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Immunotherapy has revolutionized the treatment of both hematological malignancies

and solid tumors. The use of immunotherapy has improved outcome for patients with

cancer across multiple tumor types, including lung, melanoma, ovarian, genitourinary,

and more recently breast cancer with durable responses seen even in patients with

widespread metastatic disease. Despite the promising results, immunotherapy still

helps only a subset of patients due to overall low response rates. Moreover, the

response to immunotherapy is highly cancer specific and results have not been

as promising in cancers that are considered less immunogenic. The strategies

to improve immunotherapy responses have focused on biomarker selection, like

PD-L1 status, and usage of combinatorial agents, such as chemotherapy, targeted

therapy, and radiotherapy. Of particular interest, DNA-damaging agents have the

potential to enhance the response to immunotherapy by promoting neoantigen release,

increasing tumor mutational burden, and enhancing PD-L1 expression. Poly-ADP-ribose

polymerase (PARP) inhibitors are one such class of drugs that has shown synergy

with immunotherapy in preclinical and early clinical studies. PARP-based therapies

work through the inhibition of single-strand DNA repair leading to DNA damage,

increased tumor mutational burden, making the tumor a more attractive target for

immunotherapy. Of the solid tumors reviewed, breast, ovarian, and prostate cancers

have demonstrated efficacy in the combination of PARP inhibition and immunotherapy,

predominately in BRCA-mutated tumors. However, initial investigations into wildtype

BRCA and gastrointestinal tumors have shown moderate overall response or disease

control rates, dependent on the tumor type. In contrast, although a number of clinical

trials underway, there is a paucity of published results for the use of the combination in

lung or urothelial cancers. Overall this article focuses on the promise of combinatorial

PARP inhibition and immunotherapy to improve patient outcomes in solid tumors,

summarizing both early results and looking toward ongoing trials.
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INTRODUCTION

A renaissance of cancer immunotherapy is currently underway
for clinicians, researchers, and patients. Broadly speaking, cancer
immunotherapy can be thought of as the selected manipulation
of the balance between pro-tumor growth inflammation and
anti-tumor immune responses (1). A number of different
methodologies exist to shift the balance and promote anti-
tumor immune response, most notably is immune checkpoint
blockade, which act to remove the inhibition of anti-tumor
lymphocytes (2). Checkpoint inhibitors (anti-PD-1/PD-L1 and
CTLA-4 antibodies) are approved as single agent therapy and
in combination with chemotherapy for a variety of cancers
(3). Other mechanisms include targeted agents, personalized
vaccines, T cell therapies, and dendritic-cell and non-specific
agents, likes oncolytic viral therapy and modulators of the
tumor microenvironment. Together, these immunotherapies
may offer a chance at robust and durable responses for patients,
however for the majority of non-immunogenic solid tumors,
clear improvements in outcomes are still wanting (4).

PARP inhibitors are more effective in tumors with existing
defects in DNA damage repair (DDR), particularly, BRCA1/2
mutations (5). In addition, PARP inhibitors are known to
be more effective in tumors carrying somatic mutations in
other DNA repair genes, including ATM, ATR, BARD1, BRIP1,
CHK1, CHK2, PALB2, RAD51, and FANC, with defects in
these genes might exhibit a phenotype similar to BRCAness

FIGURE 1 | The potential synergy between PARP inhibition and immune checkpoint blockade. (A) In the context of PARP inhibition, tumor cells develop a more

immunogenic repertoire of tumor antigens and release interferons/chemoattractants to serve as signals for immune cells. Interferons amplifies the immune activation

of T cells and lead to further recruitment of T cells. (B) Immune checkpoint blockade can function on several levels, but principally the FDA-approved agents are

directed at PD-1/PD-L1 or CTLA-4. PD-1 is transcriptionally upregulated on activating T cells and serve as a negative regulator of response. By disrupting the

connection of PD-1 to PD-L1 expressed on tumor or stromal cells in the tumor microenvironment, the anti-tumor immune response can be sustained. Similarly,

CTLA-4 is translocated to the cell surface of activating T cells or constitutively expressed on the cell surface of the suppressive regulatory T cells and dampens

activation via the sequestration of co-stimulatory signals.

(6). Functionally, as a DNA damage sensor, PARP enzymes are
rapidly recruited to sites of single and double-stranded DNA
damage (Figure 1A) (5). Binding to the DNA alters the catalytic
domains of the PARP enzymes, leading to the production of
ADP-ribose moieties (7, 8). The extension of the poly-ADP-
ribose can serve multiple functions, including (1) recruiting
effector proteins for DNA repair, (2) interfering with post-
translationally modified chromatin proteins, like histones, and
(3) can act as an energy sink for NAD+ molecules leading to
cell death (5). PARP inhibition is not only thought to block
proper DNA repair, but the inhibition can act to trap PARP
at the replication fork, preventing transcription or translation
(Figure 1A) (9).

In cancer cells with defective homologous recombination
repair (HRR) and double-stranded DNA repair, PARP inhibition
can lead to synthetic lethality, a combinatorial effect caused
by deficiencies in multiple pathways (10). Most notably, this
approach led to the recent Food and Drug Administration
(FDA) approval of PARP inhibition for metastatic breast cancer
(11) and as maintenance therapy for ovarian cancers (12),
for individuals with germline mutations in BRCA1 or BRCA2.
Unlike the implicated role of PARP inhibition in facilitating cell
death in cancer cells, new evidence is emerging in which PARP
inhibition can enhance the response of immune checkpoint
inhibitors (13, 14). PARP inhibition leads to the accumulation
of DNA damage and by increasing the amount of DNA in the
cytosol, PARP inhibition may trigger the interferon pathways
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(Figure 1A) (15, 16). Thus, not only can PARP inhibition
lead to the accumulation of neoantigens for the anti-tumor
immune response, but through the upregulation of interferons,
the inhibition may act to prime the tumor microenvironment
to facilitate a more profound anti-tumor immune response
(Figure 1B). In addition, interferons have been shown to also
increase expression of targets of immune blockade, like PD-
L1, which suggests a further potential synergy between PARP
inhibition and immune checkpoint blockade (17–19). Others
have reported PARP-inhibitor-mediated upregulation of PD-L1
via interferon-independent mechanisms (20). This synergy may
be the underlyingmechanism of themarked preclinical responses
seen using CTLA-4 and PARP inhibition in BRCA1-deficient
tumors (21).

There exists a strong interplay among host immune
system, DNA damage, and inflammation in the tumor
microenvironment. Chronic PARP inhibition leads to sustained
DNA damage resulting into epigenetic changes on tumor cells,
hence making them more vulnerable to T cells and NK cells
and finally resulting into increased intrinsic immunogenicity
of tumor cells (22). Similarly, combinatorial trials utilizing
epigenetic modulators, may increase therapeutic response by
altering the expression of DNA repair genes (23). These strategies
act to drive the balance of the tumor microenvironment toward
anti-tumor immune response by recruiting immune and
inflammatory cells while enhancing extrinsic immunogenicity.
Combination of DNA damaging agents, like PARP inhibitors,
and immune checkpoint blockers, may act as the key in bridging
the potential of immunotherapies to a broader number of
patients and tumors (Figure 1).

OVARIAN CANCER

Ovarian cancers represent a heterogenous group of solid tumors,
that have had no major change in survival rates since the
introduction of platinum agents (24). For example, relatively
recent approval of VEGF inhibitor, like bevacizumab, with the
standard carboplatin and paclitaxel chemotherapy was based
on the demonstrated increased in progression-free survival
improvement of 1.5 months (25). Part of the complications for
the treatment of ovarian tumors vague constellation of symptoms
leading to a late diagnosis (70% are stage III or greater) (26).
Single allele hereditary mutations in DNA damage recognition
or repair genes account for 24% of ovarian cancers (27). Of the
one in five ovarian cancers associated with germline mutations,
65–85% are associated with germline BRCA mutations (28).
Since the approval of PARP inhibitors in 2014 as a second line
therapy for ovarian cancers (29), PARP inhibition has also been
approved for maintenance therapy after response to platinum-
based agents (30, 31). Phase III for the use of the combination
as a maintenance therapy (NCT02477644) showed improvement
in progression-free survival from 22.7 to 24.0 months compared
to PARP inhibition alone (32). Additionally, the use of PARP
inhibitors with bevacizumab in clinical trials (NCT02354131)
have shown an impressive preliminary disease control rate of 92%
in 12 patients with BRCA2-mutated ovarian cancers (33).

TABLE 1 | Active combinatorial trials in gynecologic cancers.

Trial ID Cancer PARP

inhibitor

Immunotherapy Phase

NCT03101280 Ovarian +

Endometrial

Rucaparib Atezolizumab

(PD-1)

I

NCT02571725 gBRCA ovarian Olaparib Tremelimumab

(CTLA-4)

I/II

NCT02953457 • Ovarian

• Fallopian

tube

• Peritoneal

Olaparib Tremelimumab

(CTLA-4)

I/II

NCT03572478 Recurrent

Endometrial

Rucaparib Nivolumab

(PD-1)

I/II

NCT02660034 gBRCA Ovarian BGB-290 BGB-A317

(PD-1)

I/II

NCT02657889 • Ovarian,

• Fallopian

tube

• Peritoneal

Niraparib Pembrolizumab

(PD-1)

I/II

NCT02734004 Ovarian Olaparib Durvalumab

(PD-L1) +/-

bevacizumab

I/II

NCT02484404 • Ovarian,

• Fallopian

tube

• Peritoneal

Olaparib Atezolizumab

(PD-L1)

cediranib

(VEGFR)

II

NCT03330405 Ovarian Talazoparib Avelumab

(PD-1)

II

NCT03602859 Ovarian Niraparib TSR-042 (PD-1) II

NCT03574779 Recurrent

Ovarian

Niraparib TSR-042 (PD-1) II

NCT03955471 PLR Ovarian Niraparib TSR-042 (PD-1) II

NCT03824704 • Ovarian,

• Fallopian

tube

• Peritoneal

• Serous

Carcinoma

Rucaparib Nivolumab

(PD-1)

NCT03574779 Ovarian Niraparib TSR-042 (PD-1)

+ bevacizumab

II

NCT02873962 • Ovarian,

• Fallopian

tube

• Peritoneal

Rucaparib Nivolumab

(PD-1) +

bevacizumab

II

NCT03694262 • Endometrial

• Carcinosarcoma

Rucaparib Atezolizumab

(PD-1) +

bevacizumab

II

NCT03651206 Carcinosarcoma Niraparib TSR-042 (PD-1) II/III

NCT03737643 Ovarian

(Maintenance)

Olaparib Durvalumab

(PD-L1) +

bevacizumab

III

NCT03642132 Ovarian Talazoparib Avelumab

(PD-1)

III

NCT03598270 Ovarian Niraparib Atezolizumab

(PD-L1) +

carboplatin

III

gBRCA, germline BRCA mutation; PLR, platinum-resistant.

A number of clinical trials have examined or are currently
investigating the synergistic effects of PARP inhibition and
immune checkpoint blockade in ovarian cancer (Table 1).
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For example, the phase Ib basket study of the combination
of anti-PD-1 antibody (BGB-A317) with PARP inhibitor
(BGB-290) is currently underway for advanced solid tumors
without BRCA mutation specifications. In the 34 patients
which were treated, seven achieved a partial response (PR)
and two women with ovarian cancer achieved a complete
response (CR) (34). In the context of patients with known
mutations in BRCA1 or BRCA2, the phase II basket study
(MEDIOLA) evaluated combination of durvalumab (anti-PD-
L1) and olaparib in 32 patients with platinum-sensitive relapsed
ovarian cancer (21). The combination of PARP and PD-L1
inhibition showed an overall response rate (ORR) of 63% (6
CR and 14 PR) and a 12-week disease control rate (DCR)
of 81%. This combination was well-tolerated with grade 3–
4 AEs of anemia (9%), increased pancreatic enzymes (6–
9%), and neutropenia (3%). The larger TOPACIO trial showed
more modest results in the evaluation of pembrolizumab (anti-
PD-1) and niraparib in ovarian and triple-negative breast
(TNBC) tumors with BRCA mutations vs. wild-type (wt)
BRCA1/2 (35). Across all 60 patients, there was an ORR of
25% and a DCR of 68%, with nearly a third of platinum-
resistant ovarian cancers responding. Among the BRCA-
mutated tumors, both ORR and DCR were elevated to 45
and 73%, respectively (35). Future trials, such as the ATHENA
trial (Table 1), are evaluating the use of nivolumab (anti-
PD-1) and rucaparib as maintenance following response to
upfront platinum-based therapy in stage III/IV ovarian cancer
(NCT03522246). The four arms will include: (1) maintenance
nivolumab plus rucaparib, (2) nivolumab plus placebo, (3)
rucaparib plus placebo, or (4) placebo alone. Likewise, the
combination of PARP inhibition and checkpoint blockade
with VEGF inhibition is being evaluated in several phase II
trials (Table 1).

BREAST CANCER

Breast cancer can be divided clinically by the expression of
estrogen receptor (ER), progesterone receptor (PR), and the
human epidermal growth factor receptor 2 (HER2). These
receptors not only inform therapeutic options for a patient, such
as selective estrogen modulators, but can act as biomarkers that
predict disease course. The absence of these three receptors,
a subtype of breast cancer referred to as TNBC, represents a
poor prognosis for the respective 15–20% of breast cancers (36).
Interestingly, 70–80% of TNBC are referred to as basal-like are
defined by expression of basal cell markers and high levels of
genomic instability, for example, p53 pathway alterations seen
in 85–95% of tumors (36). This genomic instability in basal-
like breast cancer (BLBC) is compounded by the characteristic
loss in chromosome 5q, consisting of a number of DNA repair
genes (36, 37). In addition, 15–20% of BLBC possess mutations
in BRCA1 or BRCA2 (36, 38–40). Half of the 15–20% of BLBC
tumors with BRCA1 or BRCA2 are a result of germline mutations
(41, 42).

Breast cancer with germline mutations in BRCA1 or BRCA2
have been a focus of therapeutic targeting. Monotherapy PARP

TABLE 2 | Active combinatorial trials in breast cancer.

Trial ID Cancer PARP

inhibitor

Immunotherapy Phase

NCT03101280 TNBC Rucaparib Atezolizumab (PD-1) I

NCT03544125 Metastatic

TNBC

Olaparib Durvalumab

(PD-1)

I

NCT02660034 TNBC BGB-290 BGB-A317 (PD-1) I/II

NCT02484404 TNBC Olaparib Atezolizumab (PD-L1)

cediranib (VEGFR)

I/II

NCT02657889 TNBC Niraparib Pembrolizumab

(PD-1)

I/II

NCT02734004 Breast

Cancer

Olaparib Durvalumab (PD-L1)

+/- bevacizumab

I/II

NCT02849496 TNBC, stage

III/IV

Olaparib Atezolizumab (PD-L1) II

NCT03167619 Advanced,

platinum

treated TNBC

Olaparib Durvalumab (PD-1) II

NCT03330405 TNBC Talazoparib Avelumab (PD-1) II

NCT03740893 Advanced

TNBC

Olaparib Durvalumab (PD-1) II

NCT03801369 Metastatic

TNBC

Olaparib Durvalumab (PD-1) II

TNBC, triple-negative breast cancer.

inhibitors have shown improved responses in germline BRCA-
mutated breast cancer compared to conventional chemotherapy.
The high ORR of 62.6% with talazoparib vs. control ORR of
27.2% in the phase III EMBARCA trial (NCT01945775) led
to the FDA approval of the inhibitor for locally-advanced or
metastatic HER2-negative breast cancer with germline mutations
in BRCA1/2 (43). Similarly, olaparib was FDA approved based
on the results of the OlympiAD trial (NCT02000622) where
the response rate was 59.9% in the olaparib group and
28.8% in the standard-therapy group (11). However, germline
BRCA mutations only account for 8–10% of BLBC, with
questionable efficacy for the majority of breast cancers without
said germline mutations (36). Similarly, despite the increase
immune infiltration of TNBC/BLBC compared to other breast
cancers, the use of single-agent immune checkpoint blockade
across all TNBC has found a wide range of objective responses
from 5.4 to 33% (44). Thus, the combination of immunotherapy
and PARP inhibition is currently being investigated (Table 2)
for the promise of synergistic response in wild-type and mutant
BRCA breast cancers (44).

As theorized, the combination of PARP inhibitor and
immunotherapy has yielded promising initial response rates in
both BRCA1/2mutated and BRCA wild-type (BRCAwt) patients.
The phase I study evaluating durvalumab (anti-PD-L1 antibody)
in combination with olaparib in 12 patients (10 with ovarian
cancer and two with TNBC) with 11 of which were BRCAwt,
two women achieved PR and eight women had stable disease,
achieving an 83% DCR (45). The MEDIOLA phase I/II trial
evaluated durvalumab and olaparib combination as a first-
or second-line therapy. In 32 patients with germline BRCA
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mutations, the combinatorial therapy had an ORR of 53% and
a 12-weeks DCR of 47% with minimal adverse events (46). These
promising results are leading to the expansion of treatment
arms in the MEDIOLA trial, especially with the expansion of
BRCAwt TNBC patients (47, 48). Similar response was seen in
the KEYNOTE-162/TOPACIO trial evaluating pembrolizumab
and niraparib with an ORR of 29% patients, eight of the 12
patients with germline BRCAmutations. More intriguingly, ORR
was 14.3–19.2% in BRCAwt TNBC, with results still forthcoming
(49). This study also found, regardless of BRCA status, an ORR in
33% of PD-L1+ compared to 15% of PD-L1- tumors, suggesting
PD-L1 may serve as a proxy marker for the combinatorial
therapy, similar to the use in immune checkpoint blockade
monotherapy (4, 49).

UROTHELIAL CANCER

Recent investigations of urothelial cancers have demonstrated
pathogenic or likely pathogenic mutations in DNA repair in
up to 15% of urothelial cancers (50, 51). Nearly a third of
these mutations were seen in DNA mismatch repair (50). In
a phase II clinical trial, the safety and antitumor activity of
rucaparib was evaluated in patients with metastatic urothelial
cancer irrespective HRR status. However, the study was closed
prematurely as there was no adequate clinical response as
determined by the independent data monitoring committee.
Additional studies with rucaparib and olaparib are planned in a
cohort selected for HRR mutations.

The potential synergy and efficacy of combination of PARP
inhibitors and checkpoint inhibitors in urothelial cancers are
currently being evaluated in multiple clinical trials. One such
study is the BISCAY trial, a multi-arm, multi-drug, open-label,
phase Ib study with one arm evaluating the safety and tolerability
of olaparib as a monotherapy, or in association with durvalumab
(anti-PD-L1), for the treatment of metastatic urothelial cancer
in patients who have progressed on prior treatment and
possess defects in DNA-repair genes (NCT02546661). A similar
combination is evaluated in a phase II clinical trial as first-
line for platinum-ineligible metastatic urothelial cancer (BAYOU,
NCT03459846). Safety and efficacy of these approaches are yet to
be reported (Table 3).

TABLE 3 | PARPi and immunotherapy combination trials in urothelial cancer.

Trial ID Cancer PARP

inhibitor

Immunotherapy Phase

NCT02546661 Metastatic Urothelial

Cancer

Olaparib Durvalumab

(PD-L1)

Ib

NCT03459846 First line,

platinum-ineligible

Metastatic Urothelial

Cancer

Olaparib Durvalumab

(PD-L1)

II

NCT03869190 Locally advanced

Urothelial Carcinoma

Niraparib Atezolizumab

(PD-L1)

Ib/II

PROSTATE CANCER

The prevalence of mutations in the DNA repair genes involved
in HRR in men with prostate cancer irrespective of age or
family history has been estimated at 11–23% (52). In the Trial
of PARP Inhibition in Prostate Cancer (TOPARP-A) study,
olaparib monotherapy had a composite response (defined as
either objective response as per RECIST 1.1 with modified
PCWG2 recommendations, a decrease in PSA of ≥ 50%, or a
circulating tumor cell count conversion from≥5 cells per 7·5mL
blood at baseline to <5 cells per 7·5mL blood) of 88% with
a median survival of 13.8 months in a small cohort of heavily
pretreated patients with metastatic castrate-resistant prostate
cancer (mCRPC) with HRR gene mutation (53). In another study
(TOPARP-B), 98 patients with mCRPC with DNA repair gene
mutations and prior treatment with chemotherapy and novel
antiandrogen therapy were randomized to receive treatment with
either olaparib 400mg BID (Ola400) or olaparib 300mg BID
(Ola 300). The composite response was seen in 54·3 and 39.1%
in the Ola400 and Ola300 cohorts, respectively. The radiologic
responses were seen predominantly in patients with BRCA 1/2
when compared to ATM and CDK12 gene mutations (54). The
preliminary results of the phase III, randomized PROfound study
evaluating the efficacy of olaparib in comparison to physician
choice novel antiandrogen (pcNHA) in mCRPC with HRR
mutations, were presented at the ESMO conference in 2019. In
this study, an objective response rate (based on RECIST v1.1
+ PCWG3) of 33% was seen in patients with BRCA1, BRCA2,
or ATM mutations and treated with olaparib in comparison to
pcNHA the ORR was 2.3%. When the response was assessed
with the inclusion of other HRR gene mutations, the ORR with
olaparib was 21.7%, suggesting differential response with BRCA
vs. non-BRCAmutations. The radiographic PFS for those treated
with olaparib was 5.82 months, and with pcNHA, it was 3.52
months. At the data cut off, the overall survival was 17.51 and
14.26 months, respectively. The most common adverse events
with olaparib monotherapy were anemia, nausea, decreased
appetite, and fatigue (55).

The efficacy of niraparib in patients with mCRPC after prior
novel hormonal agent and chemotherapy was evaluated in the
GALAHAD clinical trial (56). Patients were enrolled based on
the presence of HRR gene mutations. In the preliminary results
report at the ESMO conference in 2019, 46 patients had BRCA
1/2, and 35 had non-BRCA mutations. The objective response
rates were high with BRCA 1/2 when compared to non-BRCA
mutations, 41 vs. 9%, respectively. The median PFS in the BRCA
1/2 and non-BRCA cohorts were 8.2 and 5.3 months, respectively.
Themost common grade 3–4 side effects were myelosuppression,
asthenia, and back pain.

The safety and antitumor activity of immunotherapy with
olaparib was evaluated in early phase studies. In a phase II,
open-label study of 17 patients with mCRPC regardless of HRR
mutation status, the combination of durvalumab and olaparib
was evaluated (57). Of the 17 patients, 9 had a prostate-specific
antigen (PSA) decline of ≥50%, and four had a radiographic
response by RECIST v.1.1 criteria. Genomic analysis of the
responding patients showed 4 with germline and 2 with bi-allelic
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TABLE 4 | Active combinatorial trials in prostate cancer.

Trial ID Cancer PARP

inhibitor

Immunotherapy Phase

NCT02484404 Metastatic

CRPC

Olaparib Atezolizumab (PD-L1)

cediranib (VEGFR)

I/II

NCT02660034 Metastatic

CRPC

BGB-290 BGB-A317 (PD-1) I/II

NCT02861573 Metastatic

CRPC

Olaparib Pembrolizumab

(PD-1)

I/II

NCT03572478 Metastatic

CRPC

Rucaparib Nivolumab (PD-1) I/II

NCT03330405 CRPC Talazoparib Avelumab (PD-1) II

NCT03338790 CRPC Rucaparib Nivolumab (PD-1) II

NCT03834519 Metastatic

CRPC

Olaparib Pembrolizumab

(PD-1)

III

CRPC, Castration-resistant prostate cancer.

somatic alterations in BRCA2 (58). Additionally, one responder
had a monoallelic loss of PMS2, a mismatch repair gene, and with
a separate responder having a monoallelic loss of BRCA2. The
remaining two responding patients had no predisposing gene
alterations detected. The most common grade 3 or 4 adverse
events were myelosuppression, infection, and nausea (57, 58). In
another study, Yu et al. evaluated the efficacy of pembrolizumab
along with olaparib in a cohort of 41 patients with mCRPC and
HRR wild-type (59). This combination showed a partial response
of 7% and disease control rate (DCR) of 29% as per the RECIST
v1.1 criteria. The median OS was 14 months with the most
common adverse events being anemia, fatigue, and nausea.

PARP inhibitor monotherapy in prostate cancer with
HRR gene mutations, especially BRCA1/2, has shown
significant antitumor activity. The hypothesis for combining
immunotherapy with PARP inhibitors is plausible; however, the
data on safety and antitumor activity are still in the early stages.
Numerous combination trials to address the safety and efficacy
are ongoing (Table 4).

LUNG CANCER

Lung cancers can be subdivided into two major categories
by histological examination, small-cell (SCLC) and non-small-
cell lung cancers (NSCLC). In the latter, immune checkpoint
monotherapy has shown responses ranging from 12 to 45%,
dependent on patient selection criteria (4). Several studies are
currently aimed at the combination of immune checkpoint
blockade and PARP inhibition in NSCLC (Table 5), however,
most efforts for improving therapeutic response in NSCLC is the
combination of checkpoint blockade with targeted therapies (60)
or traditional chemotherapy regimens (61–63). Or similarly, the
testing the synergy of PARP inhibition with targeted therapies
(64) or chemotherapies (65).

PARP inhibitors are attractive not only in tumors with
underlying homologous recombination deficiencies, but also in
tumors associated with high levels of replication stress, such
as SCLC. SCLC cell lines have shown upregulation of BCL2

TABLE 5 | Active combinatorial trials in lung cancer.

Trial ID Cancer PARP

inhibitor

Immunotherapy Phase

NCT02484404 SCLC Olaparib Atezolizumab (PD-L1)

cediranib (VEGFR)

I/II

NCT02660034 Extensive

SCLC

BGB-290 BGB-A317 (PD-1) I/II

NCT02944396 NSCLC Veliparib Nivolumab (PD-1) +

Platinum therapy

I/II

NCT02734004 SCLC Olaparib Durvalumab (PD-L1)

+/- bevacizumab

I/II

NCT03330405 NSCLC Talazoparib Avelumab (PD-1) II

NCT03308942 NSCLC Niraparib Anti-PD-1 II

NCT03775486 NSCLC Olaparib Durvalumab (PD-L1) II

SCLC, small-cell lung cancer; NSCLC, non-small-cell lung cancer.

and elevated PARP1 levels (66). Early preclinical data has found
PARP inhibition sensitized SCLC to cisplatin therapy (67). The
IOLite open label trial (NCT03307785) is testing the safety
and tolerability of the combination of anti-PD-1 and niraparib
with the proteasome inhibitor bevacizumab in chemotherapy-
resistant advance solid tumors, including SCLC (68). This
elevated expression of PARP1 in SCLC is even being explored
as a dynamic, non-invasive imaging modality to measure the
drug-target engagement of PARP inhibitors (69).

GASTROINTESTINAL CANCERS

The use of the combination immunotherapy and PARP
inhibition is particularly interesting the gastrointestinal cancers.
Notably, defective DNA mismatch repair and microsatellite
instability, seen in Lynch Syndrome and 15% of colon
cancer, have phenomenal responses of 25–80% to single-agent
immune checkpoint blockade (4). Germline DDR mutations
are seen in about 3% in gastric cancer (70), 3–17% in
pancreatic cancer (71), and up to 8% in colorectal cancer
(72) based on the gene involved and the population group.
More relevant to the use of possible combinatorial PARP and
checkpoint inhibition, acquired mutations in HRR are seen
in about 28.9% in biliary, 20.9% in hepatocellular, 20.8% in
gastroesophageal, 15.4% in pancreatic, and 15% in colorectal
cancer patients (73). Like previously described cancers, a
number of investigations are underway in the context of
gastrointestinal tumors with intact and defective DNA repair
and have reported responses in gastric and pancreatic cancers
(74). The below clinical trials are evaluating the combination
of PARP agents with PD1/PD-L1 inhibitors for a synergistic
response with trials that are currently underway summarized in
Table 6.

The open-label MEDIOLA phase II basket study evaluating
olaparib in combination with durvalumab in patients with
relapsing gastric cancer after platinum-based chemotherapy
(75). A 4-weeks run-in with olaparib was done to collect
biopsies followed by combination therapy with olaparib and
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TABLE 6 | Active combinatorial trials in gastrointestinal cancers.

Trial ID Cancer PARP

inhibitor

Immunotherapy Phase

NCT02484404 Colorectal Olaparib Atezolizumab

(PD-L1) cediranib

(VEGFR)

I/II

NCT02660034 • HER2-negative

gastric

• Gastroesophageal

junction

• Advanced pancreatic

BGB-290 BGB-A317 (PD-1) I/II

NCT03851614 • Advanced pancreatic

• dMMR colorectal

Olaparib Durvalumab (PD-1) I/II

NCT03404960 Advanced pancreatic Niraparib Nivolumab (PD-1)

ipilimumab (CTLA-4)

I/II

NCT03637491 Advanced pancreatic Talazoparib Avelumab (PD-1) I/II

NCT02734004 Relapsed gastric Olaparib Durvalumab (PD-L1)

+/− bevacizumab

I/II

NCT03639935 Biliary Rucaparib Nivolumab (PD-1) II

durvalumab until disease progression. Among 40 patients
included in the study, an ORR of 10% (2 in CR and 2 in
PR) was reported with a DCR at 12 weeks of 26% (75). In
the patient with controlled disease, the median duration of
response about 11.1 months. Grade 3 and grade 4 adverse
events were reported for 48 and 8% of treated patients,
with 25% of patients developing immune-mediated adverse
events. These events principally consisted of anemia (17.5%)
and increased lipase (10%). The authors theorized the low
12-weeks disease control rate may have been a result of a
high rate of disease progression during the 4-weeks run in
treatment with olaparib, which excluded patients from the
final evaluation.

The promise of immunotherapy has not become a reality
for pancreatic cancers, with low response rates to checkpoint
inhibitors (4). With the FDA approval of PARP inhibitors
for maintenance therapy in patients with BRCA-mutated
pancreatic cancer in late 2019, investigations are proceeding
with broadening the therapy using combinatorial approaches
(76). For instance, PARPVAX is a phase Ib/II study intended for
locally advanced/metastatic pancreatic cancer patients who did
not progress after a minimum of 16 weeks of platinum-based
chemotherapy. Eligible patients will be in the niraparib with
nivolumab (anti-PD-1) arm or niraparib with ipilimumab arm
with the primary outcome measure of 6-months progression-
free survival in both the arms. However, current trials are
underway that move beyond comparing PARP and checkpoint
inhibition by adding additional agents. A phase Ib/II study of
doublet therapy avelumab with binimetinib (MEK inhibitor);
or with the addition of talazoparib (PARP inhibitor) in
locally advanced/metastatic RAS-mutant solid tumor patients
(including metastatic pancreatic ductal adenocarcinoma) with
disease progression after one line of therapy is currently
under investigation (Table 6). Another combinatorial approach
is seen in the DAPPER phase II basket combination study
of durvalumab with olaparib or cediranib (VEGFR inhibitor)

in advanced DNA mismatch-repair-proficient colorectal cancer,
pancreatic adenocarcinoma, or leiomyosarcoma who failed
standard therapy.

DISCUSSION

The combination of PARP inhibitor and immune checkpoint
agents targeting PD/PD-L1, appears to be safe, potentially
synergistic and may represent a compelling strategy in treatment
for a variety of tumors. There is difficulty in the concluding of
synergy between the use of PARP inhibitors and immunotherapy,
as a number of clinical trials summarized are in (1) early
phases safety trials, (2) utilize patients in advanced clinical
stages or after failure of multiple therapies, and (3) compare
response to standard chemotherapy regimens. Moreover, these
combinatorial trials do not have multiple arms comparing the
treatment with one agent and often differ in inclusion criteria
from the single-agent PARP or immune checkpoint trials. In
the context of HRR-deficient tumors, remarkable responses have
been reported in ovarian (ORR 45–63%, DCR 73–81%) and
breast cancer (ORR 53% DCR: 47%) (21, 34, 46). Underlying
these observations is the assumption that PARP inhibitors may
act to prime the tumor microenvironment and increase anti-
tumor immune cells, acting like an adjuvant for immunotherapy.
For tumors that harbor a known alteration in HRR genes, such
as BRCA1 or BRCA2, higher tumor mutational burden and a
greater number of tumor-infiltrating lymphocytes has been seen
in breast and ovarian cancer (77, 78). In these instances, the
combination therapy seems to act by tipping the balance in
favor of an anti-tumor immune response in the setting of a
primed tumor microenvironment. This theory is supported by
the observations of the CTLA-4 inhibition working in synergy
with PARP inhibition in BRCA1 deficient tumors (21).

As summarized in this article the open question remains on
translating the efficacy of the combination of PARP inhibition
with immune checkpoint blockade in cancers intact DNA
repair machinery. The majority of the clinical trials currently
underway are investigating that very question. Early reports
have shown more modest ORR of 14–19% in breast (49),
10% in gastric (68), and 7% in prostate cancers (59). Despite
the low ORR for prostate cancer, there was a 46% DCR for
advanced, therapy-resistant, metastatic disease (59). Mechanistic
investigations are hopeful, with findings that include PARP
inhibition induces PD-L1 expression in homologous-proficient
breast cancer (17, 19). PARP inhibition can also promote the
accumulation of cytosolic DNA fragments due to unresolved
DNA lesions, which in turn activates the DNA sensing cGMP-
synthase-stimulator-of-interferon genes (cGAS-STING) pathway
(79). This stimulates the production of type I interferons, and
in turn, induces antitumor immunity that may be further
enhanced by checkpoint inhibitor blockade, independent of
BRCAness (80). Other strategies that act to further prime
the tumor microenvironment before or concomitantly with
immunotherapy are being evaluated, such as the use of radiation
or chemotherapy (4).
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Combining PARP inhibitors with immunotherapy has
the potential to improve outcomes in variety of solid
tumors but several challenges remain. Most notably, lack of
predictable responses in most tumor types and delineation of
patients that would benefit from combination vs. sequential
therapies. Identifying biomarkers of DNA damage repair
and immune responsiveness would have to be streamlined.
Various factors such as tumor vs. liquid biopsy, somatic vs.
germline mutations, PDL-1 positivity on tumor cells vs. immune
cells, nature and degree of DNA damage can potentially
impact on clinical outcomes. Additionally, challenges remain
in identifying meaningful endpoints of such combinations
therapy like overall survival vs. response rates. Duration
and frequency of such combination therapy and associated
impact on health care costs should be considered. Research
efforts should be focused not only on evaluating safety and
efficacy, but also on biomarkers that can accurately predict
benefit from such combination. The preliminary results of

various studies evaluating the efficacy of PARP inhibitors
and immunotherapy are promising in various solid tumors.
The final results of the ongoing phase III clinical trials will
eventually determine their overall efficacy and clinical benefit for
the patients.
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