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Abstract Seaweeds, being prolific sources of bioactive

components have garnered unprecedented interest in recent

times. The complex polysaccharides from the brown, red

and green seaweeds possess broad spectrum therapeutic

properties. Especially, the sulfated polysaccharides, viz.

fucans, carrageenans and ulvans have exhibited strong

antioxidant, antitumor, immunostimulatory, anti-inflam-

matory, pulmonary fibrosis anticoagulant/antithrombotic,

lipid lowering, antiviral, antibacterial, antiprotozoan,

hyperplasia prevention, gastrointestinal, regenerative and

nano medicine applications. Considering the immense

biomedical prospects of sulfated polysaccharides, the pro-

found and emerging functional properties published in

recent times will be discussed here with experimental

evidences. The limitations of the seaweed-derived sulfated

polysaccharides in healthcare will be summarized. Strate-

gies to maximize extraction and bioavailability will be

pondered.
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Introduction

In recent years, much attention has been focused on

polysaccharides isolated from natural sources. During the

last decade, numerous bioactive polysaccharides with

interesting functional properties have been discovered from

seaweeds (Fig. 1). Several algal species belonging to

phaeophyta, rhodophyta and chlorophyta divisions have

been recognized as crucial sources of sulfated polysac-

charides (SP). These SP constitute an important ingredient

of cell walls and get harvested by suitable extraction or

precipitation method, followed by purification, character-

ization and biological studies (Fig. 2). The biological fea-

tures of the SP reported till now are antioxidant, antitumor,

immunomodulatory, inflammation, anticoagulant, antiviral,

antiprotozoan, antibacterial, antilipemic. Currently, the

regenerative medicine and tissue engineering application of

the SP has become a hot research area. Jiménez-Escrig

et al. (2011) have reviewed the vital role of SP from sea-

weeds in human health.

Bioactive SP extracted from seaweeds can be classified

into three types. The major fucan yielding brown seaweeds

genera are Fucus, Sargassum, Laminaria, Undaria,

Lessonia, Dictyota, Dictyopteris, Ascophyllum, Eclonia,

Canistrocarpus, Lobophota, Turbinaria, Padina, Adeno-

cystis, Sphacelaria, Cystoseira, etc. Fucan represents a

family of water soluble, SP rich in sulfated L-fucose,

extracted from extracellular matrix of these weeds (Li et al.

2008; Costa et al. 2011a). Fucoidan, the sulfated alpha-L-

fucan (term often interchangeably used with fucans) has

demonstrated a wide range of pharmacological activities.

Carrageenans are a family of linear SP, extracted from red

seaweeds, viz. Gracialaria, Gigartina, Gelidium, Lomen-

taria, Corallina, Champia, Solieria, Gyrodinium, Nema-

lion, Sphaerococcus, Boergeseniella, Sebdenia, Scinaia,

etc. This group of polysaccharides has a backbone of

alternating 3-linked b-D-galactose and 4-linked a-D-gal-

actose residues (Tuvikene et al. 2006). Three categories of

carrageenans, kappa (j), iota (i), and lambda (k) have been

identified till now based on their sulfation degree, solubility

and gelling properties (Leibbrandt et al. 2010). Ulvan is the

major water soluble, sulfated polysaccharide, extracted

S. Patel (&)

Department of Biotechnology, Lovely Professional University,

Jalandhar 144402, Punjab, India

e-mail: seemabiotech83@gmail.com

123

3 Biotech (2012) 2:171–185

DOI 10.1007/s13205-012-0061-9



from the cell wall of green algae, viz. Ulva, Enteromorpha,

Monostroma, Caulerpa, Codium, Gayralia. Ulvans are

composed of disaccharide repetition moieties made up of

sulfated rhamnose linked to either glucuronic acid, iduronic

acid, or xylose and represent about 8–29 % of the algal dry

weight (Lahaye and Robic 2007). The above-described SP

have been illustrated in Fig. 3.

The therapeutic mechanisms of these SP vary, hence it is

yet to be studied precisely. For anticoagulation potency, the

formation of the SP/protease protein complex and the

associated non-specific polar interaction between the neg-

atively and positively charged groups in the polysaccharide

and protein is responsible for anticoagulant activity. The

anticoagulant activity is mainly attributed to thrombin

inhibition mediated by heparin cofactor II, with different

effectiveness depending on the compound. Similarly,

selectin blockade, inhibition of enzyme and complement

cascade seem to be the triggers leading to anti-inflamma-

tion. Combating viral infection has been shown by

adsorption and internalization steps (Kim et al. 2011,

2012).

Ion exchange, gel filtration, FTIR, NMR analyses are

employed to elucidate the composition and structure of SP.

Cutting edge technologies, viz. MTT assay, flow cytome-

try, western blot analysis, BCA protein assay, SDS-PAGE

and gelatin zymography has been employed for analysis of

their functional properties (Jiang and Guan 2009).

Although the use of the seaweed-derived polysaccharides

in food industry as thickening, gelling agents, and stable

excipients for control release tablets are well established,

the clinical use is still to gain ground. Manifold increase in

the published findings on this aspect in recent time is

evidence enough for the craze over this highly promising

domain. Recently, Senni et al. (2011) have reviewed the

advancement in therapeutic potential of marine polysac-

charides. However, this report was not confined to sea-

weeds and dealt only with the tissue engineering

applications. Also, Wijesekara et al. (2011) have published

Fig. 1 Seaweeds growing on the California Coast of the Pacific Ocean

Fig. 2 A flowchart depicting the sequential steps for sulfated

polysaccharide preparation and biological activity evaluation

Fig. 3 Classification of the bioactive sulfated polysaccharides
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an overview of clinically crucial SP extracted from marine

algae. Keeping with the hot trend and in an attempt to

present a new perspective, the present review summarizes

the up-to-date literature data and discusses the pharma-

ceutical potential of different SP extracted from brown, red

and green seaweeds.

Therapeutic potential of sulfated polysaccharides

Researchers across the globe are waking up to the dis-

covery that seaweed-derived bioactive products are a

storehouse of healthy attributes. Recent times have seen a

surge in interest to tap these unexploited marine sources to

develop novel therapeutics. The SP of algal origin have

exhibited miraculous biological properties. The common

seaweeds, their SP and observed bioactivity spectra have

been presented in Table 1.

Antioxidant

Souza et al. (2012) isolated a SP by aqueous extraction from

the red seaweed Gracilaria birdiae and observed that the

slimy substance exhibits moderate antioxidant properties as

measured by DPPH free-radical scavenging effect. Veena

et al. (2007) evaluated the efficacy of fucoidan from edible

seaweedFucus vesiculosus inWistar rats (5 mg/kg bodywt.).

Advocation of the SP enhanced the antioxidant status,

thereby preventing membrane injury and averting stone for-

mation. Barahona et al. (2011) evaluated the antioxidant

capacity of sulfated galactans from red seaweed Gigartina

skottsbergii and Schizymenia binderi, commercial carrag-

eenans, and fucoidan from brown seaweed Lessonia vadosa

by the oxygen radical absorbance capacity (ORAC) method.

Fucoidan from L. vadosa and the sulfated galactan from S.

binderi exhibited the highest antioxidant capacity. The anti-

oxidant capacity was also evaluated by ABTS and hydroxyl

radical scavenging assays. Corallina sertularioide, Dictyota

cervicornis, Sargassum filipendula and Dictyopteris delica-

tula were studied and found to have SP having immense

antioxidant potential in the formof total antioxidant, reducing

power and ferrous ion chelating activities (Costa et al. 2010).

Two SP fractions rich in galactose and xylose fromCorallina

officinalis demonstrated considerable antioxidant properties

(Yang et al. 2011). Hu et al. (2010) isolated two sulfated

rhamnose-rich polysaccharide fractions from Undaria pin-

natifida and evaluated their antioxidant abilities in vitro. It

was revealed that the SP possessed strong antioxidant prop-

erties. Ye et al. (2008) evaluated the antioxidant activities of

SP from Sargassum pallidum by DPPH (2,2-diphenyl-1-

picrylhydrazyl)-free-radical scavenging assay and reported

activity, though low at the tested concentration. Camara et al.

(2011) extracted heterofucans from Canistrocarpus

cervicornis by proteolytic digestion followed by sequential

acetone precipitation. The SP exhibited total antioxidant

capacity, low hydroxyl radical scavenging activity, good

superoxide radical scavenging efficiency and excellent fer-

rous chelating ability. Devaki et al. (2009) studied the liver

mitochondrial and microsomal fraction from rats to evaluate

the antioxidative effect of oral gavaging with Ulva lactuca

polysaccharide extract (200 mg/kg body weight, daily for

21 days). Electron microscopy of rat liver tissue intoxicated

with D-galactosamine revealed the swelling and loss of

mitochondrial cristae. However, the rats pre-treated with the

SP overcame the D-galactosamine challenge without signifi-

cant abnormality of TCA, microsomal enzymes and mito-

chondria structural aberrations. These results suggested that

the SP play crucial role in stabilizing the functional status of

mitochondrial and microsomal membrane by prevention of

the oxidative stress induced by D-galactosamine. Fucoidan

was extracted from Laminaria japonica through anion-

exchange column chromatography and their antioxidant

activities were investigated. Superoxide and hydroxyl radical

scavenging activity, chelating ability and reducing power

analysis showed that all fractions possessed considerable

antioxidant activity (Wang et al. 2008). Gao et al. (2011)

investigated the effects of fucoidan on improving learning

and memory impairment in rats induced by infusion of beta-

amyloid peptide,Ab (1–40) and its possiblemechanisms.The

results indicated that fucoidan could ameliorate Ab-induced

cognitive disorders in neural maladies like Alzheimer’s. The

mechanisms appeared to regulate the cholinergic system

(increasing the activity of choline acetyl transferase), reduce

the oxidative stress (reduced malondialdehyde content in

hippocampal tissue of brain) and inhibit the cell apoptosis

(increase of Bcl-2/Bax ratio and a decrease of caspase-3

activity). Hong et al. (2011) investigated the protective

effect of fucoidan on dimethylnitrosamine-induced liver

fibrogenesis in rats. When administered (100 mg/kg, 3 times

per week), fucoidan improved liver fibrosis by inhibiting the

expression of transforming growth factor beta 1 [TGF-b

(1)]/Smad3 and the tissue inhibitor of metalloproteinase 1

(TIMP-1), and increasing the expression of metallopro-

teinase-9 (MMP-9). Fucoidan also significantly decreased

the accumulation of the extracellular matrix and collagen,

confirming its anti-fibrotic effect. Costa et al. (2011b)

obtained five sulfated heterofucans from S. filipendula by

proteolytic digestion followed by sequential acetone pre-

cipitation, which displayed considerable antioxidant poten-

tial. Magalhaes et al. (2011) obtained six families of SP

from seaweed D. delicatula employing above-mentioned

protocols, followed by molecular sieving on Sephadex

G-100. Some fractions of the heterofucans showed high

ferrous ion chelating activity and some fractions showed

reasonable reducing power, about 53.2 % of the activity of

vitamin C. These results clearly indicate the beneficial
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Table 1 The studied seaweeds, their bioactive sulfated polysaccharides and therapeutic properties

Biological properties Seaweed Sulfated polysaccharide References

Antioxidant Gracilaria birdiae (red) Fucoidan Souza et al. (2012)

Fucus vesiculosus (brown) Galactan Veena et al. (2007)

Gigartina skottsbergii (red) Carrageenan Barahona et al. (2011)

Schizymenia binderi (red) Rhamnan Magalhaes et al. (2011)

Lessonia vadosa (brown) Costa et al. (2011a, b)

Dictyopteris delicatula (brown) Wang et al. (2008)

Sargassum filipendula (brown) Devaki et al. (2009)

Laminaria japonica (brown) Camara et al. (2011)

Ulva lactuca (green) Hu et al. (2010)

Canistrocarpus cervicornis (brown) Yang et al. (2011)

Undaria pinnitafida (brown) Costa et al. (2010)

Corallina officinalis (red)

Corallina sertularioide (red)

Dictyota cervicornis (brown)

Sargassum filipendula (brown)

Dictyopteris delicatula (brown)

Antitumor Saccharina japonica (brown) Galactofucan Vishchuk et al. (2011)

Undaria pinnatifida (brown) Mannoglucuronofucan Costa et al. (2010)

Sargassum filipendula (brown) Charles et al. (2007)

Dictyopteris delicatula (brown) Ye et al. (2008)

Caulerpa prolifera (green) Croci et al. (2011)

Dictyota menstrualis (brown) Ermakova et al. (2011)

Monostroma nitidum (green) Costa et al. (2011a, b)

Sargassum pallidum (brown) Magalhaes et al. (2011)

Laminaria saccharina (brown) Jin et al. (2010)

Ecklonia cava (brown) Lins et al. (2009)

Sargassum hornery (brown) Foley et al. (2011)

Costaria costata (brown) Haneji et al. (2005)

Sargassum filipendula (brown)

Dictyopteris delicatula (brown)

Champia feldmannii (red)

Ascophyllum nodosum (brown)

Cladosiphon okamuranus Tokida

Immunostimulatory Enteromorpha prolifera (green) Fucoidan Kim et al. (2011, 2012)

Champia feldmannii (red) j-carrageenan Lins et al. (2009)

Fucus vesiculosus (brown) Oligosaccharides Kawashima et al. (2011)

Kappaphycus striatum (red) Kima and Joo (2008)

Antiinflammation and

antinociceptive

Solieria filiformis (red) Galactan de Araújo et al. (2011)

Gelidium crinale (red) Mannoglucuronofucans Farias et al. (2011)

Sargassum hemiphyllum (brown) j-carrageenan de Sousa et al. (2011a)

Gracilaria cornea (red) Oligosaccharides Hwang et al. (2011)

Gracilaria birdiae (red) Coura et al. (2011)

Laminaria saccharina (brown) Croci et al. (2011)

Lobophora variegate (brown) Medeiros et al. (2008)

Turbinaria ornata (brown) Ananthi et al. (2009)

Padina gymnospora (brown) Marques et al. (2012)

Jiang and Guan (2009)
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effects of SP from seaweeds in antioxidant status of

consumers.

Antitumor

Vishchuk et al. (2011) isolated fucoidans from brown

seaweeds Saccharina japonica and U. pinnatifida and tes-

ted their antitumor activity against human breast cancer

T-47D and melanoma SK-MEL-28 cell lines. The highly

branched partially acetylated sulfated galactofucan, built

up of (1 ? 3)-a-L-fucose residues from S. japonica and U.

pinnatifida distinctly inhibited proliferation and colony

formation in both breast cancer and melanoma cell lines in

a dose-dependent manner. These results indicated that the

fucoidan from the studied seaweeds may be a potential

approach toward cancer treatment. After 72-h incubation of

Table 1 continued

Biological properties Seaweed Sulfated polysaccharide References

Anticoagulation and

antithrombosis)

Ecklonia cava (brown) Arabinogalactans Wijesinghe et al. (2011)

Dictyota cervicornis (brown) Rhamnan Costa et al. (2010)

Caulerpa cupresoides (green) Galactan Ciancia et al. (2007)

Codium fragile (green) Li et al. (2011)

Codium vermilara (green) Mao et al. (2008)

Monostroma latissimum (green) Camara et al. (2011)

Monostroma nitidum (green) Albuquerque et al. (2004)

Canistrocarpus cervicornis (brown) Pushpamali et al. (2008)

Dictyota menstrualis (brown) Croci et al. (2011)

Lomentaria catenata (red)

Laminaria saccharina (brown)

Lipid lowering Ulva lactuca (green) Fucoidan Kim et al. (2010)

Sargassum polycystum (brown) Sathivel et al. (2008)

Sargassum wightii (brown) Raghavendran et al. (2005)

Laminaria japonica (brown) Huang et al. (2010)

Antiviral (Influenza, herpes, HIV) Gyrodinium impudium (red) Galactan Ghosh et al. (2009)

Nemalion helminthoides (red) Mannans Kim et al. (2011, 2012)

Gayralia oxysperma (green) Heterorhamnan Recalde et al. (2009)

Sphaerococcus coronopifolius (red) Xylomannan sulfate Cassolato et al. (2008)

Boergeseniella thuyoides (red) Xylogalactofucan Bouhlal et al. (2011)

Sebdenia polydactyla (red) Xylomannan Bandyopadhyay et al. (2011)

Sphacelaria indica (brown) Mandal et al. (2007)

Cystoseira indica (brown)

Grateloupia indica (red) Chattopadhyay et al. (2007)

Laminaria angustata (brown) Trinchero et al. (2009)

Adenocystis utricularis (brown) Mandal et al. (2008)

Scinaia hatei (red)

Antibacterial (ampicillin resistant

E. coli) Antiprotozoan

(cryptosporidiosis, malaria)

Kappaphycus alvarezii (red) Fucoidan Kumaran et al. (2010)

Padina boergessenii (brown) Maruyama et al. (2007)

Undaria pinnatifida (brown) Chen et al. (2009)

Prevent hyperplasia Brown seaweeds Fucoidan Hlawaty et al. (2011)

Freguin-Bouilland et al. (2007)

Cause gastrointestinal contraction Halymenia floresia (red) Galactan Graça et al. (2011)

Cladosiphon okamuranus Tokida (brown) Fucoidan Matsumoto et al. (2004)

Regenerative and nano medicine Brown seaweeds Fucoidan Sezer et al. (2008)

Ulva rigida (green) Ulvan Murakami et al. (2010)

Nakamura et al. (2008)

Fukuta and Nakamura (2008)

Toskas et al. 2011)
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HeLa cell with SP (0.01–2 mg/ml), the proliferation was

inhibited between 33.0 and 67.5 % by S. filipendula; 31.4

and 65.7 % by D. delicatula; 36.3 and 58.4 % by Caulerpa

prolifera, and 40.2 and 61.0 % by Dictyota menstrualis.

Costa et al. (2010) inferred that the antiproliferative effi-

cacy of SP positively correlated with the sulfate content. In

Sprague–Dawley rats fed with Monostroma nitidum diet,

significant increase in UGT1A1 and UGT1A6 mRNA

levels was found, indicating potential application in che-

moprevention medicine (Charles et al. 2007). Ye et al.

(2008) evaluated the antitumor activities of SP from S.

pallidum by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide] assay, which showed a signifi-

cantly high antitumor activity against the human

hepatocellular carcinoma (HepG2), human lung adenocar-

cinoma epithelial (A549) and human gastric carcinoma

(MGC-803) cells. Croci et al. (2011) explored the possible

antitumor activities of SP from the brown seaweed Lami-

naria saccharina. The incorporation of the parent SP and

the sulfated fucans into Matrigel plugs containing mela-

noma cells induced a significant reduction in hemoglobin

content as well as the frequency of tumor-associated blood

vessels. Also, these two SP administrations resulted in a

significant reduction of tumor growth when inoculated into

mice. The sulfated fucan fraction markedly inhibited breast

cancer cell adhesion to human platelet-coated surfaces.

Ermakova et al. (2011) showed that fucoidans from brown

algae Eclonia cava, Sargassum hornery and Costaria

costata play an inhibitory role in colony formation in

human melanoma and colon cancer cells. Costa et al.

(2011b) observed antiproliferative activity of fucan from S.

filipendula against HeLa cells by MTT test. The heter-

ofucan was extracted from the brown seaweed by proteo-

lytic digestion followed by sequential acetone

precipitation. This SP showed antiproliferative activity on

Hela cells and induced apoptosis by mitochondrial release

of apoptosis-inducing factor (AIF) into cytosol. In addition,

it decreased the expression of anti-apoptotic protein Bcl-2

and increased expression of apoptogenic protein Bax.

Magalhaes et al. (2011) obtained six families of SP from

seaweed D. delicatula by proteolytic digestion, followed

by acetone fractionation and molecular sieving on Sepha-

dex G-100. A fraction of the heterofucan showed high

antiproliferative activity inhibiting almost 100 % of HeLa

cell proliferation. Jin et al. (2010) investigated the effects

of fucoidan on the apoptosis of human promyeloid leuke-

mic cells and fucoidan-mediated signaling pathways. Fu-

coidan induced apoptosis of human promyelocytic

leukemia (HL-60), human promyelocytic (NB4) and THP-

1 (human acute monocytic leukemia) cell line. Fucoidan

treatment of HL-60 cells induced activation of caspases 8,

9, and 3, the cleavage of Bid, and altered mitochondrial

membrane permeability. Buthionine-[R,S]-sulfoximine

rendered HL-60 cells more sensitive to fucoidan. It was

concluded that the activation of MEKK1, MEK1, ERK1/2

and JNK, depletion of glutathione and production of NO

are important mediators in fucoidan-induced apoptosis of

human leukemic cells. Lins et al. (2009) investigated the in

vitro and in vivo antitumor properties of a SP isolated from

the seaweed C. feldmannii. The SP did not show any sig-

nificant in vitro cytotoxicity at the experimental dose, but

showed in vivo antitumor effect. The inhibition rates of

sarcoma 180 tumor development were 48.62 and 48.16 %

at the doses of 10 and 25 mg/kg, respectively. It also

increased the response elicited by anti-cancer drug, 5-flu-

orouracil (5-FU) from 48.66 to 68.32 %. Though liver and

kidney were moderately affected, the enzymatic activity of

alanine aminotransferase or urea/creatinine levels was not

disturbed. Leucopenia associated with 5-fluorouracil

treatment was prevented when the chemotherapeutic was

administered along with SP. An unfractionated fucoidan

was extracted from the brown alga Ascophyllum nodosum

and its effect on the apoptosis of human HCT116 colon

carcinoma cells was studied and the signaling pathways

involved were investigated. Fucoidan decreased cell via-

bility and induced apoptosis of the carcinoma cells, through

activation of caspases 9 and 3 and the cleavage of PARP

(Foley et al. 2011). Haneji et al. (2005) examined the effect

of fucoidan from the brown seaweed Cladosiphon oka-

muranus Tokida against an incurable form of cancer, the

adult T-cell leukemia (ATL). It was observed that fucoidan

inhibited the growth of peripheral blood mononuclear cells

of ATL patients and caused apoptosis of HTLV-1-infected

T-cell lines through a cascade of down regulations. In vivo

treatment of the cancer transplanted in mice also showed

partial inhibition of the tumors. Now that, cancer has

assumed an epidemic proportion and the treatment scenario

is still bleak, the SP from the marine weeds hold the

promise for novel anticancer formulae.

Immunostimulatory

Water-soluble SP extracted from Enteromorpha prolifera

and fractionated using ion-exchange chromatography was

investigated to determine their in vitro and in vivo

immunomodulatory activities. Some fractions stimulated a

macrophage cell line Raw 264.7 inducing considerable

nitric oxide (NO) and various cytokine production via up-

regulated mRNA expression. The in vivo experiment

results showed increase in IFN-c and IL-2 secretions,

suggesting that the SP is a strong immunostimulator. It is

implied that the SP can activate T cells by up-regulating

Th-1 response (Kim et al. 2011). Lins et al. (2009) dem-

onstrated that SP extracted from C. feldmannii is an

immunomodulatory agent, evident from the increase in the

production of specific antibodies. Kawashima et al. (2011)
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demonstrated that fucoidan enhances the probiotic effects

of lactic acid bacteria on immune functions. In vitro test

results showed that fucoidan amplified interferon (IFN)-c

production mediated by IL-12 production from Peyer’s

patch and spleen cells in response to a strain of LAB,

Tetragenococcus halophilus KK221. In vivo study showed

that Th1/Th2 immunobalance was significantly improved

by oral administration of both fucoidan and KK221 to

ovalbumin-immunized mice. Kima and Joo (2008)

observed that fucoidan from F. vesiculosus shows immu-

nostimulating and maturing effects on dendritic cells (DCs)

via a pathway involving nuclear factor-jB (NF-jB). j-

Carrageenan oligosaccharides from red algae Kappaphycus

striatum have immunomodulation effects on S180 tumor-

bearing mice. The sulfated derivative (200 lg/g/day)

showed an increase in natural killer cells (NK cells) up to

76.1 %. It suggested that chemical modification (especially

sulfation) of carrageenan oligosaccharides can enhance

their antitumor effect and boost their antitumor immunity.

Yuan et al. (2011) reported not only the capacity of SP to

elicit cellular immunity but also the importance of chem-

ical modification of the parent polysaccharide.

Anti-inflammation/antinociception/inhibition

of pulmonary fibrosis

de Araújo et al. (2011) studied the antiinflammatory and

antinociception (less sensitivity to painful stimulus) prop-

erties of seaweed Solieria filiformis in vivo. Male Swiss

mice pre-treated with the SP, on receiving an injection of

0.8 % acetic acid, 1 % formalin or 30 min prior to a

thermal stimulus, showed significantly reduced number of

writhes. It showed antinociceptive action through a

peripheral mechanism; however, did not show any signif-

icant anti-inflammatory effect. The SP from the brown

seaweed Spatoglossum schroederi was assayed for the

antinociceptive effect on Swiss mice. The SP purified by

anion-exchange chromatography inhibited both phases of

the formalin test. In the first phase the maximum 45 %

reduction in paw licking was observed. This inhibitory

effect suggested a mixed mechanism similar to morphine,

which was not confirmed in the hot-plate test. It was con-

cluded that the pronounced antinociceptive effect of SP

could be developed as a new source of analgesic drugs

(Farias et al. 2011). The SP galactan extracted from the red

marine alga Gelidium crinale was purified by ion-exchange

chromatography and tested by intravenous route in rodent

experimental models of inflammation and nociception. The

anti-inflammatory activity was evaluated in the model of

rat paw edema induced by different inflammatory stimuli.

Antinociceptive effect was assessed in models of noci-

ception/hyperalgesia elicited by chemical (formalin test),

thermal (hot plate), and mechanical (von Frey) stimuli in

mice. It was observed that SP inhibited the time course of

dextran-induced paw edema and showed a maximal effect

at 1 mg/kg (42 %). At the highest dose, the SP also

inhibited the paw edema induced by histamine (49 %) and

phospholipase A(2) (44 %). The galactan inhibited both

neurogenic and inflammatory phases of the formalin test

and the treatment was well tolerated by the test animals (de

Sousa et al. 2011a). Hwang et al. (2011) explored SP from

brown seaweed Sargassum hemiphyllum for possible anti-

inflammatory effect. The SP was administered against the

mouse macrophage cell line (RAW 264.7) activated by

lipopolysaccharide (LPS). The secretion profiles of pro-

inflammatory cytokines, including IL-1b, IL-6, TNF-a, and

NO, were found significantly to be reduced in 1–5 mg/ml

dose ranges of SP treatments. RT-PCR analysis suggested

that the SP inhibits the LPS-triggered mRNA expressions

of IL-b, iNOS and COX-2 in a dose-dependent manner. It

was concluded that the anti-inflammatory properties of SP

may be attributed to the down-regulation of NF-jB in

nucleus. Coura et al. (2011) evaluated the effects of SP

from the red seaweed Gracilaria cornea in nociceptive and

inflammatory mice models. At all tested doses, the SP

significantly reduced nociceptive responses, as measured

by the number of writhes. In a formalin test, the SP sig-

nificantly reduced licking time in both phases of the test at

a dose of 27 mg/kg. In a hot-plate test, the antinociceptive

effect was observed only in animals treated with 27 mg/kg

of SP, suggesting that the analgesic effect occurs through a

central action mechanism at the highest dose. The lower

doses of SP (3 and 9 mg/kg) caused only a slight reduction

in neutrophil migration in the rat peritoneal cavity but

significantly inhibited paw edema induced by carrageenan,

especially at 3 h after treatment. Reduction in edema was

confirmed by myeloperoxidase activity in the affected paw

tissue. After 14 consecutive days of intraperitoneal

administration of the SP (9 mg/kg), the biochemical,

hematological and histopathological evaluations of the

internal organs are performed and no systemic damage was

found. de Sousa et al. (2011b) investigated the involvement

of the hemoxygenase-1 (HO-1) pathway in the anti-

inflammatory action of a SP from the red seaweed G.

birdiae. The SP was administered at various concentrations

to Wistar rats and observed that at 10 mg/kg concentration,

it exerted an anti-inflammatory effect. A remarkable

decrease in leukocytes in the peritoneal cavity was also

observed. The SP also reduced the paw edema induced by

carrageenan and inhibited the paw edema induced by

dextran in the first half-hour. The O-sulfated mann-

oglucuronofucans and sulfated fucan fractions from the

brown seaweed L. saccharina were evaluated for possible

treatment of inflammation in vivo. Both types of SP

exhibited inhibition of leukocyte rush into the sites of

inflammation in the murine models (Croci et al. 2011).
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Medeiros et al. (2008) extracted a sulfated heterofucan

from the brown seaweed Lobophora variegata by proteo-

lytic digestion, followed by acetone fractionation, molec-

ular sieving, and ion-exchange chromatography. The

fucoidan revealed that it inhibits leukocyte migration to the

inflammation site. Ear swelling caused by croton oil was

also inhibited when sulfated polysaccharides from F. ves-

iculosus and L. variegata were used. Ananthi et al. (2009)

investigated the anti-inflammatory effect of crude SP from

brown alga Turbinaria ornata against carrageenan-induced

paw edema in rats and vascular permeability in mice. Oral

administration of SP reduced the paw edema and showed

inhibitory effect on vascular permeability considerably, in

a dose-dependent manner. SP extracted from brown algae

Padina gymnospora showed efficacy in reducing leukocyte

influx into the peritoneal cavity in mice at 10 mg/kg body

weight, causing a decrease of 60 %, without any cytotox-

icity (Marques et al. 2012). Idiopathic pulmonary fibrosis is

a pathological condition characterized by accumulation of

excess fibroblasts, deposition of collagen and inflammation

in lungs. The pro-fibrogenic cytokine transforming growth

factor-beta 1 (TGF-beta1) has attracted much attention for

its potential role in the etiology of this serious lung injury.

MS80, a new kind of sulfated oligosaccharide extracted

from seaweed, inhibits TGF-beta1-induced pulmonary

fibrosis in vitro and bleomycin-induced pulmonary fibrosis

in vivo. The oligosaccharide competitively inhibited hep-

arin/HS-TGF-beta1 interaction through its high binding

affinity for TGF-beta1, also arrested human embryo pul-

monary fibroblast (HEPF) cell proliferation and collagen

deposition. MS80 proved to be a potent suppressor of

bleomycin-induced rat pulmonary fibrosis in vivo (Jiang

and Guan 2009). Du et al. (2010) reported that efficacy of

MS80 lies in targeting the CD40 signal pathway by

blocking RIP2. The precise mechanism of functionality is

not clear; nevertheless, the sulfated polysaccharides studied

above promise therapeutic potential in inflammatory

disorders.

Anticoagulation

Batteries of assays for assessment of anticoagulation

properties of SP from seaweeds have been conducted in

recent times. Tests ranging from activated partial throm-

boplastin time (APTT), thrombin time (TT), prothrombin

time (PT), antithrombin to anticoagulation factor Xa

activities have been performed and compared with heparin.

Wijesinghe et al. (2011) purified a SP from brown seaweed

Ecklonia cava and investigated its anticoagulant activity in

vitro and in vivo. It extended the coagulation time in Wi-

star rats in a dose- and time-dependent manner. Costa et al.

(2010) evaluated in vitro anticoagulant activities of marine

algae SP by APTT test. D. cervicornis SP prolonged the

coagulation time, only 1.4-fold lesser than Clexane�, a low

molecular weight commercial heparin. In the prothrombin

time (PT) test, which evaluates the extrinsic coagulation

pathway, Caulerpa cupresoides showed aggression. Codi-

um fragile and Codium vermilara water-soluble sulfated

arabinogalactans prevented coagulation, but they induced

platelet aggregation. It was observed that anticoagulant

activity was higher in SP samples with higher sulfate

content. In this regard, C. vermilara proved to be superior

with a higher degree of sulfation and arabinose content

(Ciancia et al. 2007). The hot water extract of green alga

Monostroma latissimum gives a sulfated rhamnan poly-

saccharide with an anticoagulant activity. The anticoagu-

lant activity as evaluated by assays of the APTT and

thrombin time promises that it can be a potential source of

anticoagulant (Li et al. 2011). Mao et al. (2008) isolated

two sulfated, rhamnose-containing polysaccharides from

marine green algae M. nitidum and evaluated their anti-

coagulant activities. The results showed that both the SP

possess high anticoagulant activities, and were potent

thrombin inhibitors mediated by heparin cofactor II. They

also hastened thrombin and coagulation factor Xa inhibi-

tion by potentiating antithrombin III. Camara et al. (2011)

extracted sulfated heterofucans from C. cervicornis which

prolonged APTT. Four sulfated polysaccharides doubled

APTT with only 0.1 mg/ml of plasma, only 1.25-fold less

than Clexane�. Albuquerque et al. (2004) extracted heter-

ofucans from the brown seaweed D. menstrualis by pro-

teolytic digestion, followed by sequential acetone

precipitation. The anticoagulant activities of these heter-

ofucans were determined by APTT test. A fucan fraction

(20 g/ml) demonstrated significant anticoagulant activity,

about 4.88-fold lesser than Clexane� (4.1 g/ml). Pushpa-

mali et al. (2008) isolated a highly sulfated (21.76 %),

100–500 kDa molecular weight galactan anticoagulant

from microbial-fermented freeze-dried red algae Lomen-

taria catenata. It demonstrated that the anticoagulant

compound showed better efficacy than heparin and pro-

longed activity toward APTT and PT assays. Croci et al.

(2011) studied that the SP from the brown seaweed L.

saccharina shows promising activity on thrombosis.

Fernández et al. (2012) studied the anticoagulation efficacy

of sulfated b-D-mannan extracted from green seaweed C.

vermilara and reported that higher sulfate content leads to

more pronounced effect. Fucoidan has been proposed as a

potential substitute of the anticoagulant heparin, with

added merits. Unlike mammalian mucosa-derived heparin,

fucoidan is extracted from plants, so less likely to contain

infectious agents, such as viruses or prions (Boisson-Vidal

et al. 1995). The current findings promise a host of possible

candidates for natural anticoagulant preparation.
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Lipid lowering

Fucoidan has been reported to affect the development of

adipocytes. To elucidate the role of fucoidan in adipogen-

esis, its inhibitory effect on adipocyte differentiation via

mitogen-activated protein kinase (MAPK) signaling path-

way in 3T3-L1 preadipocytes was studied. Fucoidan treat-

ment inhibited the adipocyte differentiation, evidenced by

decreased lipid accumulation and down-regulation of adi-

pocyte markers. Also, it inhibited the expression of adipo-

genic transcription factors, a (C/EBPa), c (PPARc) and

AP2, crucial for adipocyte development (Kim et al. 2010).

Sathivel et al. (2008) evaluated the anti-peroxidative and

anti-hyperlipidemic property of U. lactuca polysaccharide

extract against D-galactosamine (500 mg/kg body weight)-

induced anomaly in rat. D-Galactosamine-intoxicated rats

showed significant liver damage with acute aberration in

serum lipid profile, hepatic protein thiols, deposits of lipid

droplets and abnormal appearance of mitochondria. Rats

pretreated with ulvan (30 mg/kg body weight/day/for

21 days) showed a significant inhibition against abnormal-

ity induced by D-galactosamine. The effect of Sargassum

polycystum crude SP extract on lipid metabolism was

examined against acetaminophen-induced hyperlipidemia

in experimental rats. The prior oral administration of S.

polycystum (200 mg/kg body wt./day for a period of

15 days) crude SP extract showed considerable prevention

in the severe disturbances of lipid profile and metabolizing

enzymes (serum lecithin cholesterol acyl transferase and

hepatic triglyceride lipase) triggered by acetaminophen.

Liver histology also supported their protective nature

against fatty changes induced during acetaminophen

intoxication (Raghavendran et al. 2005). Josephine et al.

(2007) studied the possible capacity of SP in normalizing

hyperlipidemia induced by the immunosuppressant drug

cyclosporine A (25 mg/kg body weight, orally for 21 days)

in Wistar rat kidney. As a side effect of the drug, lipid

profile showed fluctuation resulting in nephrotoxicity

manifested by the enhanced urinary excretion of urea, uric

acid and creatinine. The SP-treated groups (5 mg/kg body

weight, subcutaneously) showed a normalized lipid profile

and lipid metabolizing enzymes. Moreover, this group of

rats showed a normal concentration of urinary constituents.

Huang et al. (2010) investigated the effect of fucoidan from

L. japonica on hyperlipidemic rats. The SP reduced the

concentration of serum total cholesterol, triglyceride and

low-density lipoprotein cholesterol and increased the con-

centration of high-density lipoprotein cholesterol of the

studied rats. The activities of lipoprotein lipase, hepatic

lipoprotein and lecithin cholesterol acyltransferase were

also enhanced. Above findings corroborate that the SP from

seaweeds are ideal option for effective abatement of the

lipid abnormalities.

Antiviral

Many viruses display affinity for cell surface heparan sul-

fate proteoglycans playing crucial role in virus entry. This

raises the possibility of the application of SP in antiviral

therapy (Ghosh et al. 2009). Kim et al. (2012) purified a

SP, p-KG03, from the red marine microalga, Gyrodinium

impudium. The galactan conjugated to uronic acid and

sulfated groups had showed inhibition of encephalomyo-

carditis virus. The inhibitory activity of the SP against

influenza virus was examined. The results of a cytopathic

effect reduction assay using MDCK cells demonstrated that

p-KG03 exhibited the 50 % effective concentration (EC50)

values of 0.19–0.48 lg/ml against influenza type A virus

infection. The antiviral activity of p-KG03 was deduced

to be directly associated with its interaction with viral

particles, interfering with its adsorption and internaliza-

tion into host cell. It was expected to be a candidate for

antiviral drug development. The soluble fractions of a

sulfated, (1 ? 3)-linked a-D-mannans obtained by hot

water extraction from Nemalion helminthoides showed

appreciable antiherpetic activity (Recalde et al. 2009). A

homogeneous branched sulfated heterorhamnan was

obtained by aqueous extraction, followed by ultrafiltration

from the green seaweed Gayralia oxysperma which exerted

high specific activity against herpes simplex virus (HSV-1)

(Cassolato et al. 2008). Treatment of human immunodefi-

ciency virus type 1 (HIV-1), the dreaded etiological agent

of AIDS poses tough challenges. The limitations encoun-

tered in therapeutic strategy are toxicity, resistance and

high costs. Water-soluble sulfated galactans isolated from

two red algae Sphaerococcus coronopifolius (Gigartinales,

Sphaerococcaceae) and Boergeseniella thuyoides (Ceram-

iales, Rhodomelaceae) inhibited in vitro replication of the

human immunodeficiency virus (HIV) at 12.5 lg/ml. In

addition, the studied polysaccharides were capable of

inhibiting the in vitro replication of HSV-1 on Vero cells.

The adsorption step of HSV-1 to the host cell seemed to be

the specific target for the SP action. While for HIV-1, these

results suggest a direct inhibitory effect on HIV-1 repli-

cation by controlling the appearance of the new generations

of virus and potential virucidal effect (Bouhlal et al. 2011).

Ghosh et al. (2009) studied that xylomannan sulfate and its

sulfated derivatives purified from Sebdenia polydactyla

showed strong activity against HSV-1. The IC50 values

were in the range 0.35–2.8 lg/ml and they did not exert

cytotoxicity at concentrations up to 1,000 lg/ml. Many

xylogalactofucan- and alginic acid-containing fractions

from marine alga Sphacelaria indica showed antiherpetic

activity. The IC50 values of their chemically sulfated

derivatives against HSV-1 were in the range of 0.6–10 lg/

ml and they lacked cytotoxicity at concentrations up to

200 lg/ml (Bandyopadhyay et al. 2011). Sulfated fucan-
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containing fractions isolated from the brown seaweed

Cystoseira indica showed potent antiviral activity against

HSV-1 and 2 HSV-2 without cytotoxicity for Vero cell

cultures. Chemical, chromatographic and spectroscopic

methods showed that the anti-herpetic activity of the SP is

by inhibition of the virus adsorption (Mandal et al. 2007).

Chattopadhyay et al. (2007) analyzed the SP fractions

isolated from crude water extract of Grateloupia indica and

showed their potent anti-HSV activity. The SP, xyloga-

lactofucan fractions extracted from Laminaria angustata,

after addition of sulfate groups showed enhanced capability

to inhibit HSV-1. The IC50 values of these fractions

against HSV-1 were in the range of 0.2–25 lg/ml and they

lacked cytotoxicity at concentrations up to 1,000 lg/ml

(Saha et al. 2012). SP fractions from brown seaweed Ad-

enocystis utricularis were analyzed for their in vitro anti-

HIV-1 activity. Two of the five studied fractions showed

potent anti-HIV-1 activity both against wild type and drug-

resistant HIV-1 strains, mediated by blockade of early

events of viral replication (Trinchero et al. 2009). The

antiviral activity was dependent on the sulfate contents of

the polysaccharides. Kazłowski et al. (2012) conducted

both in vitro and in vivo studies on Japanese encephalitis

virus prevention property of novel SP from Gracilaria sp.

and M. nitidum. During in vitro studies performed by MTT

or plaque assays, low-degree-polymerization SP showed a

remarkably high positive effect on survivability in JEV-

infected C3H/HeN mice. The in vivo antiviral activity was

assumed to be a resultant of better absorption of low-DP SP

than undigested PS. The results support the feasibility of

antiviral drug development from various SP and their

derivatives.

Antibacterial and antiprotozoan

Kumaran et al. (2010) studied that SP extracted from red

alga Kappaphycus alvarezii and brown alga Padina boer-

gessenii exert promising inhibitory response against anti-

microbial-resistant Escherichia coli strains and, in

particular, the inhibitory response of ampicillin-resistant E.

coli, isolated from local fish markets and seafood pro-

cessing plants. Maruyama et al. (2007) investigated the

effects of fucoidan isolated from the sporophyll of U.

pinnatifida on the Cryptosporidium parvum adhesion to the

cultured human intestinal cells and its infection in neonatal

mice. The C. parvum adhesion to human intestinal 407

cells was significantly suppressed by a low dose (1 mg/ml)

of fucoidan (1 lg/ml). The results of the in vivo experi-

ments revealed that C. parvum oocysts in the fucoidan-

treated mice was reduced to nearly one-fifth of the oocysts

number treated with phosphate buffered saline. It was

concluded that fucoidan might inhibit cryptosporidiosis

through the direct binding of fucoidan to the C. parvum-

derived functional mediators in the intestinal epithelial

cells in neonatal mice. Chen et al. (2009) investigated the

inhibitory effects of fucoidan from the edible brown sea-

weed U. pinnatifida, on the growth of Plasmodium para-

sites. The antimalarial activity of fucoidan was assessed

against the cultured Plasmodium falciparum parasites in

vitro and on Plasmodium berghei-infected mice in vivo.

Fucoidan significantly inhibited the invasion of erythro-

cytes by P. falciparum merozoites. Its 50 % inhibition

concentration was similar to those for the chloroquine-

sensitive P. falciparum 3D7 strain and the chloroquine-

resistant K1 strain. Four-day suppressive testing in

P. berghei-infected mice with fucoidan resulted in a 37 %

suppressive effect versus the control group and a delay in

death associated with anemia.

Prevent hyperplasia

Hlawaty et al. (2011) investigated the therapeutic potential

of low molecular weight fucoidan on vascular smooth

muscle cell and human vascular endothelial cell prolifer-

ation and migration in vitro and in vivo. Sprague–Dawley

rats with induced thoracic aorta injury were treated with SP

(5 mg/kg/day) for 14 days. Results showed that SP pre-

vented intimal hyperplasia in rat thoracic aorta. In situ

zymography showed that the activity of matrix metallo-

proteinase (MMP)-2 in the neo-intima is significantly

reduced. Fucoidans have been shown to mobilize bone

marrow-derived progenitor cells via stimulation of stromal-

derived factor (SDF)-1 release. Mobilized progenitor cells

have been suggested to repair intimal lesions after immune-

mediated endothelial injury and thus prevent intimal pro-

liferation. Freguin-Bouilland et al. (2007) evaluated the

therapeutic effect of these SP, in Brown Norway and Lewis

rat aortic allograft model of transplant arteriosclerosis. The

recipient rats were treated with SP (5 mg/kg/day) for

30 days. In contrast to untreated aortic allografts, the SP-

treated allografts showed significantly less intimal prolif-

eration. The SP treatment stimulated allograft reendothel-

ialization, as evidenced by strong intimal endothelial nitric

oxide synthase antibody and CD31 signals.

Gastrointestinal functions

Graça et al. (2011) showed that a sulfated galactan isolated

from red algae Halymenia floresia has promising effects on

gastrointestinal (GI) motor functions mediated by voltage-

gated Ca2? channels. So, it is suggested that the SP can be

useful when gastrointestinal contraction is necessary during

motility-related disorders. Inflammatory bowel disease

caused by enteric pathogens is a severe form of gastric

disease characterized by excess production of proinflam-

matory cytokine IL-6. Fucoidan derived from brown algae
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C. okamuranus Tokida imparts LPS tolerance and prevents

the expression of IL-6 mRNA as evidenced by in vitro and

in vivo tests (Matsumoto et al. 2004).

In regenerative and nano medicine

Sezer et al. (2008) prepared a fucoidan–chitosan hydrogel

by swelling the polymers in acidic solution and investi-

gated its dermal burn treatment efficiency. Dermal burns

were inflicted on male New Zealand white rabbits and the

prepared hydrogel was applied on the wounds. Histopa-

thological evaluation of the biopsy samples was done at

intervals. No edema was seen in tested groups after 3-day

treatment and fibroplasia and scar were fixed after 7-day

treatment. The best regeneration on dermal papillary for-

mation and the fastest closure of the wounds were

observed in fucoidan–chitosan hydrogels after 14-day

treatment. Murakami et al. (2010) developed a hydrogel

sheet by blending alginate, chitosan and fucoidan, for

rapid wound healing. The hydrogel absorbed Dulbecco’s

minimal essential medium (DMEM) and fluid absorption

became constant within 18 h. On application, this hydro-

gel is expected to act as tissue adhesive and heal the

wound in a moist milieu. Histological examination

showed the advanced granulation tissue and capillary

formation in the healing-impaired wounds treated with the

hydrogel on day 7. Nakamura et al. (2008) reported that a

chitosan/fucoidan complex-hydrogel enhanced the half

life of fibroblast growth factor (FGF-2) by shielding it

against denaturants as heat and proteolysis. Subcutaneous

injection of the FGF-2-containing complex-hydrogel into

the back of mice showed controlled release of bioactive

protein. Slow diffusion of the growth factor induced

neovascularization and fibrous tissue formation near the

site of injection after 1 week. The complex-hydrogel was

biodegraded after 4 weeks after supplying adequate

amount of the angiogenic agents for protection of the

ischemic heart. Fukuta and Nakamura (2008) reported that

fucoidan and its oligosaccharides have the ability to

stimulate production of hepatocyte growth factor (HGF)

by induction during translation. So, it is believed that

fucoidan may protect tissues and organs by mechanisms

involving HGF.

Toskas et al. (2011) evaluated the nanofiber ability of

an ulvan-rich extract from the alga Ulva rigida. Ulvan-

based uniform, crystalline nanofibers of diameter 84 nm

were produced by blending them with poly(vinyl alco-

hol) (PVA). The interesting biological and physico-

chemical properties of the nanofibers can lead to new

biomedical applications such as drug release systems.

Taken together, these findings indicate that the SP can

revolutionize regenerative and nanomedicine, if exploited

properly.

Bottlenecks encountered

Extraction yield differs with respect to species, period and

season of seaweed harvest (Robic et al. 2009). The SP are

extracted from the seaweed biomass by many methods

which influence their amount and chemical composition.

The fucans of brown algae are highly complex and heter-

ogeneous in structure, rendering their study difficult.

Fonseca et al. (2008) compared the galactans from two

species of red algae having same structure and size but

slight variation in sulfation. Due to the variation in sulfate

content, the two SP differed in their anticoagulant and

venous antithrombotic activities. From the results it was

concluded that slight differences in the proportions of

sulfated residues in the galactan chain may be critical for

the interaction between proteases, inhibitors and activators

of the coagulation system. Also, the variations pose chal-

lenges in developing therapeutics. Furthermore, the high

molecular weights of SPs pose issue in bio-availability

(Jiao et al. 2011).

Structure–function correlation of SP

It is important to understand the biochemical and molecular

mechanism of therapeutic actions of SP, in order to

develop effective drugs. The monomeric constituents,

molecular size, sulfation site, specific structural motif,

degree of branching determination are vital for reproduc-

ibility of result. Pomin (2009) has reported that the anti-

coagulant action of SP lies in its ability to inhibit plasma

proteases via allosteric changes. The stereospecificities of

the carbohydrate–protein complexes hinge on the number

of residues in the repeating units, sulfation pattern, ano-

meric configuration, glycosidic linkage position and

molecular mass. Also, the heterogeneities, such as acety-

lation, methylation and pyruvilation contribute in eliciting

variations in functionality (Bilan et al. 2007). A single

structural change has been traced to result considerable

qualitative difference in results. Pomin and Mourao (2008)

reported that preparation of oligosaccharides with well-

defined chemical structures from sulfated fucan helps in the

studies of carbohydrate–protein interaction. Fonseca et al.

(2008) reported that algal sulfated galactans have a

procoagulant effect along with the serpin-dependent anti-

coagulant activity. The procoagulant effect depends on the

sulfation pattern of the SP. Slight differences in the pro-

portions and/or distribution of sulfated residues along the

galactan chain is critical for the interaction between pro-

teases, inhibitors, and activators of the coagulation system,

resulting in a distinct pattern in anti- and procoagulant

activities. Identification of structural attributes of SP vital

for their biological activities has been limited by their
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heterogeneous structures. Alasalvar et al. (2010) reported

the strong correlation between structure of SP and their

antioxidant potency. The monomeric constitution, degree

of sulfation and their position, type of glycosidic linkage

were held chief determining factors for variation in activ-

ity. High sulfate content and low molecular size were

studied to exert stronger radical scavenging activities.

Frenette and Weiss (2000) determined that sulfation is

critical for efficacy of fucoidan in hematopoietic progenitor

activity. The desulfated fucoidan failed to promote angio-

genesis in vitro or to induce immature CD34? cell mobi-

lization in vivo. Fucoidan inhibits the human complement

system mediated through interactions with certain proteins

belonging to the classical pathway, particularly the protein

C4. NMR spectra showed that the branched fucoidan oli-

gosaccharides display a better anticomplementary activity

compared to linear structures. Spectroscopy and molecular

modeling of fucoidan oligosaccharides indicated that the

presence of side chains reduces the flexibility of the back-

bone, mimicking a conformation recognized by the protein

C4 (Clement et al. 2010). Leiro et al. (2007) observed that

immunostimulatory activity of ulvan-like SP extracted from

U. rigidawas decreased significantly after desulfation of the

SP, suggesting the importance of the functional group in

eliciting immune response. To tackle the problem of heter-

ogeneity of algal SP, a new approach has been established.

The information obtained from studies of invertebrate SP

that have a regular structure can be used to deduce the

functionally of algal SP (Jiao et al. 2011).

Maximization of the extraction and improvement

in bioavailability

Aqueous (Ghosh et al. 2009) and acetone extraction

(Marques et al. 2012) are the most prevalent techniques in

SP production from seaweeds. Due to the variations in

active growth parameters and extraction conditions, every

new SP purified is a unique compound with signature

structural features, promising a potential new drug.

Rodriguez-Jasso et al. (2011) extracted fucoidan from

brown seaweed F. vesiculosus by microwave-assisted

extraction. Extraction at 120 psi, 1 min, using 1 g/25 ml

water proved optimum condition for maximum fucoidan

recovery. It was concluded that pressure, extraction time

and alga/water ratio affected the SP yield (Rodriguez-Jasso

et al. 2011). Supercritical CO2 extraction, ultrasonic-aid

extraction and membrane separation technology may be

applied to harvest SP from the seaweeds. Short extraction

times, and non-corrosive solvents, cost effective an envi-

ronmentally benign technique are required for maximum

yield. Acid hydrolysis of high molecular weight fucans into

low molecular weight compounds facilitates their structural

investigation. Further, the low molecular weight fucoidans

can be obtained by fucoidanase (E.C.3.2.1.44) treatment.

This enzyme sourced from hepatopancreas of invertebrates,

marine bacteria and fungi has an added advantage of

hydrolyzing the SP without messing with its side substitute

groups (Qianqian et al. 2011). Endolytic enzymes, such as

ulvan lyases isolated from the flavobacteria Persicivirga

ulvanivorans cleave the glycosidic bond between the sul-

fated rhamnose and a glucuronic or iduronic acid in the

ulvans (Collen et al. 2011). Alkali modifications of car-

rageenans are suggested for improved application potential

(Campo et al. 2009). Success of commercial reproducibil-

ity of highly diverse fucoidan lies in proper characteriza-

tion with the help of powerful analytical tools (Fitton

2011).

Conclusion

The research on SP from seaweeds and their wide bio-

logical spectrum have skyrocketed in recent years. Their

clinical evaluation for possible noble therapeutics devel-

opment is catching momentum like never before. For above

goals to materialize, the underlying molecular mechanisms

need to be understood precisely and elucidated clearly. The

relation between structure and function should be unrav-

eled by intensive studies. This up-to-date review on this

emerging technique is expected to contribute significantly

in supplementing background knowledge, kindling interest

for future explorations. Further purification steps and

investigation on structural features as well as in vivo

experiments are needed to test the viability of their use as

therapeutic agents. The SP with appreciably few side

effects and myriad benefits could potentially be exploited

for complementary medicine use and disease management.
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