is called cerebral
ischemia/reperfusion (I/R) injury [2,3]. A high percentage of ischemic stroke patients die
from extensive brain damage caused by reperfusion [4,5]. Improvements in recanalization
techniques and the development of adjunct neuroprotective agents targeting antioxidation
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and anti-inflammation are indispensable to improve the clinical outcomes of ischemic pa-
tients. I/R injury induces a series of harmful consequences, including blood–brain barrier
destruction, cerebral hemorrhage, neurovascular damage and neuronal death, which are
the main causes of neurological deficits and mortality [4]. A wide spectrum of pathological
factors is involved, including oxidative stress, leukocyte infiltration, inflammation and
apoptosis [6]. The main cause of hemorrhagic transformation is the breakdown of vessel
integrity distal to occlusion. The goal for eliminating stroke-related neuroinflammation re-
sponses is the development of an effective adjunct therapy to improve adverse results after
I/R. In addition to neuroinflammation, among I/R injuries, the oxidative stress resulting
from the overproduction of reactive oxygen species (ROS) in mitochondria is regarded as
the primary event leading to excessive oxidative damage and neuronal death in cerebral
I/R injury [7,8]. Hence, the imbalance between oxidants/antioxidants and mitochondrial
dysfunction are fundamental causes of cerebral I/R injury. Thus, exploring potential ther-
apeutic strategies targeting antioxidant, anti-inflammatory, and anti-apoptotic pathways
will provide a novel approach to the treatment of ischemic stroke.

TDP-43 pathology is identified as the major component of the UBIs aggregated in
numerous neurodegenerative diseases, especially in frontotemporal lobar degeneration
(FTLD-U) and amyotrophic lateral sclerosis (ALS) [9,10]. TAR DNA-binding protein 43
(TDP-43) is a 43-kDa protein predominantly expressed in the nucleus and is a DNA/RNA
binding factor involved in multiple cellular functions, including transcriptional repression,
RNA splicing and translation [11,12]. Pathological TDP-43 protein is abnormally hyper-
phosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form insoluble
cytosolic aggregates in the central nervous system, including the hippocampus, frontal
cortex, temporal cortex and spinal-cord motor neurons [10]. Numerous disease-related
characteristics are observed in TDP-43 neuropathies, including mitochondrial dysfunction,
endoplasmic reticulum (ER) stress, oxidative stress, gliosis and proteolysis dysfunction.
TDP-43 aggregates show prion-like cell-to-cell propagation, which may lead to disease
progression [13] The involvement of TDP-43 in neurodegenerative diseases is well estab-
lished. However, little is known about the role of the pathological TDP-43 in ischemic
stroke. Thus, there is an urgent need to explore novel potential therapeutic strategies to
expand the neural-protective effects and improve the final outcomes for stroke treatment.

It has been shown that the mammalian target of the rapamycin (mTOR) cascade is
associated with I/R injury [14]. The mTOR plays an important role in regulating numerous
cellular functions, including cell growth, proliferation, protein synthesis and autophagy
activation [15]. Rapamycin, an antibiotic and immunosuppressant drug, is applied in the
treatment of cardiovascular diseases and the prevention of allografts from rejection after
organ transplantation. It plays a neuroprotective role by enhancing autophagy activities
through mTOR inhibition to remove toxic protein aggregates, thereby restoring the process
of neuronal degeneration and disease progression in Alzheimer’s disease, Parkinson’s
disease and Huntington’s disease [16,17]. A growing body of studies has demonstrated
that rapamycin protects neurons not only via neuronal autophagy, but also through other
unknown effects. By enhancing autophagy activities, the accumulation of unwanted and
toxic aggregates is attenuated and, consequently, this prevents the process of neuronal
degeneration and brain disease progression. In TDP-43 proteinopathies, rapamycin reduces
the accumulation of truncated TDP-43 and rescues TDP-43 mislocalization through the in-
duction of autophagy. The phenotypes of motor defects are also improved after rapamycin
treatment in these animal models [18]. These results strongly indicate that the activation
of autophagy is a potential therapeutic strategy for TDP-43-related neuropathies. Based
on the enhanced expression patterns of pathological insoluble TDP-43 observed in mouse
brains with acute ischemic stroke, we were interested in further exploring the therapeutic
efficacy of rapamycin for eliminating TDP-43-mediated pathology in ischemic stroke. In
the middle cerebral artery occlusion rat model of ischemic stroke, the infarct areas were
decreased and motor impairments were ameliorated after rapamycin treatment. Further-
more, we found that secondary injuries and motor deficits were significantly attenuated
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in ischemic rats administered with rapamycin. Further investigations suggested that, in
addition to decreased pathological TDP-43, accompanied by increasing levels of BDNF,
mitochondrial antioxidant enzyme superoxide dismutase 2 (SOD2) and mitochondria tran-
scription factor A (mtTFA) were also observed after the rapamycin treatment. Moreover, we
found that rapamycin also reverses cell apoptosis by decreasing active caspase 3 and ROS
production. Our findings provide a novel molecular mechanism correlated with the effect
of rapamycin in attenuating the pathological TDP-43-induced neuropathies in ischemic
stroke, and provide a better understanding for the development of therapeutic strategies
for ischemic stroke.

2. Results
2.1. Pathological TDP-43 Aggregates Specifically Expressed in the Damaged Infarcted Right
Ischemic Cortex Regions in a Time-Dependent Manner

The pathological hallmark of insoluble TDP-43 proteinopathy has been shown to be
the major component of UBIs aggregated in numerous neurodegenerative diseases, espe-
cially in 45% frontotemporal lobar degeneration (FTLD-U) patients and 95% amyotrophic
lateral sclerosis (ALS) patients [9,10]. However, the pathological role of TDP-43 in ischemic
stroke remains unclear. To identify the patterns of pathological TDP-43 fraction after is-
chemia in an animal model, we determined the expression levels of the insoluble TDP-43
species in different brain regions of ischemic rats. Transient focal cerebral ischemia was
induced by using the right MCA (middle cerebral artery) occlusion model in rats. After
15, 30, 60 and 90 min of ischemia, the brain tissues were dissected from these ischemic
rats, and the soluble and insoluble fractions of TDP-43 were extracted by using sequential
biochemical fractionation. We found that the insoluble full-length TDP-43 in the urea
fraction was significantly increased in the right ischemic cortex region in a time-dependent
manner, but not in the left non-ischemic cortex region (Figure 1). In addition, the induction
of insoluble TDP-43 in the urea fraction was not observed in either the basolateral or hip-
pocampus regions (Figure 2). We also analyzed the expression pattern of phosphorylated
TDP-43 in the post-ischemic brain, since phosphorylated TDP-43 is an important diagnostic
marker for neuropathology. Abundant evidence has proven that phosphorylated TDP-43
potentiates a number of neurotoxic effects, including changes in RNA splicing, cytoplasmic
mislocalization and insoluble TDP-43 aggregate formation, leading to neurodegeneration.
In addition, the phosphorylated TDP-43 levels in CSF or plasma are significantly higher in
ALS patients than those in normal healthy controls, suggesting that p-TDP-43 is a potential
diagnostic biomarker or indicator for disease progression in ALS patients [19–21]. Here,
we found that phosphorylated TDP-43 is also significantly increased after ischemia in a
time-dependent manner (Figure S1). Our results showed that not only insoluble TDP-43,
but also p-TDP-43, were specifically increased in the post-ischemic brain, suggesting that
pathological TDP-43, including p-TDP-43 and the insoluble TDP-43 fraction, plays an
important role in neuronal damage formation during ischemic stroke.
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Figure 1. Pathological TDP-43 inclusion was specifically expressed in the right ischemic cortex 
region in a time-dependent manner. Transient focal cerebral ischemia was induced using the right 
MCA (middle cerebral artery) occlusion model in rats. After 15, 30, 60 and 90 min of ischemia, the 
brain tissues were dissected from these ischemic rats and the soluble and insoluble fractions of TDP-
43 were extracted by sequential biochemical fractionation. The insoluble TDP-43 was significantly 
increased in the right ischemic cortex region in a time-dependent manner, but not in the left ischemic 
cortex region. Data are presented as the mean ± SEM (n = 3) (15, 30, 60 and 90 min compared to 0 
min in the right ischemic cortex region by one-way ANOVA, ** p = 0.0021; *** p < 0.0001). 

Figure 1. Pathological TDP-43 inclusion was specifically expressed in the right ischemic cortex region
in a time-dependent manner. Transient focal cerebral ischemia was induced using the right MCA
(middle cerebral artery) occlusion model in rats. After 15, 30, 60 and 90 min of ischemia, the brain
tissues were dissected from these ischemic rats and the soluble and insoluble fractions of TDP-43 were
extracted by sequential biochemical fractionation. The insoluble TDP-43 was significantly increased
in the right ischemic cortex region in a time-dependent manner, but not in the left ischemic cortex
region. Data are presented as the mean ± SEM (n = 3) (15, 30, 60 and 90 min compared to 0 min in
the right ischemic cortex region by one-way ANOVA, ** p = 0.0021; *** p < 0.0001).
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Figure 2. The induction of insoluble TDP-43 was not observed either in the right or in the left ischemic
basolateral or hippocampus regions. Transient focal cerebral ischemia was induced using the right
MCA (middle cerebral artery) occlusion model in rats. After 15, 30, 60 and 90 min of ischemia,
the brain tissues were dissected from these ischemic rats and the soluble and insoluble fractions of
TDP-43 were extracted by sequential biochemical fractionation. The expression pattern of insoluble
TDP-43 was examined by specific antibodies. Data are presented as the mean ± SEM (n = 3) (15, 30,
60 and 90 min compared to 0 min in the basolateral and hippocampus regions by one-way ANOVA).
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2.2. Augmented SOD2 and Reactive Astrogliosis after Acute Ischemic Stroke

During ischemia reperfusion, ROS release substantially contributes to cell damage
and death via caspase3-mediated apoptotic signals. The mitochondrial antioxidant enzyme
superoxide dismutase 2 (SOD2) is the first-line defense against mitochondrial ROS release
and, subsequently, reduces superoxide radicals and infarction volumes after cerebral
ischemia [22]. Thus, we also examined the SOD2 expression levels and found that the levels
of SOD2 proteins were decreased in the infarcted right ischemic cortex regions after 60 min
of ischemia, suggesting that the increase in ROS and infarcted areas observed in the right
ischemic cortex regions were highly correlated with the reduced level of SOD2 (Figure 3).
Another hallmark of the brain’s response to ischemic injury and neurodegeneration is the
activation of glial cells. To evaluate whether astrogliosis is induced by these insoluble TDP-
43 inclusions in the ischemia model, we further determined the expression levels of the glia
marker, GFAP. Transient focal cerebral ischemia was induced using the right MCA (middle
cerebral artery) occlusion model in the rats. The levels of GFAP proteins were significantly
increased in line with the upregulation of the TDP-43 protein in the infarcted right ischemic
cortex regions after 60 min of ischemia, suggesting that the reactive astrogliosis induced
by ischemic stress is highly correlated with the accumulation of TDP-43 protein (Figure 3).
Here, we show that the enhancement of the pathological TDP-43 inclusion observed in
ischemic brains regions is accompanied by the induction of astrogliosis and attenuated
antioxidant SOD2 levels in I/R injury.
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Figure 3. Augmented SOD2 and reactive astrogliosis after acute ischemic stroke. The expression patterns
of SOD-2, GFAP and TDP-43 were examined by specific antibodies. β-actin was used as internal control.
The levels of SOD-2 and GFAP protein were significantly increased in line with upregulation of TDP-43
protein in the infarcted right ischemic cortex regions after 60 min of ischemia. Data are presented as the
mean ± SEM (n = 3) (right ischemic cortex region compared to left non-ischemic cortex region. These
results were analyzed by two-tailed Student’s t-test, * p <0.05; ** p < 0.01).

2.3. Rapamycin Rescued Cell Viability and Decreased ROS Production after OGD Hypoxia

Rapamycin, a selective inhibitor of the mammalian target of rapamycin (mTOR),
has been reported to be beneficial in TDP-43-related neurodegenerative diseases, such
as FTLD-U. Since we observed the induction of the TDP-43 protein after ischemic stress
(Figure 1), we further tested the therapeutic effect of rapamycin on the OGD (oxygen
and glucose deprivation) hypoxia cell culture model to mimic ischemia injury in vitro.
SH-SY5Y cells were treated with different doses of rapamycin (0, 1, 10 ng/mL) for 24 h
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after 4 h incubation under OGD hypoxia or normoxia. The cell viability of the SH-SY5Y
cells was examined by the MTT assay. The cell survival rates were increased in a dose-
dependent manner in the cells exposed to OGD hypoxia with rapamycin administration,
while no significant change was observed in the cells under normoxia treated with different
doses of rapamycin (Figure 4). In addition, we also examined the effect of rapamycin on
mitochondrial function and discovered that, in the cells exposed to OGD hypoxia, the ROS
production was decreased in a dose-dependent manner after rapamycin treatment, while
no significant effect of rapamycin was observed in the cells under normoxia (Figure 5).
These results demonstrated the therapeutic benefit of rapamycin in reversing the cell death
induced by OGD hypoxia and rescuing mitochondrial function, leading to the attenuation
of ROS production.
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Figure 4. Rapamycin rescued the cell viability after OGD hypoxia. After 4 h of OGD hypoxia
incubation, SH-SY5Y cells were treated with different doses of rapamycin (0, 1, 10 ng/mL) for 24 h,
after which the cell viability was determined by MTT assay. The normoxia groups were also treated
with different doses of rapamycin (0, 1, 10 ng/mL) for 24 h and the cell viability was determined
by MTT assay. The cell viability of SH-SY5Y with rapamycin under OGD hypoxia incubation
was the opposite of that shown by the normoxia group. Data are presented as the mean ± SEM
(n = 4) (** p < 0.01; * p < 0.05, normoxia/OGD hypoxia with 1 or 10 ng/mL rapamycin compared to
normoxia/OGD hypoxia without rapamycin). These results were analyzed by one-way ANOVA.
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Figure 5. Rapamycin decreased the ROS production after OGD hypoxia. The ROS production was
determined by DCDFA assay. The ROS of the SH-SY5Y cells were treated with different doses
of rapamycin (0, 1, 10 ng/mL) for 24 h after 4 h of OGD hypoxia incubation and normoxia, after
which the cell viability was determined by ROS assay. The ROS generation of SH-SY5Y with
rapamycin under OGD hypoxia incubation was decreased compared to the normoxia group. Data
are presented as the mean ± SEM (n = 4) (*** p < 0.01, normoxia/OGD hypoxia with 1 or 10 ng/mL
rapamycin compared to normoxia/OGD hypoxia without rapamycin). These results were analyzed
by one-way ANOVA.

2.4. Rapamycin Decreased Infarction Volume and Improved Body Asymmetry

The therapeutic efficacy of rapamycin in eliminating TDP-43-mediated pathology
after ischemic stroke was further examined. After 60 min of ischemia, rats were injected
intraperitoneally with rapamycin (250 µg/kg) for 24 h and then killed for further analysis.
The control animals were injected with PBS (vehicle) in parallel. We then further analyzed
the infarction size in the ischemic brain regions of the rats, and found that the infarction size
in the right ischemic cortex was significantly decreased after rapamycin treatment compared
to the vehicle control group (Figure 6). In addition, we also tested the body asymmetry to
monitor the motor neuron function, and found that the percentage of the recovery in body
asymmetry was dramatically improved after rapamycin treatment compared to the vehicle
control group (Figure 7). Furthermore, in the rats intraperitoneally injected with rapamycin,
the apoptotic cells stained in the brain sections with tunnels were significantly decreased
(Figure 8), suggesting a therapeutic effect of rapamycin on pathological TDP-43-induced
cell apoptosis. Our results strongly suggested that rapamycin can attenuate secondary
injury and motor deficits after ischemic stroke.
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Figure 6. Rapamycin decreased the infarction volumes after I/R injury. After 60 min of ischemia,
rats were injected intraperitoneally with rapamycin (250 µg/kg) for 24 h and then killed for further
analysis. The control animals were injected with PBS (vehicle) in parallel. The infarction size in the
right ischemic cortex was significantly decreased after rapamycin treatment compared to the vehicle
control group. Data are presented as the mean ± SEM (n = 6, ** p < 0.01, rapamycin (250 µg/kg)
compared to vehicle by two-tailed Student’s t-test).
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Figure 7. Rapamycin improved the body asymmetry after ischemia-reperfusion (I/R) injury. After
60 min of ischemia and reperfusion injury (60 min I/R injury), rats were administered an intraperi-
toneal injection of rapamycin (250 µg/kg) for 24 h and then killed for further analysis. The recovery
in body asymmetry was dramatically improved after rapamycin treatment compared to the vehi-
cle control group. Data represent means ± standard deviations of six independent experiments.
* indicates p < 0.05 using Student’s t test. Data are presented as the mean ± SEM (n = 12, * p < 0.05,
rapamycin (250 µg/kg) compared to vehicle by two-tailed Student’s t-test).
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Figure 8. Rapamycin decreased apoptosis after ischemia–reperfusion (I/R) injury in the MCAo rodent
model. After 60 min of ischemia and reperfusion injury (60 min I/R injury), rats were administered
intraperitoneal injections of rapamycin (250 µg/kg) for 24 h and then killed for further analysis. The
control animals were injected with PBS (vehicle) in parallel. The apoptotic cells were analyzed by
tunnel staining within whole brains in the upper-right corner as indicated by red rectangle (n = 3).

2.5. The Molecular Mechanism of Rapamycin in Attenuating Pathological TDP-43-Induced
Neuronal Defects after Ischemic Stroke

To determine whether the improvement in ischemic stroke with rapamycin treatment
was due to the reduction in neuronal apoptosis, we examined the expression levels of
active caspase-3 by using Western blot analysis. The protein lysates were assayed by
immunoblotting and collected from the SH-SY5Y cells treated with different doses of
rapamycin (0, 1, 10 ng/mL) for 24 h after 4 h of OGD hypoxia or normoxia incubation.
Caspase-3 is activated in apoptotic cells, and we found that the levels of caspase-3 proteins
were decreased in the SH-SY5Y cells treated with rapamycin under OGD hypoxia, while no
significant change was observed in the cells under normoxia administered with different
doses of rapamycin (Figure 9). In addition to caspase-3, the mitochondria transcription
factor A (mtTFA), which is required for mitochondrial DNA transcription and maintenance,
is also involved in cellular apoptosis [23]. The deregulation of mtTFA leads to enhanced
oxidative damage, and its reduction is observed in areas of brain lesions in numerous
neurodegenerative diseases [24,25]. Here, we found a more significant change of the
expression levels of mtTFA in a dose-dependent manner after rapamycin treatment in the
cells exposed to OGD hypoxia. These results suggest that rapamycin treatment regulates
caspase-3 and mtTFA signaling cascades to attenuate neuronal apoptosis in an ischemic
stroke model. We then further examined the SOD2 expression levels and found that
the levels of SOD2 proteins showed an increased trend in cells treated with rapamycin
under both normoxia and OGD hypoxia (Figure 9), replicating the mitochondria protection
effect of rapamycin (Figure 9). Moreover, we further analyzed the efficacy of rapamycin
in attenuating pathological TDP-43 in an ischemic stroke animal model. Transient focal
cerebral ischemia was induced using the right MCA (middle cerebral artery) occlusion
model in the rats. After 60 min of ischemia, the rats were injected intraperitoneally with
rapamycin (250 µg/kg) for 24 h and then killed for further analysis. The control animals
were injected with PBS (vehicle) in parallel. The brain tissues were dissected from these
ischemic rats and the soluble and insoluble fractions of TDP-43 were extracted by sequential
biochemical fractionation. The insoluble TDP-43 was decreased in the ischemic cortex
region administered with rapamycin treatment, compared to the vehicle control group
(Figure 10). Our results indicate that rapamycin treatment in cell culture models or ischemic
rat models could exert an anti-apoptotic and antioxidant effect on ischemic stroke correlated
with pathological TDP-43 inclusion.
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Figure 9. Rapamycin regulated the expression of mTFA, SOD-2, BDNF and Act. Caspase-3. The
protein lysates were assayed by immunoblotting and collected from the SH-SY5Y cells treated with
different doses of rapamycin (0, 1, 10 ng/mL) for 24 h after 4 h of OGD hypoxia incubation and
normoxia. The levels of mTFA, SOD-2 and BDNF protein were significantly increased after the
SH-SY5Y cells were treated with rapamycin. Caspase-3 proteins were decreased on the OGD hypoxia
incubation. Data are presented as the mean ± SEM (n = 4) (** p < 0.01; * p < 0.05, normoxia/OGD
hypoxia with 1 or 10 ng/mL rapamycin compared to normoxia/OGD hypoxia without rapamycin).
These results were analyzed by one-way ANOVA.
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Figure 10. Rapamycin regulated the expression of pathological TDP-43. After 60 min of ischemia,
rats were injected intraperitoneally with rapamycin (250 µg/kg) for 24 h and then killed for further
analysis. The control animals were injected with PBS (vehicle) in parallel. The brain tissues were
dissected from these ischemic rats and the soluble and insoluble fractions of TDP-43 were extracted
by sequential biochemical fractionation. The insoluble TDP-43 was significantly decreased in the
ischemic rats treated with rapamycin. Data are presented as the mean ± SEM (n = 3, * p = 0.0354,
rapamycin (250 µg/kg) compared to the vehicle by two-tailed Student’s t-test).
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3. Discussion

It is known that a high percentage of ischemic stroke patients die from extensive brain
damage caused by reperfusion [4,5]. The outcome of reperfusion therapy after ischemic
stroke is not always favorable. A common complication after reperfusion with alteplase
(recombinant tissue plasminogen activator) or endovascular therapy (EVT) is hemorrhagic
transformation (HT). When hemorrhagic transformation occurs, it increases morbidity
and mortality. The incidence ranges from 3 to 40%, according to different definitions and
studies. The occurrence of hemorrhagic transformation is due to the destruction of blood–
brain barrier (BBB) after ischemic stroke and the extravasation of peripheral blood into the
brain after reperfusion. The risk factors include reperfusion therapy (thrombolysis and
thrombectomy), stroke severity, hyperglycemia, hypertension and age [26]. Adjunct neuro-
protective agents are pharmacological brain-protective agents combined with reperfusion
therapy; their aims are to reduce brain cell death and decrease patient disability and stroke
mortality. Although many agents (including nimodipine, verapamil, nerinetide, uric acid,
3-N-butylphtalide, human urinary kallidinogenase, allogeneic adult mesenchymal bone-
marrow cells, JTR-161(allogeneic stem-cell product), dimethyl fumarate and fingolimod)
are undergoing testing in clinical trials, none have been proven to be effective and safe for
use [27].

Revascularization and the limitation of secondary neuronal injury are the primary
goals of advanced stroke management. IV thrombolysis and endovascular therapy are
the two main forms of revascularization for selected patients. A limited number of acute
ischemic stroke (AIS) patients are suitable for these treatments, largely owing to the narrow
therapeutic window. Only 3.2–5.2% of all AIS patients are treated with IV-tPA within 3 h of
suffering an acute ischemic stroke in the United States [28]. The extension of the IV-tPA
window from 3 to 4.5 h increased the utilization of IV-tPA by up to 20% [29]. Endovascular
therapy further expanded the time window for AIS treatment. Since 2015, multiple trials
have demonstrated improvements in the overall outcomes of AIS patients with proximal
middle cerebral artery or internal carotid artery occlusion treated with EVT. These studies
expanded the time windows from 6 h [30–34] and 8 h [35] to 12 h [36]. These ongoing
efforts include increasing numbers of eligible AIS patients receiving revascularization.
Thus, there is an urgent need to explore novel potential therapeutic strategies to expand
the neural-protective effects and improve the final outcomes for stroke treatment.

It has been shown that the mammalian target of the rapamycin (mTOR) cascade is
associated with I/R injury [14]. The mTOR plays an important role in regulating numerous
cellular functions, including cell growth, proliferation, protein synthesis and autophagy
activation [15]. Numerous studies have proved that the activation of autophagy is an
alternative neuroprotective strategy for traumatic spinal cord injury or neurodegenerative
diseases. After decades of considering autophagy as a cell death pathway, autophagy
has recently been discovered to have a survival function through the clearing of protein
aggregates and damaged cytoplasmic organelles in response to a variety of stress condi-
tions [37]. Most recently, increasing evidence from the literature revealed that autophagy
induction offered protection against neurodegeneration and traumatic brain or spinal cord
injury [38,39]. Autophagy sequesters damaged and dysfunctional organelles/proteins and
transports them to lysosomes for degradation/recycling. This process provides nutrients
for injured neurons. Other groups also discovered that two drugs, including spermidine
and chloroquine, would promote healthy aging though interfering with the autophagy
pathway [40,41]. The mTOR inhibitor rapamycin is known to have a therapeutic effect
on ischemia stroke [14], however, its underlying molecular mechanism remains elusive.
Previous studies have indicated that administration of rapamycin reduces body tempera-
ture [42,43]. In fact, hypothermia (32–35◦C) can alleviate the ischemia–reperfusion injury
of different organs such as brain, heart, liver, kidney, etc., reduce the generation of ROS
and avoid cell apoptosis [44]. However, whether rapamycin-induced hypothermia is ben-
eficial for prolonging the lifespan of ischemia stroke patients is less discussed. Since we
observed the recovery of mitochondrial function, the attenuation of cellular apoptosis, a
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reduction in infarct areas and improvements in motor defects in ischemic rats administered
rapamycin, this implies that rapamycin-induced hypothermia may be one of the underlying
neuroprotective mechanism for ischemic stroke.

The nuclear protein TDP-43, which forms detergent-insoluble cytosolic aggregates
in the central nervous system, including the hippocampus, cortex and spinal cord motor
neurons, was recently identified as a major component of the UBIs aggregated in numerous
neurodegenerative diseases [9,10]. TDP-43 is involved in multiple cellular functions, includ-
ing transcriptional repression, RNA splicing and translation [11,12]. Pathological TDP-43
protein is abnormally hyperphosphorylated, ubiquitinated and cleaved into C-terminal
fragments to form insoluble cytosolic aggregates in the central nervous system, including
the hippocampus, frontal cortex, temporal cortex and spinal cord motor neurons [10].
Numerous disease-related characteristics are observed in TDP-43 neuropathies, including
mitochondrial dysfunction, endoplasmic reticulum (ER) stress, oxidative stress, gliosis and
proteolysis dysfunction. TDP-43 aggregates show prion-like cell-to-cell propagation, which
may lead to disease progression [13]. The pathological TDP-43 protein sequestered from
nuclei into cytosol cannot be degraded normally and is prone to forming cytosolic insoluble
aggregates, which leads to a plethora of deleterious effects, ranging from mitochondrial
dysfunction to cellular toxicity [45–49]. The accumulation of insoluble and phosphorylated
TDP-43 fractions is believed to eventually lead to neurite loss and, subsequently, to neuronal
death [50]. Recently, it was identified that increased TDP-43 expression induced mitochon-
drial dysfunction by suppressing the activity of mitochondrial complex I and reduced
mitochondrial ATP synthesis, including decreased mitochondrial membrane potential and
the elevated production of reactive oxygen species (ROS) in both cellular and animal models
of TDP-43 proteinopathy, as well as in FTLD and ALS patients’ brain tissues [51]. Informa-
tion about the involvement of TDP-43 in ALS and FTLD is broadly discussed. However,
little is known about the role of the pathological TDP-43 in ischemic stroke. So far, it has
been identified that the full-length TDP-43, but not the 25-kDa C-terminal fragment in the
core region in the urea fraction, increases after acute ischemic stroke, and the sequestered
TDP-43 in cytosol was co-localized with ubiquitin and caspase-3 signals in immunoblotting
staining [52]. This is similar to the pathological signatures in TDP-43-related neurodegener-
ative diseases, such as FTLD and ALS. However, cytosolic ubiquitinated TDP-43 inclusion
was not observed in the core ischemic region [52,53], suggesting that the cytoplasmic redis-
tribution of insoluble TDP-43 without the formation of TDP-43 inclusions is a hallmark of
ischemic stroke and that TDP-43 pathology has a distinct molecular signature after stroke,
compared to chronic neurodegenerative TDP-43 proteinopathies, such as FTLD and ALS.

Our results showed a time-dependent increase in phosphorylated and insoluble TDP-
43 fractions in the ischemic stroke brain region, but not in the cortex contralateral to the
ischemic side. The longer ischemic time caused greater pathological TDP-43 accumulation,
including insoluble and phosphorylated TDP-43, suggesting that pathological TDP-43
plays a role in ischemic stroke. In the right cortex of an MCA (middle cerebral artery)
occlusion rat model, the insoluble full-length TDP-43 in the urea fraction was increased
immediately in the right ischemic cortex region after 15 min of ischemia, showing that
the acute rise in TDP-43 is synchronized with acute ischemic stroke. We discovered that
rapamycin could rescue cell viability after OGD hypoxia and decrease the infarction vol-
ume after ischemia/reperfusion injury, prompting us to evaluate whether TDP-43-related
pathology is involved in rapamycin’s therapeutic mechanism in ischemic stroke. It has
been clearly demonstrated that pathological TDP-43 is significantly degraded through the
autophagy pathway, and that the activation of autophagy accelerates the clearance rate for
the insoluble TDP-43 fraction and attenuates the neuropathy caused by TDP-43 [18,54,55].
We found that the insoluble TDP-43 fraction in the ischemic cortex was attenuated after
rapamycin treatment by Western blotting. Furthermore, we found that the rapamycin
rescued the cell viability after OGD hypoxia and decreased the infarction volume after
ischemia/reperfusion injury. The neuroprotective role of rapamycin in cell viability and its
antioxidant and mitochondrial functions occur through the modulation of caspase-3, SOD-2
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and BDNF expression after I/R injury in SH-SY5Y. These results suggest that the impact
of increased pathological TDP-43 observed in ischemic stroke is involved in impaired
mitochondria and neuronal cell death, which can be reversed by rapamycin treatment.
Here, we provided an alternative therapeutic mechanism for rapamycin in pathological
TDP-43-related neuropathology in ischemic stroke.

It is well known that aging is the most critical, comorbid, and unmodifiable risk factor
for stroke and it affects subsequent treatment responses. In addition, lifestyle including high
sugar diets, alcohol and tobacco addiction or high fat diets as well as ageing, brain injury,
oxidative stress and neuroinflammation all negatively influence the onset, severity and
duration of neurodegenerative diseases. As suggested, choosing a variety of healthy dietary
components, such as polyunsaturated fatty acids and the antioxidants curcumin, resveratrol,
blueberry polyphenols, sulphoraphane and salvionic acid, as well as caloric restriction
and physical activity, will help us counteract ageing and associated neurodegenerative
diseases via increasing autophagy and neurogenesis in the adult brain. In our study, we
did not consider these influencing factors such as age, eating habits and lifestyle on stroke
mechanism, and these influencing factors will be very good directions for our further
research in the future.

4. Materials and Methods
4.1. In Vitro Cell Culture Assay

After 4 h of OGD (oxygen–glucose deprivation)-hypoxia incubation, SH-SY5Y cells
were treated with different doses of rapamycin (0, 1, 10 ng/mL) for 24 h, after which the cell
viability, ROS production and protein expression levels were determined. The normoxia
groups were also treated with different doses of rapamycin (0, 1, 10 ng/mL) for 24 h.

4.2. Cell Viabilty Assay and ROS Production

Cytosolic ROS production was measured using 2’,7’-dichlorofluorescien diacetate
(DCFDA) as previously described [56], which is converted into fluorescent DCF by oxi-
dation. Cells were seeded in 6-well plates (1 × 106 cells per well) and allowed to adhere
overnight. After cell incubation under normoxia or OGD conditions in the presence or
absence of emodin for 4 h, cells were incubated with DCFDA for 30 min at 37 ◦C and
washed with PBS. DCF fluorescence was determined using a multi-well fluorescence spec-
trophotometer (Varioskan Flash, Thermo Scientific) with 490 nm excitation and 525 nm
emission filters.

4.3. In Vivo Animal Models

We used 15 adult male Sprague Dawley rats (250~300 g) and randomly assigned three
rats to different time points of ischemic injury (0, 15, 30, 60, 90 min). In addition, we
used a further 24 adult male SD rats for analyzing body asymmetry, infarct brain volume
and TUNEL staining, 12 of which were designated as a vehicle, while a further 12 rats
were administered with rapamycin. Animals were housed under a 12-h light/dark cycle
and provided with food and water ad libitum. All animal procedures were conducted in
accordance with the National Institutes of Health under the approval of the Animal Care and
Use Committee of the Taipei Medical University, Taipei, Taiwan (protocol: LAC-2016-0495).

4.4. Middle Cerebral Artery (MCA) Ligation

Adult male Sprague Dawley rats were anesthetized with chloral hydrate (400 mg/kg,
i.p., initially and 100 mg/kg). The right MCA was ligated with a 10-O suture, using
methods previously described [57,58]. The ligature was removed after 60 min of ischemia
to generate reperfusion injury. After 24 h of reperfusion, the brain tissues were collected
for further analysis. Using this animal model, our group generated consistent ischemic
damage in rodent brains, as demonstrated by brain infarction visualization and behavioral
analysis [59,60].
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4.5. Treatment

After 60 min of ischemia and reperfusion injury (60 min I/R injury), rats received
intraperitoneal injections of rapamycin (250 µg/kg) for 24 h and were then killed for further
analysis [61–63]. The control animals were injected with PBS (vehicle) in parallel.

4.6. Histological Evaluation of Stroke Damage

The size of infarction was evaluated by triphenyltetrazolium chloride (TTC) staining,
as described by [64]. After rapamycin treatment for 24 h, following 60 min I/R injury, some
animals were killed and perfused intracardially with saline. The brain tissues were then
removed, immersed in cwee saline for 5 min, and sliced into 2.0 millimeter thick sections.
The brain slices were incubated in 2% triphenyltetrazolium chloride (TTC, Sigma-Aldrich,
St. Louis, MO, USA), dissolved in normal saline for 10 min at room temperature, and then
transferred into a 5% formaldehyde solution for fixation. The area of infarction on each
brain slice was measured double blind using a digital scanner and the Image Tools program
(University of Texas Health Sciences Center, San Antonio). The total infarction volume in
each animal was obtained from the product of average slice thickness (2 mm) and sum of the
area of infarction in all brain slices. We also measured tissue damage by thionin staining, and
the area of non-infarcted tissue in the ischemic hemisphere was subtracted from the volume
of the contralateral hemisphere. This method was corrected for post-ischemic edema.

4.7. Body Asymmetry

I/R-injury rats with or without rapamycin treatment were analyzed using an ele-
vated body swing test [60,65–67]. Twenty trials of each rat were examined for lateral
movements/turning when their bodies were suspended 20 cm above the testing table by
lifting their tails. The frequency of initial turning of head or upper body contralateral
to the ischemic side was counted in 20 consecutive trials. The maximum impairment in
body asymmetry in stroke animals was 20 contralateral turns/20 trials. In normal rats, the
average body asymmetry was 10 contralateral turns/20 trials (i.e., the animals turned in
each direction with equal frequency).

4.8. Sequential Biochemical Fractionation and Western Blotting

For preparation of the RIPA-soluble and urea fraction [68], the brain tissues were first
lysed in a RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% sodium dodecyl sulfate) freshly supplemented with complete EDTA-free
protease inhibitor cocktail and phosphatase inhibitors (10 mM NaF and 1 mM Na3VO4).
Next, the lysates were centrifuged at 4 ◦C for 15 min at 13,800× g. The supernatants were
the RIPA-soluble fraction. The RIPA-insoluble pellets were washed twice in the RIPA buffer,
re-sonicated and re-centrifuged. The washed pellets were finally dissolved in the urea buffer
as the urea fraction. The total protein concentration was determined according to the Micro
BCA procedure (Pierce, Rockford, IL, USA), using bovine serum albumin as standard. Equal
amounts of proteins from each sample were electrophoresed on 4–12% polyacrylamide
gels (Novex, San Diego, CA, USA) under reducing conditions and then transferred by
electrotransfer onto polyvinylidene-difluoride membranes. The membranes were incubated
in blocking buffer (20 mM Tris (pH 7.5), 137 mM NaCI, and 0.1% Tween-20 (TBST) with
5% (w/v) nonfat dry milk) overnight at 4 ◦C. The membranes were then incubated with
primary antibody in TBS-T containing 1% nonfat dry milk for 1 h at room temperature or
overnight at 4 ◦C. After a series of washes with TBST, the membranes were incubated with
horseradish peroxidase-conjugated secondary antibody (Millipore, Livingston, UK) for 1 h
at room temperature. The immunoblots were visualized using the ECL chemiluminescence-
detection system. The animals experiencing sham surgery were regarded as experimental
controls for comparisons with other experimental groups. The following primary antibodies
were used: rat polyclonal anti-GFAP (BD Biosciences, CA, USA), anti-TDP-43 antibodies
(Proteintech, IL, USA), anti-phospho-Ser409/410-TDP-43 antibodies (Proteintech, IL, USA),
anti-SOD2 (Novus Biologicals, Littleton, CO, USA), anti-mTFA (Novus Biologicals, Littleton,
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CO, USA), anti-BDNF (Abcam, Cambridge, UK), anti-active Cap3 (Abcam, Cambridge, UK)
and β-actin (Cell Signaling Technology, MA, USA).

4.9. TUNEL Staining

Animals were killed and their brains removed. One side of the brain was placed in
4% paraformaldehyde after transferring from 20 and 30% sucrose in PBS overnight. Brains
were then sectioned. The brain was sectioned at 10~15 µm thickness and rinsed with PBS
(3 × 10 min). TUNEL staining was performed by using a Roche assay kit (In situ Cell
Death Detection Kit; Roche Diagnostic GmbH, Mannheim,. Germany), according to the
manufacturer’s protocol

4.10. Statistical Analysis

All the experiments were conducted at least in triplicate, and the results are expressed
as the mean ± standard error of the mean (SEM). Statistical analyses were conducted using
one-way analysis of variance (ANOVA) or Student’s t-test.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24010676/s1.
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