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Therapeutic Low-Intensity
Ultrasound for Peripheral Nerve
Regeneration – A Schwann Cell
Perspective
Jenica Acheta, Shannon B. Z. Stephens, Sophie Belin* and Yannick Poitelon*

Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States

Peripheral nerve injuries are common conditions that can arise from trauma (e.g.,
compression, severance) and can lead to neuropathic pain as well as motor and
sensory deficits. Although much knowledge exists on the mechanisms of injury and
nerve regeneration, treatments that ensure functional recovery following peripheral
nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves,
orchestrate the response to nerve injury, by converting to a “repair” phenotype. However,
nerve regeneration is often suboptimal in humans as the repair Schwann cells do
not sustain their repair phenotype long enough to support the prolonged regeneration
times required for successful nerve regrowth. Thus, numerous strategies are currently
focused on promoting and extending the Schwann cells repair phenotype. Low-intensity
ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to
facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical
trials in humans are scarce and limited to small population sizes. The benefit of LIU
on nerve regeneration could possibly be mediated through the repair Schwann cells.
In this review, we discuss the known and possible molecular mechanisms activated
in response to LIU in repair Schwann cells to draw support and attention to LIU as a
compelling regenerative treatment for peripheral nerve injury.

Keywords: ultrasound, peripheral nerve regeneration, Schwann cells, LIU, LIPUS

INTRODUCTION

Peripheral nerve injuries refer to traumatic compression, cutting, or stretching of the peripheral
nerve and cause a serious health problem that affects 2–3% of trauma patients annually (Noble
et al., 1998; Taylor et al., 2008; Lad et al., 2010). Peripheral nerve injuries are classified according
to their severity; grade I refers to reversible local conduction block, grades II and III refers to
interruption of the axon and supporting structures, respectively, while grades IV and V refers to
interruption of the nerve fascicle and all the nerve fibers, respectively (Sunderland, 1951). Because
peripheral nervous system (PNS) axons can regrow, there is a frequent misbelief that neuronal
damage can be repaired in the PNS without therapeutic strategies to support axon regeneration.
Yet, in proximal injuries grade II and above, the axonal regrowth may occur but the long distance
between the site of injury and the target organ greatly limits reinnervation. In addition, for grade
IV/V injuries, when the nerve fascicle and/or fibers are separated, microsurgical repair is required
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to reconnect the nerve stump, but the regenerating axons fail to
reinnervate their tissue targets (for review, see Menorca et al.,
2013). Therefore, despite axon intrinsic regenerative potential,
peripheral nerve regeneration following traumatic injury is often
suboptimal, and generally results in life-long impairments, pain,
and significant healthcare costs (Karsy et al., 2019; Bergmeister
et al., 2020). Thus, additional therapies are explored to facilitate
regeneration of all types of nerve injuries. In this review we will
be focusing on the use of non-invasive therapeutic ultrasound in
nerve regeneration.

An ultrasound is a sound wave above the human hearing
threshold (above 20 kHz), which is commonly known for
its clinical use in safe and non-invasive medical imaging.
Despite being heavily used for diagnosis in imaging techniques,
ultrasound can also generate mechanical energy. As the sound
wave is being absorbed into biological tissue, it causes vibrations.
The vibrations mediated by ultrasound are currently used
in therapeutic settings through two main modalities: high
intensity ultrasound and low-intensity ultrasound. High intensity
ultrasound (>3 W/cm2) entails tissue molecular vibration, which
converts into thermal generation (heat) and is used for the
precise destruction of benign or malignant tissues. However, at
low intensities (≤1 W/cm2), the thermal effect of sound waves
is minimal or absent, thus causing no tissue damage, and is
currently used to induce regenerative effects on biological tissues,
to modulate nerve activity and to facilitate drug delivery.

Low-intensity ultrasound (LIU) is a non-thermogenic and
non-destructive continuous wave with medium frequency
ultrasound (1–3 MHz) and is delivered at low intensity. The
frequency (i.e., the number of vibration cycles that occur in 1 s)
of the LIU allows the sound wave to penetrate from 1 to 2 cm
into biological tissues (1 MHz) up to 3–5 cm (3 MHz) (Takebe
et al., 2014). LIU can be delivered through a pulse wave (i.e., in
general ON for 20 µs and OFF for 80 µs). The pulsatile nature of
ultrasound facilitates the emission of sound waves without heat
generation (Grogan and Mount, 2021). Most studies thus far have
used low intensity pulsed ultrasound (Tables 1, 2).

Low-intensity ultrasound was approved by the US FDA
about 27 years ago for fracture repair. Since then, a growing
amount of literature demonstrates that LIU non-invasive physical
stimulus can stimulate or inhibit physiological processes and
facilitate drug delivery. More specifically, LIU can accelerate
soft-tissue regeneration (e.g., muscles, tendons, ligaments) (Ikai
et al., 2008; Jeremias Junior et al., 2011; Ren et al., 2013),
inhibits inflammatory responses (Nakao et al., 2014; Zhao et al.,
2017), and modulates neuronal activity (Iwashina et al., 2006;
Su et al., 2017; Zou et al., 2021). For a more comprehensive
review the therapeutic applications of LIU, see (Xin et al., 2016;
Jiang et al., 2019; de Lucas et al., 2020; Uddin et al., 2021).
While the application of LIU could also be of great benefit to
nerve repair by promoting neuromodulation, neuronal regrowth
and neuromuscular rehabilitation, the clinical efficacy of LIU
in neuromuscular trauma and neurodegenerative diseases is
understudied. Thus, the utilization of LIU in nerve regenerative
medicine is still limited. More pre-clinical and clinical studies
are necessary to evaluate LIU as a suitable clinical tool in nerve
repair. We review here the effect of LIU on peripheral nerve

regeneration in rodent pre-clinical studies and more specifically
the effect of LIU on Schwann cells, the supporting glial cells of
the PNS, known for their capacity to reprogram into repair cells
to promote nerve repair.

EFFECT OF LOW-INTENSITY
ULTRASOUND ON PERIPHERAL NERVE
REGENERATION

Given the limitations of peripheral nerves to self-heal in humans,
therapeutic approaches to promote nerve regeneration must
be developed. Over the last 20 years, numerous groups have
investigated the therapeutic effect of LIU on peripheral nerve
injury to facilitate regeneration and improve function both
in pre-clinical (Table 1) and clinical settings. For a recent
meta-analysis of functional outcomes in pre-clinical studies, see
(Daeschler et al., 2018b). For a recent meta-analysis of clinical
studies, see (Haffey et al., 2020). Our review will point out
how the research on the effect of LIU application in nerve
repair is considerably scattered between type of injury model
used, the LIU parameters applied, the experimental paradigm
utilized, and the choice of the outcomes measured. Despite the
divergent therapeutic regiment used in pre-clinical studies, a
few LIU constants were identified for their therapeutic effect on
peripheral nerve regeneration (i.e., morphological and functional
improvement). First, LIU intensity needs to be between 200 and
500 mW/cm2. At lower intensity (≤100 mW/cm2), the beneficial
effect of LIU is not observable (Daeschler et al., 2018a; Ito et al.,
2020), while at higher intensity (≥1 W/cm2) the beneficial effect
is reduced or absent (Hong et al., 1988; Mourad et al., 2001;
Akhlaghi et al., 2012; Jiang et al., 2016). Second, to improve nerve
regeneration, LIU should be applied repetitively, either every day
or every other day and for a short period of time (between 1
and 10 min per application). Third, none of the studies have
reported negative side effects resulting from LIU, such as limiting
or impairing peripheral nerve regeneration (Table 1). However,
because it has not been investigated yet, it is unclear if a longer
and/or more repetitive application of LIU will be beneficial or
become detrimental for nerve regeneration.

In summary, multiple advances made from pre-clinical studies
lead to the current consensus that LIU application promotes
peripheral nerve regeneration after peripheral nerve injuries
(Hong et al., 1988; Mourad et al., 2001; Crisci and Ferreira,
2002; Chang and Hsu, 2004; Chang et al., 2005; Raso et al.,
2005; Chen et al., 2010; Park et al., 2010; Akhlaghi et al., 2012;
Oliveira et al., 2012; Jahromy et al., 2013; Kim et al., 2013; Lv
et al., 2015; Jiang et al., 2016; Ni et al., 2017; Ito et al., 2020;
Wang et al., 2021). More precisely, it was shown that LIU could:
(i) increase the number, diameter, or the myelination of axon
distal to the lesion site; (ii) improve nerve conduction velocities
(NCV) and compound muscle action potentials (CMAP); and
(iii) enhance functional recovery after nerve injury (Table 1) (for
review, see Peng et al., 2020). In addition, a few studies have
shown that application of LIU on injured nerves is sufficient
to alter gene regulation of neurotrophic factors, cytokines,
or promyelinating genes during peripheral nerve regeneration

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 812588

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-812588
D

ecem
ber29,2021

Tim
e:13:43

#
3

A
cheta

etal.
S

chw
ann

C
ells,Targets

ofTherapeutic
U

ltrasound

TABLE 1 | Experimental parameters and outcomes of in vivo studies investigating the role of LIU on peripheral nerve after injury.

Study Injury Therapeutic regiment Animal Outcomes

Parameters Application Duration Length Species Sex Timepoints Morphological Electrophysiogical Functional recovery Gene regulation

Hong et al.,
1988

Crush 500 mW/cm2,
1 Mhz

Every other day 1 min n.d. Rat M n.d. Increased NCV and
CMAP

n.d. n.d.

Mourad et al.,
2001

Crush 250 mW/cm2,
2.25 Mhz,
continuous

Every other day 1 min 30 days Rat M 7, 14, 18,
22, 24, 26,
28, 30 dpi

n.d. n.d. Improved from 16
to 28 dpi

n.d.

Raso et al.,
2005*

Crush 400 mW/cm2,
1 Mhz, 20%
pulsed

Every day 10 min 10 days Rat M 7, 14, 21
dpi

Increased
myelinated axon
density at 21 dpi
(STS)

n.d. Improved at 14 and
21 dpi

n.d.

Chen et al.,
2010

Crush 250 mW/cm2,
1 Mhz,
continuous

Every other day 1 min 60 days Rat F 14, 30, 45,
60 dpi

Increased
myelinated axon
density from 30 to
60 dpi (IHC)

Increased NCV
from 30 to 60 dpi

Improved from 30
to 60 dpi

Increased
expression of NGF
from 30 to 60 dpi
(IHC)

Akhlaghi et al.,
2012

Crush 500 mW/cm2,
1 Mhz, 20%
pulsed

Every day 2 min 14 days Mouse n.d. 2, 4, 6,8,
10, 12, 14
dpi

n.d. n.d. Improved at 14 dpi n.d.

Oliveira et al.,
2012

Crush 400 mW/cm2,
1 Mhz, 20%
pulsed

Every day 2 min 14 days Rat F 14 dpi n.d. n.d. Improved at 14 dpi n.d.

Jahromy et al.,
2013

Crush 200 mW/cm2,
3.3Mhz,
continuous

Every day 2 min 28 days Rat n.d. 4, 7, 14,
21, 28 dpi

n.d. Increased CMAP at
7, 21 and 28 dpi

Increased at 28 dpi Increased
expression of CNTF
at 14 and 28 dpi
(qPCR)

Ni et al., 2017 Crush 200 mW/cm2,
1 Mhz, 20%
pulsed

every day 1 min 30 days Rat M 7, 14, 21,
28 dpi

Increased myelin
thickness from 21
to 28 dpi (EM)

Increased CMAP
from 21 to 28 dpi

Improved from 14
to 28 dpi

n.d.

Ito et al., 2020θ Crush 140 mW/cm2,
1 Mhz, 20%
pulsed

5 days per
week

5 min 21 days Rat M 3, 7, 21 dpi Increased
myelinated axon
diameter and
density at 21 dpi
(STS & EM)

n.d. not affected Reduced
expression of NT-3,
GSK3β, TNF, IL-6,
SEMA3A at 7 dpi
(qPCR)

Wang et al.,
2021θ

Crush 140 mW/cm2,
1 Mhz, 20%
pulsed

every day for 2
weeks, then 5
days per week

5 min 30 days Rat M 3, 7, 14, 30
dpi

Increased axonal
regrowth at 14 dpi
and myelinated
axon diameter,
density and myelin
thickness at 30 dpi
(STS & EM)

n.d. n.d. Increased
expression of
BDNF at 14 dpi
(qPCR)

(Continued)
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TABLE 1 | (Continued)

Study Injury Therapeutic regiment Animal Outcomes

Parameters Application Duration Length Species Sex Timepoints Morphological Electrophysiogical Functional recovery Gene regulation

Crisci and
Ferreira, 2002

Cut 100 mW/cm2,
1.5 Mhz, 20%
pulsed

Every day 20 min 12 days Rat M/F 12 dpi Increased myelin
thickness and
myelinated axon
density at 12 dpi
(STS & EM)

n.d. n.d. n.d.

Chang and
Hsu, 2004§

Cut(10 mm
gap)+PLGA
conduit

200 mW/cm2,
1Mhz, 20%
pulsed

Every other day 5 min 14 days Rat M 45 dpi Increased
myelinated axon
density at 45 dpi
(IHC)

n.d. n.d. n.d.

Chang et al.,
2005§

Cut(15 mm
gap)+PLGA
conduit

300 mW/cm2,
1 Mhz, 20%
pulsed

Every other day 5 min 14 days Rat M 60 dpi Increased
myelinated axon
density at 60 dpi
(IHC)

n.d. n.d. n.d.

Park et al.,
2010†

Cut(10 mm
gap)+PLGA
conduit

400 mW/cm2,
1 Mhz, 20%
pulsed

Once a week 2 min 60 days Rat n.d. 30, 60 dpi Increased myelin
thickness and
myelinated axon
diameter at 30 and
60 dpi (STS & EM)

n.d. n.d. n.d.

Kim et al.,
2013†

Cut(10 mm
gap)+PLGA
conduit

400 mW/cm2,
1 Mhz, 20%
pulsed

Once a week 2 min 180 days Rat n.d. 30, 60, 120
dpi

Increased myelin
thickness and
myelinated axon
diameter from 30 to
120 dpi (STS & EM)

Increased NCV
from 90 to 120 dpi

n.d. n.d.

Lv et al., 2015 Cut(10 mm
gap)+PLGA
conduit

300 mW/cm2,
1 Mhz, 20%
pulsed

Every day 5 min 14 days Rat F 30, 90 dpi n.d. Increased NCV at
90 dpi

Improved at 30 and
90 dpi

n.d.

Jiang et al.,
2016

Cut(10 mm
autograft)

250 mW/cm2,
1 Mhz, 20%
pulsed

Every other day 5 min 90 days Rat M 14, 30, 45,
60, 90 dpi

Increased myelin
thickness,
myelinated axon
diameter and
density at 90 dpi
(STS & EM)

Increased CMAP at
90 dpi

Improved from 30
to 90 dpi

n.d.

Daeschler
et al., 2018a

Cut 30 mW/cm2,
1.5 Mhz, 20%
pulsed

Every day, or
once a week

2 min 60 days Rat F 60 dpi not affected (IHC) not affected not affected n.d.

The studies were categorized by type of injury (crush or transection) and in chronological order. List of the LIU parameters and measured outcomes of all analyzed studies including injury type, therapeutic regimen,
animal and major outcomes on peripheral nerve morphology, electrophysiology, gene expression, and functional recovery following injury. §, †, θ these studies were done by the same lab. For this table, we use the
PRISMA 2020 guidelines for systematic review (Page et al., 2021) and identified 19 reports. n.d., not determined. STS, semithin section. EM, electron microcopy. qPCR, quantitative PCR. IHC, immunohistochemistry.
CMAP, compound muscle action potential. NCV, nerve conduction velocity. dpi, days post-injury.
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(Chen et al., 2010; Jahromy et al., 2013; Ito et al., 2020; Wang
et al., 2021). However, despite these encouraging studies,
LIU application on peripheral nerve injury is not considered,
possibly because the precise cellular and molecular mechanisms
supporting the therapeutic effect of LIU during peripheral nerve
regeneration are still not understood.

EFFECT OF LOW-INTENSITY
ULTRASOUND ON SCHWANN CELLS

During peripheral nerve regeneration, repair Schwann cells fulfill
a sequence of supportive functions for injured axons to survive,
regenerate and reinnervate their tissue target. These include the
expression of trophic factors to prevent neuronal death, the
expression of cytokines to recruit macrophages, the autophagy
of myelin debris, the formation of regeneration tracks to guide
axonal regrowth, and eventually the remyelination of axons.
Therefore, LIU regenerative effects could be mediated through
repair Schwann cells and their numerous pro-regenerative
properties that are essential to the nerve repair. While all
morphological and electrophysiological outcomes observed
in vivo in peripheral nerves after injury suggest that LIU acts
on repair Schwann cells (Table 1), specific assessments of repair
Schwann cell function and their differentiation into myelinating
or non-myelinating Schwann cells remains unstudied. In
addition, only a few groups have looked at the effect of LIU on
primary Schwann cells in vitro (Zhang et al., 2009; Tsuang et al.,
2011; Yue et al., 2016; Ren et al., 2018; Table 2). A consistent
effect of LIU on Schwann cells in vitro (observed in 3 out of
4 studies) is an increase of Schwann cell proliferation following
the first days after LIU application (Zhang et al., 2009; Tsuang
et al., 2011; Ren et al., 2018). Ren et al. (2018) proposed that, the
increased Schwann cell proliferation was mediated by enhancing
cyclin D1 expression, similar to what was found with LIU in
other cell types (i.e., mesenchymal stem cells and chondrocytes)
(Takeuchi et al., 2008; Ling et al., 2017; Xie et al., 2019). Yet, while
LIU may activate mitogenic signals in Schwann cells, the increase
in repair Schwann cell proliferation following LIU application
has yet to be studied in vivo. In addition, it is now known that
proliferation is not critical for peripheral nerve regeneration in
cyclin D1-null mice (Yang et al., 2008), contrasting with Ren
et al. (2018) hypothesis and implying that further studies are
necessary to identify the molecular mechanisms responsible for
the LIU-mediated nerve repair.

MECHANISMS OF ACTION OF
LOW-INTENSITY ULTRASOUND ON
SCHWANN CELLS

Neurotrophic Factors
Following LIU, the observed increase in the number of
myelinated axons, as well as the improvement in CMAP (Jahromy
et al., 2013; Jiang et al., 2016; Ni et al., 2017), suggests that
LIU improves the regrowth of axons. One hypothesis is that
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the regrowth of axons is mediated through the secretion of
neurotrophic factors (i.e., NT-3, FGF, NGF, BDNF, and GDNF) by
Schwann cells. Neurotrophic factors have been shown to promote
neuroprotection, axonal regrowth and even myelinogenesis
following peripheral nerve injury (for review, see Li et al., 2020).
Six studies, using various therapeutic regiment, have looked at
the effect of LIU on neurotrophic factor expression in Schwann
cells (Zhang et al., 2009; Chen et al., 2010; Jahromy et al.,
2013; Ren et al., 2018; Ito et al., 2020; Wang et al., 2021).
However, it remains unclear how parameter changes in LIU
show contrasting effects on neurotrophic factor secretion and
how neurotrophic factor secretion will be modulated by LIU
after more severe injury (nerve cut). Thus, further comprehensive
in vitro and in vivo studies are needed to clarify how different LIU
therapeutic regimens regulate Schwann cell neurotrophic factor
expression and secretion.

Pro-inflammatory Cytokines
Within a few hours following injury, repair Schwann cells
release pro-inflammatory cytokines and interleukins (e.g., TNFα,
IL-6) that promote the massive recruitment of macrophages
distal to the injury. Macrophages, in conjunction with repair
Schwann cells, clean the myelin debris and help restructure
the extracellular matrix. In addition, cytokines (e.g., IL-6)
have direct pro-regenerative roles; promoting axonal (Hirota
et al., 1996) and blood vessel (Cattin et al., 2015) regrowth
at the axonal stump. One group showed that 7 days after
nerve crush injury in rats, LIU suppressed the expression of
inflammatory cytokines TNFα and IL-6, suggesting that LIU
attenuate the pro-inflammatory response during peripheral nerve
regeneration (Ito et al., 2020). While the positive modulation
of the inflammatory response could improve peripheral nerve
regeneration (for review, see Dubový et al., 2013), more
comprehensive studies are necessary to decipher how the effect
of LIU on the inflammatory responses participates in the LIU-
mediated functional reinnervation improvement.

Schwann Cell Redifferentiation and
Remyelination
Low-intensity ultrasound in peripheral nerves following injury is
consistently found to promote myelin thickening and increase
NCV (Crisci and Ferreira, 2002; Chen et al., 2010; Park et al.,
2010; Kim et al., 2013; Lv et al., 2015; Jiang et al., 2016; Ni
et al., 2017). These observations suggest that application of LIU
promotes repair Schwann cell redifferentiation into myelinating
Schwann cells and/or remyelination. Yue et al. showed that
in vitro application of LIU on Schwann cells increases the
expression of proteins involved in Schwann cells myelination:
ErbB3; a receptor of juxtracrine and autocrine promyelinating
neuregulin 1, EGR2; a transcriptional regulator for Schwann cell
myelination, and MBP; a major myelin protein (Yue et al., 2016).
However, considering this study was performed on Schwann cells
in culture in non-myelinating conditions, the promyelinating
effect of LIU on myelin wrapping remains to be demonstrated
either in vivo or in Schwann cell/neuron myelinating co-culture.

MECHANISMS OF ACTION OF
LOW-INTENSITY ULTRASOUND
INDEPENDENT OF SCHWANN CELLS

While most data support that the therapeutic effect of LIU
on peripheral nerve regeneration is mediated by a direct
effect on repair Schwann cells, an alternative hypothesis is
that the improvement following LIU application is mediated
directly through axons. Ventre et al. (2018, 2021) demonstrated
in vitro that application of LIU on dorsal root ganglia neurons
increased neurite outgrowth by two-fold compared to untreated
controls, possibly by activating the Netrin-1/DCC pathway (Wen
et al., 2021). In addition, it was suggested that LIU promoted
axonal regrowth through the decrease of axonal semaphorin 3A
expression, an inhibitor of axonal regeneration, and the decrease
of GSK-3β, a potential inhibitor of axonal regrowth (Ito et al.,
2020). However, because of conflicting reports on the role of
GSK-3β signaling as either a beneficial or detrimental pathway
for axon regeneration (Ogata et al., 2004; Zhou et al., 2004;
Dill et al., 2008; Kim and Snider, 2011), the modulation of
GSK-3β signaling by LIU and it contribution to nerve repair
remains unclear. Following peripheral nerve injury, LIU could
modulate myeloid cells (innate immune responses) (Xu et al.,
2021) or vascular endothelial cells (angiogenesis) (de Lucas et al.,
2020). The effect of LIU on these cells during peripheral nerve
regeneration context have not been studied.

NEW AVENUES OF RESEARCH ON
IDENTIFYING THE LOW-INTENSITY
ULTRASOUND-MEDIATED SENSING
MECHANISMS IN SCHWANN CELLS

A major gap of knowledge in the current field is how LIU
is sensed by Schwann cells. In this review, we analyzed the
known effects of LIU in other cellular systems as they may
be translated to Schwann cells. LIU application was initially
implicated for the treatment of bone fracture and arthritis, thus
most of the known LIU-sensitive pathways were established
in vitro from articular joint cell types. In cartilage and synovial
cells, application of LIU increases the expression of extracellular
matrix (ECM) components which in turns activates ECM-bound
receptor responses such as the integrin/FAK/PI3K/AKT pathway
(Choi et al., 2007; Takeuchi et al., 2008; Naito et al., 2010;
Whitney et al., 2012; Cheng et al., 2014; Sato et al., 2014;
Xia et al., 2015; Zhang et al., 2016; Ding et al., 2020). LIU
was found to activate similar pathways in other cell types,
such as fibroblasts, keratinocytes and mesenchymal stem cells
(Bohari et al., 2012; Leng et al., 2018; Chen et al., 2019;
Hormozi-Moghaddam et al., 2021) which strongly suggest that
the integrin/FAK/PI3K/AKT pathway activation by LIU may
not be limited to certain cell-type. Macromolecules of the ECM
and basal lamina, such as collagen, laminin, and fibronectin,
constitute the microenvironment of Schwann cells. Schwann cells
harbor receptors for the ECM, including Integrins, GPR126,
and dystroglycan. The ECM interact with their receptors
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which activates cascades of phosphorylation in part through
RhoGTPases, Focal Adhesion Kinase (FAK) and Integrin-Linked
Kinase (ILK). These receptors and kinases contribute to the
transmission of mechanical signals from the ECM to the nucleus
(for review, see Martino et al., 2018), and are critical for
Schwann cell development and myelination (for review, see
Monk et al., 2015; Feltri et al., 2016; Wilson et al., 2021).
Importantly, those same receptors and kinases have also been
shown to be required for peripheral nerve regeneration following
injury (Werner et al., 2000; Akassoglou et al., 2002; Chen and
Strickland, 2003; Van der Zee et al., 2008; Pereira et al., 2009;
Chen et al., 2015; Mogha et al., 2016; Atherton et al., 2017;
Zainul et al., 2018). In addition, recent studies have shown that
stimuli from the ECM can lead to the reorganization of the
actin cytoskeleton, which induces the activation of transcriptional
coactivators YAP/TAZ (Dupont et al., 2011; Zhao et al., 2012;
Aragona et al., 2013; Totaro et al., 2017), and Rho GTPase
(Aragona et al., 2013; Reginensi et al., 2013). Two studies have
shown that LIU application leads to the activation of YAP/TAZ in
endothelial cells and retinal ganglion cells (Xu et al., 2018; Zhou
et al., 2018). This suggests that LIU application could modulate
diverse pathways in Schwann cells through changes in ECM
composition, architecture, and the alteration of the interactions
between the ECM and ECM-bound receptors. Yet, it is likely
that in response to LIU, mechanotransduction would initiate
multiple signaling pathways at once, and these pathways can have
significant crosstalk and overlap, making it difficult to associate
the observed improvement in peripheral nerve regeneration to
one specific pathway.

CONCLUSION

Over the last 20 years, both pre-clinical and clinical studies
have attempted to characterize the effect of LIU on peripheral
nerve regeneration. There are many compelling evidence that
application of LIU increase the number, diameter, or the
myelination of axon distal to the lesion site, improve functional
outcomes and globally enhance peripheral nerve regeneration

after nerve injury. Yet, there is still a need for studies with
comprehensive mechanistic results to understand how LIU sound
waves affect the regenerative processes following peripheral
nerve injury. While it is likely that the effect of LIU is
mediated through repair Schwann cells, which are the central
hub for peripheral nerve regeneration, the demonstration is still
lacking. It is still unclear how LIU affects ECM composition,
ECM-mediated signaling pathways; which could mediate repair
Schwann cells’ fate during peripheral nerve regeneration. In
addition, independently from Schwann cells, the effect of LIU
on immune and vascular cells, known to contribute to nerve
repair is currently unknown. Future studies should also evaluate
the effect of LIU on neuropathic pain and investigate LIU
in sensory nerves, as all functional studies have focused on
motor outcomes so far. There are a few reports indicating that
peripheral nerve regeneration may be sexually dimorphic as
axonal regrowth seems to be more efficient in males (Stenberg
and Dahlin, 2014), while remyelination post-injury is more
efficient in females (Kovacic et al., 2004; Tong et al., 2015).
Thus, future research will need to carefully evaluate how
peripheral nerve regeneration mediated by LIU may differ
between sexes. Further understanding of LIU’s modus operandi
on peripheral nerve injury would likely support further clinical
trial assessing the therapeutic effect of LIU during peripheral
nerve regeneration in humans.
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