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Abstract

Emerging research suggests that multiple tumor compartments can influence treatment responsiveness and relapse, yet the

search for therapeutic resistance mechanisms remains largely focused on acquired genomic alterations in cancer cells. Here

we show how treatment-induced changes occur in multiple tumor compartments during tumor relapse and can reduce benefit

of follow-on therapies. By using serial biopsies, next-generation sequencing, and single-cell transcriptomics, we tracked the

evolution of multiple cellular compartments within individual lesions during first-line treatment response, relapse, and

second-line therapeutic interventions in an autochthonous model of melanoma. We discovered that although treatment-

relapsed tumors remained genetically stable, they converged on a shared resistance phenotype characterized by dramatic

changes in tumor cell differentiation state, immune infiltration, and extracellular matrix (ECM) composition. Similar

alterations in tumor cell differentiation were also observed in more than half of our treatment-relapsed patient tumors. Tumor

cell-state changes were coincident with ECM remodeling and increased tumor stiffness, which alone was sufficient to alter

tumor cell fate and reduce treatment responses in melanoma cell lines in vitro. Despite the absence of acquired mutations in

the targeted pathway, resistant tumors showed significantly decreased responsiveness to second-line therapy intervention

within the same pathway. The ability to preclinically model relapse and refractory settings—while capturing dynamics

within and crosstalk between all relevant tumor compartments—provides a unique opportunity to better design and sequence

appropriate clinical interventions.

Materials and methods

Genetically engineered mouse model (GEMM)

BrafLSL.V600E;PTENfl/fl;Tyr.CreER and BrafLSL.V600E;PTENfl/fl;

Tyr.CreER;Rosa26LSL.tdTomato mice were fully backcrossed
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(>10 generations) into C57BL/6J mice [1–4]. Licenses were

obtained from appropriate institutions.

Tumor induction

At ~8–12 weeks of age, animals were first anesthetized

using continuous 2% Isothesia (Isoflurane, Butler Schien

Animal Health; catalog number 1169567762; Dublin, OH).

The dorsal skin of the right flank was shaved using an

electric shaver, wiped clean, and 1 µL of 5 mM 4-OH

tamoxifen (Sigma, catalog number H7904, St. Louis, MO)

dissolved in ethanol was applied to the shaved skin to

induce tumor formation. After application, the animal was

kept under anesthesia for 3 min to allow the ethanol to

evaporate, after which they were allowed to recover while

monitored on a heating pad. After 4–8 weeks, animals were

stratified into treatment cohorts using tumor measurements

for in vivo dosing experimentation. They were individually

housed to prevent any impact to the induced tumors by

another mouse. Equal numbers of male and female animals

of ~25 g each were enrolled across dosing groups. Vemur-

afenib (Zelboraf®) was dosed at 50 mg/kg via oral gavage

(PO), twice a day (b.i.d.). Cobimetinib (Cotellic®) was

dosed at 7.5 mg/kg via oral gavage (PO), once a day (q.d.).

α-PD-L1 (Clone 9708-6E11) was dosed at 10 mg/kg via

intraperitoneal injection, three times a week (t.i.w.). The

animals were dosed and monitored according to guidelines

from the Institutional Animal Care and Use Committee

(IACUC) at Genentech, Inc. (South San Francisco, CA).

Biopsies

Animals were anesthetized using continuous 2% Isothesia

(Isoflurane, Butler Schien Animal Health; catalog number

1169567762; Dublin, OH). The tumor surface and sur-

rounding area was cleaned using 7.5% povidone-iodine and

then 75% ethanol. A 3 mm punch biopsy (Miltex, Inc.;

catalog number 33-32, York, PA) was used to obtain tumor

samples, which were immediately placed into either RNA-

Later (Qiagen, Inc.; catalog number 76104, Valencia, CA)

or frozen in liquid nitrogen. After biopsy, the wound was

cleaned using a sterile cotton swab and then immediately

closed up using 5-0 absorbable sutures (Ethicon, LLC;

catalog number J463G, Cincinnati, OH). The animal was

allowed to recover while monitored on a heating pad. At the

end of treatment, individual solid tumors were collected and

trisected for next-generation sequencing analyses and his-

topathology. All histopathology assessments were blinded.

Ultrasound imaging

The ultrasound imaging and data analysis has been descri-

bed in more detail previously [5]. Briefly, mice were

anesthetized with sevoflurane (4%), positioned prone on a

feedback-controlled heated stage (Visualsonics, Toronto,

Canada), fur surrounding tumors was removed using a

clipper, and ultrasound gel was applied. To estimate tumor

volumes, b-mode images (Siemens Acuson S2000, Munich,

Germany) were acquired for axial and sagittal planes cov-

ering maximum tumor cross-sections (center frequency

8MHz, 27% power; 45 µm in plane resolution, 300 µm slice

thickness, Field of View (FOV): 3 × 3.8 cm). Tumor

boundaries were manually outlined and volumes estimated

by fitting an ellipsoid. Two-dimensional Acoustic Radiation

Force Impulse (ARFI) imaging (Virtual TouchTM Tissue

Imaging Quantification) was performed on axial planes

using a clinical transducer (8 MHz). At least four shear

wave speed maps were acquired for each imaging plane.

Tumor outlines from b-mode images were applied to the

average of four corresponding shear wave maps in order to

estimate the average shear wave speed for a tumor at a

given time point.

Mass spectroscopy

Tumor tissue were reduced with sodium borohydride,

washed with water, dried, hydrolyzed in hydrochloric acid,

and transferred to liquid chromatography (LC)-tandem mass

spectrometry. A water acetonitrile gradient was run on a

reverse-phase column (Agilent Technologies, Santa Clara,

CA). The LC was coupled to a mass spectrometer (Applied

Biosystems, Foster City, CA) operating under positive

ionization mode. Sample analysis was performed in multi-

ple reaction monitoring mode with a dwell time of 0.1 s.

Survival

Animals were censored for survival in an unblinded manner

based on pre-determined morbidity criteria for killing (in

consultation with veterinary staff under the IACUC guide-

lines), which included low body condition scoring (e.g.,

hunching, belabored breathing, low body temperature), lack

of mobility, and > 20% body weight loss from the time of

study start or mortality.

Fluidigm analyses

Tumor RNA was purified using the Qiagen All Prep kit

(Qiagen, Inc.; catalog number 80204, Valencia, CA). cDNA

was created using Applied Biosystems Reverse Transcription

Kit (ABI, Inc.; catalog number 4374966, Waltham, MA). Ten

nanograms of tumor RNA was added to 2 µL 10 × Reverse

Transcriptase (RT) Buffer, 0.8 µL 100mM dNTP mix, 2 µL

10 × Random Primers Mix, 1 µL Multiscribe RT, 1 µL of

RNase Inhibitor, and 3.2 µL of ddH2O, and incubated at 25 °C

for 10 min, 37 °C for 120min, and then 85 °C for 5 min. The
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resulting cDNA (1.25 µL) was then added to a preamplifica-

tion reaction containing 2.5 µL of 2 × TaqMan® PreAmp

Master Mix (ABI/ThermoFisher Scientific; catalog number

4391128, Waltham, MA) and 1.25 µL of a pool of 96 Taq-

Man® Assays (ThermoFisher Scientific; catalog number

4331182, Waltham, MA; full list of genes below). This mix

was incubated at 95 °C for 10 min and then cycled 14 times at

the following conditions: 95 °C for 15 s and 60 °C for 4 min.

After the reaction was complete, the mix was diluted with

20 µL of TE Buffer, pH 8.0 (Ambion/ThermoFisher Scien-

tific; catalog number AM9849; Waltham, MA). The resulting

amplified cDNA (2.7 µL) was then added to 3 µL of Universal

PCR Master Mix (ABI/ThermoFisher Scientific; catalog

number 4304437, Waltham, MA) and 0.3 µL of Fluidigm

Sample Loading Reagent (Fluidigm; South San Francisco,

CA). TaqMan® Gene Expression Assays (3 µL; ThermoFisher

Scientific; catalog number 4331182, Waltham, MA; full list

of genes below) were added to 3 µL Fluidigm Assay Loading

Reagent (Fluidigm; South San Francisco, CA). The resulting

mixtures were loaded onto a 96:96 Dynamic Array using a

BiomarkTM System (Fluidigm; South San Francisco, CA). Ct

values were calculated from the system’s software (Bio-

markTM Real-time PCR analysis, Fluidigm; South San Fran-

cisco, CA). All Raw Ct values were normalized to one or

more of three housekeeping genes, or the whole plate for

further analysis.

Gene signatures

The previously published melanoma differentiation sig-

nature contains the following 21 genes: BACE2, CITED1,

DCT, EDNRB, GPNMB, GPR143, KIT, MC1R, MITF,

MLANA, OCA2, PAX3, PMEL, RARB, SLC24A4, SLC24A5,

SLC45A2, TRPM1, TYR, TYRP1, and ZEB2 [6]. Our

Nanostring gene set contains the following overlapping nine

genes with the above melanoma differentiation signature:

BACE2, EDNRB, GPNMB, KIT, MITF, MLANA, PMEL,

TYRP1, and ZEB2. The mouse melanoma marker gene set

contains the following eight genes: Ednrb, S100a1, Pmel,

Lef1, Mlana, Tyrp1, Mc1r, and Gpr143, five of which

overlap with our Nanostring gene set and contains the fol-

lowing genes: EDNRB, PMEL, LEF1, MLANA, and TYRP1.

The mitogen-activated protein kinase (MAPK) signature

contains the following genes: Dusp4, Dusp6, Etv1, Etv4,

Etv5, Fosl1, Phlda1, Spry2, and Spry4 [7, 8]. All gene

signature values were created by calculating the mean and

SD of each gene across all samples. A z-score was then

obtained for each gene for each sample through the fol-

lowing formula: z= (x− µ)/σ, when x is the score, µ is the

mean, and σ is the SD. The z-score for every gene in

the signature for each sample was then added up and divi-

ded by the square root of the total number of genes in the

signature to give the final plotted value for each sample.

Whole-exome sequencing

Genomic DNA was extracted from tumor and normal tis-

sues using the Qiagen All Prep nucleic isolation kit (Qiagen,

Inc.; catalog number 80204, Valencia, CA) as per the

manufacturer’s protocol. Quality and quantity of DNA

samples was determined before their processing by exome

sequencing. The concentration and the integrity of DNA

samples were determined using NanoDrop 8000 (Thermo-

Fisher Scientific, Waltham, MA) and 2200 TapeStation

(Agilent Technologies, Santa Clara, CA), respectively.

Exome capture was performed using 0.5 µg of genomic

DNA and SureSelectXT Mouse All Exon kit (50 Mb)

according to the manufacturer’s protocol (Agilent Tech-

nologies, Santa Clara, CA). Fragment size distribution of

post-capture amplified libraries was determined with 2200

TapeStation using high-sensitivity D1000 screen tape

(Agilent Technologies, Santa Clara, CA). Concentration of

the libraries was measured by Qubit (ThermoFisher Scien-

tific, Waltham, MA). Exome capture libraries were

sequenced on HiSeq2500 (Illumina, San Diego, CA) to

generate paired-end 75 base reads.

RNA sequencing

Total RNA was extracted from cells using the Qiagen All

Prep nucleic isolation kit (Qiagen, Inc.; catalog number

80204, Valencia, CA) as per the manufacturer’s protocol,

including the on-column DNase digestion. Quality control

of samples was done to determine RNA quantity and quality

before their processing by RNA sequencing (RNA-seq).

The concentration and the integrity of total RNA samples

were determined using NanoDrop 8000 (ThermoFisher

Scientific, Waltham, MA) and 2200 TapeStation (Agilent

Technologies, Santa Clara, CA), respectively. One micro-

gram of total RNA was used as an input material for library

preparation using TruSeq RNA Sample Preparation Kit v2

(Illumina, San Diego, CA). Library size was confirmed

using the 2200 TapeStation and high-sensitivity D1K screen

tape (Agilent Technologies, Santa Clara, CA), and their

concentration was determined by quantitative PCR-based

method using Library quantification kit (Kapa Biosystems,

Wilmington, MA). The libraries were multiplexed and then

sequenced on HiSeq2500 (Illumina, San Diego, CA) to

generate 30M of single-end 50 base pair reads.

Analysis of whole-exome and RNA sequences

Whole-exome and RNA sequences from initial biopsy (IB)

tumors, progressed biopsy tumors (VPr), and matched nor-

mal genetically engineered mouse models (GEMM) were

trimmed to 75 bp and filtered for sequencing quality and

ribosomal RNA. Reads for which 30% or more of the

2418 J. E. Long et al.



nucleotides had a Phred quality score of 23 or lower were

discarded. The remaining reads were aligned to the mouse

genome using the Genomic Short-read Nucleotide Align-

ment Program (GSNAP) [9], with default settings and the

following parameters: -M 2 -n 10 -B 2 -i 1 -N 1 -w 200000

-E 1 --pairmax-rna= 200000 --clip-overlap. Further trim-

ming was not performed. Multimapping reads were dis-

carded. PCR duplications were filtered using PicardTools.

We used established gene models from the National Center

for Biotechnology Information (NCBI) database and

extended those with internal Genomic Mapping and

Alignment Program for mRNA and EST sequences

(GMAP) alignments for additional genes not in

NCBI database. We used GATK (Version 3.5) to measure

the sequencing depth and the coverage in targeted regions

of whole-exome sequencing. For whole-exome sequencing,

somatic single-nucleotide variants and insertion/deletions

were called using Strelka 1.0.4 with its default settings [10].

High-confident variants were annotated by Ensembl Variant

Effect Predictor (version 77) [11] and filtered with dbSNP

138, RepeatMasker 4.0.5 (http://www.repeatmasker.org),

and variants obtained from normal tails of C57BL/6J mice

collected in multiple internal projects. We considered

somatic variants as high-confident variants that passed our

filtering and were only observed in matched second biopsy

tumors, not in the matched normal samples. Protein-altering

mutations include nonsynonymous mutations, gain/loss of

stop codon, insertion/deletion, frameshift mutations, and

mutations at splicing donor and acceptor sites. Human

cancer-related genes were obtained from ref. [12]. To con-

firm expression of somatic variants, we used the Var-

iantTools and gmapR packages in Bioconductor and

counted the number of RNA-seq reads carrying the same

somatic variants in the BAM files of matched samples that

align to the genomic coordinates of the variants. We

manually examined PAMs using Integrative Genomics

Viewer. We also aligned exome reads containing recurrent

variants to the mouse genomic and transcripts database

using BLASTN, and included alignment to alternate

assemblies, such as Mm_Celera in Extended Dataset 1.

Gene expression levels were quantified from RNA-seq as

reads per kilobase of exon model per million mapped reads

normalized by size factor, referred to as RPKM, and defined

as the number of reads aligning to a gene in a sample,

divided by the total number of uniquely mapped reads for

that sample × gene length × size factor.

Detection of copy number aberrations

We inferred the copy number (CN) landscape of each tumor

from its exome sequence and the exome sequence of its

matched normal, using Control-FREEC with the default

exome-seq settings (window size 500 bases and step 250

bases) [13]. CN per gene was obtained by averaging the

coverage of segments containing the gene of interest and

was used to screen for CN gain (2.8 ≤ CN < 4), amplification

(CN ≥ 4), loss (1 < CN ≤ 1.4), and deletion (CN ≤ 1).

Regions of focal amplification/deletion are defined as

regions <5Mb. Whole chromosome gain is defined as gain/

amplification of at least 80% of genes per chromosome.

Prevalence of gene amplification, gain, loss, or deletion was

calculated as the ratio of number of tumors with the

alteration to the total number of tumors with available CN

status for that gene.

Nanostring RNA analysis of patient tumors

BRIM2 (NCT00949702) was a single-arm phase 2 study in

which patients with BRAFV600-mutant melanoma received

vemurafenib treatment. Patient consent was obtained for

exploratory research conducted on all tissues. mRNA was

prepared from formalin-fixed, paraffin-embedded sections

of tumor tissue and gene expression was measured using

Nanostring (NanoString Technologies, Seattle, WA). Data

were normalized to the geometric mean of all 800 genes

profiled. The effect on baseline expression was determined

using a Cox proportional hazards model. For tissues from

melanoma biopsies, sections were stained with hematoxylin

and eosin. RNA was isolated using the High Pure RNA

Paraffin Kit (Roche; catalog number 03270289001, Basel,

Switzerland).

Immunohistochemistry

Formalin-fixed, paraffin-embedded sections of murine

melanoma were cut at 5 µm. Sections were then depar-

affinized and subjected to antigen retrieval using Target

Retrieval Solution (Agilent Technologies, catalog number

S1700, Santa Clara, CA) at 98 °C for 10 min and allowed to

cool at room temperature for 30 min. Melanoma sections

were then blocked for 1 h in phosphate-buffered saline

(PBS) containing 0.1% Triton X-100, 3% bovine serum

albumin and 5% normal donkey serum (Jackson Immuno

Research Labs, catalog number NC9624464, West Grove,

PA). Thereafter, they were incubated overnight at 4 °C in

the same buffer with the following primary antibodies:

Anti-tdTomato (1:500) (Biorbyt, catalog number

ORB182397, San Francisco, CA) and anti-phospho ERK

(1:250) (Cell Signaling Technology, catalog number 4370,

Danvers, MA). After three PBS washes, cultures were

incubated for 1 h at room temperature with the following

secondary antibodies: Alexa488-conjugated anti-rabbit

(1:400) and Alexa594-conjugated anti-goat (1:400) (Ther-

moFisher Scientific, Waltham, MA). Slides were counter-

stained with 4,6-diamidino-2-phenylindole, dihydrochloride

(ThermoFisher Scientific, catalog number D1306, Waltham,

Therapeutic resistance and susceptibility is shaped by cooperative multi-compartment tumor adaptation 2419
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MA) and mounted using ProLong Gold Antifade mountant

(ThermoFisher Scientific, Waltham, MA). Fluorescent

photomicrographs were taken on a Zeiss microscope (Carl

Zeiss Microscopy, Thornwood, NY). All picture acquisi-

tions were as individual tiff files and composite images were

made in Adobe Photoshop CC (Adobe Systems, Inc., San

Jose, CA).

Cell culture

Briefly, polyacrylamide coverslips were coated as described

in refs. [14, 15], substituting fibronectin at 20 mg/mL

(Sigma, catalog number F1141, St. Louis, MO) for col-

lagen. Approximately 12 µL of matrix stiffness solution

(0.2 kPa—10 mM HEPES 424.7 µL, 40% Polyacrylamide

37.5 µL, 2% Bisacrylamide 7.5 µL, APS 2.5 µL, TEMED

0.25 µL; 3 kPa—10 mM HEPES 403 µL, 40% Poly-

acrylamide 68.6 µL, 2% Bisacrylamide 22.48 µL, APS 2.5

µL, TEMED 0.25 µL; 12 kPa—10 mM HEPES 358 µL,

40% Polyacrylamide 94.4 µL, 2% Bisacrylamide 40 µL,

APS 2.5 µL, TEMED 0.25 µL) was covered with a cover

glass and left for 1 h at room temperature to set the gel.

After removing the cover glass, the gel was coated with 150

mL of Sulfo-SANPAH Photoreactive Crosslinker (Pierce/

ThermoFisher, Waltham, MA) and activated by UV illu-

mination for 10 min, followed by fibronectin coating. A375

(gCell number CL584727, Genentech, South San Francisco,

CA), Colo829 (gCell number CL131105, Genentech, South

San Francisco, CA), MelNBR1 (cell line generated from an

induced tumor from the BrafLSL.V600E;PTENfl/fl;Tyr.CreER

GEMM), and WM266-4 (gCell number CL586497, Gen-

entech, South San Francisco, CA) cells in Dulbecco’s

modified Eagle’s medium were seeded onto the gels, cul-

tured for 72 h. Cells were processed for analyses as

described in the Fluidigm Analyses section above.

Generation of single-cell RNA-seq data

Processing of melanoma tumors for flow cytometry was

done by cutting the tumors into small pieces of 2–4 mm

with a razor blade. Two milliliters of ice-cold Digestion

Buffer (5 mg/mL collagenase, type I; 5 mg/mL col-

lagenase, type IV) in Hank’s balanced salt solution

(HBBS) was then added to the tumor pieces in 15 mL

tubes. Samples placed at 37 °C for 20 min in the dark.

Digestion was stopped by adding 2 mL of ice-cold

Washing Buffer (20% FCS in HBBS). Digest was pel-

leted at 1500 r.p.m. for 5 min at 4 °C. The pellet was

washed once with 1 × PBS and then incubated in 2 mL of

0.25% trypsin in HBBS at 37 °C for 5 min in the dark.

Reaction was stopped by adding 2 mL of ice-cold Wash-

ing Buffer and then digest was pelleted at 1500 r.p.m. for

5 min at 4 °C. Pellet was resuspended in 5 mL of ice-cold

fluorescence-activated cell sorting (FACS) Buffer (2%

fetal bovine serum, 2 mM EDTA in 1 × PBS). Digested

tumors were passed through a 70 μm strainer. The cell

strainer was washed with 5 mL of FACS Buffer and

samples centrifuged at 1500 r.p.m. for 5 min at 4 °C.

Pellet was washed once with 5 mL of FACS Buffer and

pelleted again at 1500 r.p.m. for 5 min at 4 °C. Cells were

resuspended in 1 mL of FACS Buffer+ propidium iodide.

Samples were processed for single-cell RNA-seq

(scRNAseq) using the Chromium Single Cell 3’ Library and

Gel bead kit v2, following the manufacturer’s manual (10 ×

Genomics, San Francisco, CA). Cell density and viability of

the single-cell suspensions were determined by Vi-CELL

XR cell counter (Beckman Coulter). All of the processed

samples had very high percentage of viable cells. Cell

density was used to impute the volume of single-cell sus-

pension needed in the RT master mix, aiming to achieve

~6000 cells per sample. cDNAs and libraries were prepared

following the manufacturer’s manual (10 × Genomics, San

Francisco, CA). Libraries were profiled by Bioanalyzer

High Sensitivity DNA kit (Agilent Technologies, Santa

Clara, CA) and quantified using Kapa Library Quantifica-

tion Kit (Kapa Biosystems, Wilmington, MA). Each library

was sequenced in one lane of HiSeq4000 (Illumina, San

Diego, CA) following the manufacturer’s sequencing spe-

cification (10 × Genomics, San Francisco, CA).

Processing of scRNAseq data

The number of reads for all ~700k possible cell barcodes

were tallied and data demultiplexed for cell barcodes

represented by at least 10k reads. Transcript reads were

aligned to the reference genome GRCm38 using GSNAP

version “2013-10-10” (parameters: ‘-M 2 -n 10 -B 2 -i 1

-N 1 -w 200000 -E 1); only uniquely mapping reads were

considered. The number of transcripts per gene was

inferred based on the number of unique molecular iden-

tifiers (UMIs) per gene (for reads overlapping exons

in sense orientation) allowing for one mismatch between

UMI sequences to account for errors in sequencing

or PCR amplification. After excluding cells with <300

UMIs and removing non-expressed features, data were

further processed using the Seurat R package version

2.2.0) [16]. Subsequent to normalization using the

“LogNormalize” setting, data were scaled based on the

total number of UMIs per cell. Then a principle compo-

nent (PC) analysis was run on the most variably expres-

sed genes and the first 30 PCs were used to perform

t-distributed statistical neighbor embedding analysis and

density clustering. All scRNAseq data has been deposited

into the Gene Expression Omnibus (GEO) repository at

NCBI. It can be found using the accession number

GSE126714.
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Assignment of cluster identities in scRNAseq data

As quality control, we visualized the percentage of total

reads that aligned to the mitochondrial genome to identify

cells undergoing cell stress/death [17] as well as relative

expression of cell cycle genes to identify clusters where the

cells’ transcriptomes were more indicative of cell cycle state

than cell identity. Clusters with a high fraction of

mitochondria rich or actively dividing cells were excluded

from analysis. We then used the FeaturePlot function to

highlight expression of known marker genes for the dif-

ferent cell types that were expected to be present in the

samples: transgene (tGene) expression marking tumor cells,

Fap and collagens marking non-immune stromal cells,

hemoglobin marking red blood cells, Pecam1 marking

endothelial cells, as well as different immune cell markers

Fig. 1 Braf mutant tumors relapse on vemurafenib with evidence of

MAPK pathway re-activation and immune modulation. a Maximum

percent tumor volume change in 75 animals treated with vemurafenib,

twice a day via oral gavage at 50 mg/kg. Dotted line indicates ~30%

regression. b Progression-free survival plot of vehicle and

vemurafenib-treated animals. Animals were classified as progressed

when their tumor size exceeded 30% of their initial biopsy value. c

Schematic representation of tumor growth curve over time while on

vemurafenib, showing initial biopsy (IB) and progressed biopsy (VPr)

sample time points. d Sum of normalized 2−dCt values of MAPK target

genes (Dusp4, Dusp6, Etv1, Etv4, Etv5, Fosl1, Phlda1, Spry2, and

Spry4) plotted as percent of IB for V3d(n= 5), V12d(n= 6), and VPr(n

= 75) samples. e FACS analysis of CD8+ PD1+ cells, plotted as a

percent of total CD8+ cells for C(n= 3) and VPr(n= 3) samples.

f Luminex analysis of IFNγ expression from C(n= 7), V12d(n= 5),

and VPr(n= 7) tumors. g Progression-free survival plot of control

vehicle (n= 14), vemurafenib (n= 33), and vemurafenib+ α-PD-L1

(n= 9)-treated animals. Animals were classified as progressed when

their tumor burden reached 30% above their initial biopsy value. Data

are plotted as the mean ± SD for d–f. P-values in a by log-rank

(Mantel–Cox) test. *p < 0.05, **p < 0.005 by t-test in e, f. C: control

vehicle-treated samples; IB: initial biopsy; V3d: 3 day vemurafenib-

treated samples; V12d: 12-day vemurafenib-treated samples;

VPr: vemurafenib-progressed samples
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as visualized in Extended Data Fig. 5a). In parallel, using

Seurat’s “FindAllMarkers” function, marker genes for each

respective cluster were identified in a hypothesis-free

manner and reviewed.

Visualization of scRNAseq data

For the heatmap in Extended Data Fig. 5a, expression of

select marker genes was averaged across all cells in each

cluster using Seurat’s “AverageExpression” function. The

violin plots show the kernel probability density of the data.

The white point indicates the mean expression. The thick

black lines extend to the 25th and 75th percentiles of the

data (hinges), whereas the thin lines show the largest or

smallest observation that falls within a distance of 1.5 times

the length of the thick black line from the nearest hinge. The

MAPK gene signature score was calculated using Seurat’s

“AddModuleScore” function, based on the following

MAPK target genes: Dusp4, Dusp6, Etv1, Etv4, Etv5,

Fosl1, Phlda1, Spry2, and Spry4.

Statistics

Statistical analyses are indicated in Figure legends. Data are

presented as the mean ± SD. GraphPad Prism 7 software

(GraphPad Software, La Jolla, CA) was used to conduct

the statistical analysis of all data. Multiple comparisons

were performed using an ordinary one-way analysis of

variance with Tukey’s multiple comparison test. Survival

comparisons were made using the log-rank (Mantel–Cox)

test. Paired t-tests were used to determine two-tailed sig-

nificance to compare results. A P-value of <0.05 was con-

sidered statistically significant.

Study approval

All individuals participating in animal care and use are

required to undergo training by the institution’s veterinary

staff. Any procedures, including handling, dosing, and

sample collection mandates training and validation of pro-

ficiency under the direction of the veterinary staff before

performing procedures in experimental in vivo studies. All

animals were dosed and monitored according to guidelines

from the IACUC on study protocols approved by the

Laboratory Animal Resource Committee (LARC) at Gen-

entech, Inc. All patients who participated in the clinical

trials provided written, informed consent.

Results

BRAF mutant melanoma is an indication where clinical

implementation of small molecule inhibitors targeting

BRAF proved transformative [18, 19]; however, the

majority of patients progress within the first year of treat-

ment [20, 21]. Although most patients progress with evi-

dence of MAPK pathway re-activation, this is not always

attributable to acquired mutations within the pathway [22–

26]. To experimentally explore vemurafenib response and

relapse, we employed an autochthonous melanoma mouse

model, BrafV600E;PTENfl/fl;Tyr:CreER (hereafter BrafV600E;

PTEN) [3]. Vemurafenib treatment regressed over 90% of

the tumors and significantly improved progression-free

survival (PFS) by >60 days (Fig. 1a, b). Time-to-treatment

relapse was not associated with baseline Mitf expression

levels nor Mitf/Axl ratios (Extended Data Fig. 1a, b) [27–

29]. Despite continuous vemurafenib treatment, all tumors

eventually relapse (Fig. 1b).

To interrogate the mechanism of therapeutic relapse,

serial biopsies were performed on the same lesion

throughout treatment (IB and vemurafenib-progressed,

VPr; Fig. 1c). Consistent with clinical evidence [30], VPr

samples no longer showed significant reduction in MAPK

signaling (Fig. 1d, Extended Data Fig. 1d). BRAF inhi-

bitors exhibit mechanistically distinct functions depend-

ing on BRAF mutational status; although inhibition of

MAPK signaling occurs in BRAF mutant cells, BRAF

wild-type cells are primed for activation [31, 32]. To

enable facile differentiation of tumor cells from stromal

cells, BrafV600E;PTEN mice were interbred with a con-

ditional reporter strain (Rosa26.LSL.tdTomato) [4].

Analysis of VPr tumors from these animals indicated that

both positive and negative tdTomato cells had increased

pERK at relapse (Extended Data Fig. 1e), consistent with

previous work showing that chronic treatment with

vemurafenib can lead to MAPK activation within stromal

cells [15, 31]. Therefore, both tumor and stromal cells

contribute to overall MAPK signaling at vemurafenib

relapse.

To determine whether treatment progression is char-

acterized by acquired genomic alterations, 17 matched

biopsies (IB and matched VPr) were subjected to RNA and

exome sequencing (Extended Data Table 1). No evidence of

acquired protein-altering mutations (PAMs) in oncogenes or

tumor suppressors in VPr tumors was discovered and no

recurrent PAMs were found in any gene where expression

could be verified by RNA-seq (Supplementary Dataset 1).

In addition, no significant or recurrent copy number

alterations (CNA) were observed and notably, none in

BRAF exons [33, 34] (Extended Data Fig. 1e,f). Therefore,

vemurafenib progression is not associated with acquired

genomic alterations in this model system. Consistent with

this finding, a recent report using a distinct BRAF mutant

model found vemurafenib relapse in the absence of acquired

mutations unless rendered genetically unstable through

telomerase inactivation [35].
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Further, although individual matched IB and VPr pairs

demonstrated expression changes of receptor tyrosine

kinases (RTKs) previously implicated in mitogen-activated

protein kinase inhibitor (MAPKi) progressing patients [36],

no statistically significant changes were observed in Axl,

Pdgfr, Egfr, Igfr, Met, or Fgfr, eliminating identification of

a common upregulated RTK that mediates resistance

(Extended Data Fig. 1h). Interestingly, Gene Set Enrich-

ment Analysis revealed a significant negative enrichment

for T-cell activation, inflammatory, and cytokine production

signatures in VPr lesions (Extended Data Fig. 2a). Evalua-

tion of the immune contexture found VPr tumors harboring a

significant increase in myelosuppressive CD11b+ /Gr1 Hi

+ cells [37], increased CD8+ cells, as well as CD8+ PD1

+ cells (Fig. 1e, Extended Data Fig. 2b, c). Moreover, PD-

L1 transcript expression increased in ~50% of VPr samples

(8/17 tumors; Extended Data Fig. 2d).

Although acute 12-day vemurafenib treatment (V12d)

displayed increasing amounts of CD8+ cells, tumor

necrosis factor (TNF), and interferon-γ (IFNγ) protein

expression, the only effect maintained at VPr was increased

CD8+ and CD8+ PD1+ cells (Fig. 1e, f, Extended Data

Fig. 2e–g). Despite increased expression of checkpoint

proteins PD1/PD-L1 in VPr samples, combination vemur-

afenib and α-PD-L1 therapy provided no benefit in PFS

relative to vemurafenib (Fig. 1g), suggesting that the PD1/

PD-L1 axis is not functionally contributing to vemurafenib

progression in this model.

Interestingly, genes whose expression characterizes

mature terminal melanocyte differentiation were among the

most differentially expressed genes between matched IB/

VPr pairs (Fig. 2a), despite heterogeneous baseline expres-

sion. In contrast, genes indicative of pre-melanocytic line-

age [38–40] displayed mixed expression patterns with

statistically significant changes observed in neural crest

associated genes Bmp5, Kitl, and Wnt2 (Fig. 2b). Of note,

transcriptional changes in Mitf were not prominent (1/17 up

2-fold), but, when present, terminal melanocyte differ-

entiation genes were concurrently altered (Extended Data

Fig. 3c). Using a signature derived from single-cell analysis

of transformed melanocytes in the BrafV600E; PTEN model

[6], we confirmed decreased differentiation in VPr tumors

Fig. 2 Melanocyte cell-fate gene expression characterizes vemurafenib

relapse in murine and human tumors. a, b Normalized RNA-seq

RPKM values plotted for matched biopsies for mature melanocyte

markers (a, n= 17) or neural crest-like markers (b, n= 17). c Dif-

ferentiation change from baseline score of melanoma differentiation

genes (BACE2, EDNRB, GPNMB, KIT, MITF, MLANA, PMEL,

TYRP1, ZEB2) derived from ref. [6] in matched pre-treatment and

progressed biopsies from melanoma patient samples (n= 23 pairs)

from BRIM clinical trials [41] and d from melanoma patient samples

(n= 31 pairs) from ref. [21]. Bars outlined in red are patients whose

tumors acquired a MAPK pathway mutation at time of vemurafenib

progression. Data are plotted as direct RPKM values in a, b. p-values

determined by t-test in a, b. IB: initial biopsy; VPr: vemurafenib-pro-

gressed samples
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(Extended Data Fig. 3a, b), indicating that chronic vemur-

afenib treatment reduces melanocyte marker gene expres-

sion heterogeneity either by directly impacting tumor cells

or by enriching for a pre-existing cell state within the tumor.

Early time points demonstrated evidence of inflam-

mation, a feature previously associated with melanoma

cell dedifferentiation [41]. However, at the time of frank

tumor relapse, over 88% (15/17) of tumors were ded-

ifferentiated with no evidence of observable inflamma-

tion, indicating that inflammation is not required to

maintain this phenotype (Fig. 1f, Extended Data Fig. 2g).

Moreover, treatment withdrawal from the VPr tumors did

not induce re-expression of melanocyte marker genes

(data not shown), suggesting irreversibility within this

timeframe.

We followed up on the cell-state conversion phenotype

using matched pretreatment and post-progression melanoma

patient biopsy samples (n= 23 pairs) [42], as this phe-

nomenon was suggested to accompany clinical MAPKi

progression [43]. Transcriptome analysis revealed that 57%

(13/23) of patients demonstrated altered differentiation

status at the time of vemurafenib progression (Fig. 2c). This

observation was confirmed in an independent patient cohort

where 52% (16/31) of BRAF inhibitor (BRAFi)-progressed

patient biopsies showed a similar decrease in gene expres-

sion (Fig. 2d) [22]. In both clinical data sets, our murine-

derived gene set also confirmed melanocyte differentiation

changes with 43% and 58% of patients showing a decrease,

similar to the 55% observed using a previously published

murine signature [6] (Extended Data Fig. 4a–c).

Fig. 3 Vemurafenib-associated matrix remodeling impacts melanoma

cell-state changes. a Single-cell RNA-seq violin plot showing

expression of the MAPK gene signature in tumor, non-immune stro-

mal, and immune cells. In all three cellular compartments, MAPK

activity is significantly repressed in the V12d tumor cells but re-

activated in the VPr tumor cells. Number of cells per group is given

below the violin plots. b Single-cell RNA-seq violin plots showing the

expression of Pdgfa and Tgfb1 in tumor cells split by treatment.

Expression of stroma-recruiting factors is increased in untreated and

progressing tumor cells as compared with regressing tumor cells. c

Average shear wave velocity measurement plotted for C (n= 6) and

VPr (n= 10) tumors, reflecting the stiffness of tumors. d, e Mass

spectrometry of pyridinoline (PYD) and deoxypyridinoline (DPD)

from C (n= 26) and VPr (n= 26) tumors. f Differential impact of

stiffness on the melanoma differentiation signature in three Brafmut cell

lines. Differentiation change from baseline score was derived using the

expression of the eight genes from Fig. 2a (Ednrb, S100a1, Pmel, Lef1,

Mlana, Tyrp1, Mc1r, Gpr143). Human melanoma-derived cell lines,

A375 and Colo829, and murine BrafV600E; PTEN melanoma-derived

cell line, MelNBR1, were used. MelNBR1 expressed only three of the

eight genes (Pmel, Lef1, Mc1r). *p < 0.05, ***p < 0.001, ****p <

0.0001 by Wilcoxon rank-sum test in a; data are plotted as the mean ±

SD for c–f. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.00005

by t-test in c–f. C: control vehicle treated samples; IB: initial biopsy;

V12d: 12-day vemurafenib treated samples; VPr: vemurafenib-pro-

gressed samples
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Interestingly, only five patients in our clinical dataset

acquired a MAPK pathway mutation at vemurafenib pro-

gression (22%); these MAPK mutations were not mutually

exclusive to that of decreased terminal melanocyte differ-

entiation (Fig. 2c). In summary, the acquisition of the

dedifferentiated cell state at the time of vemurafenib relapse

is occurring at least as frequently as MAPK pathway

mutations in BRAF mutant melanoma.

Fidelity between the resistance phenotype observed in

the murine model and that of >50% of patient samples from

our own unpublished, as well as an independent clinical

cohort, provided rationale for studying such a prevalent

clinical outcome and, moreover, for applying this particular

model system to elucidate mechanistic features of this type

of therapeutic resistance. In order to assess the chronology

of changes in individual tumor compartments during treat-

ment relapse, we employed scRNAseq on naive, V12d and

VPr tumors. Indeed, the transient nature of MAPK pathway

suppression was confirmed; re-activation of MAPK sig-

naling was observed in tumor cells, but also apparent in

non-immune stromal cells (Fig. 3a). Further, single-cell

transcriptomics confirmed broad qualitative changes in

immune cell infiltrate; most notably, regressing tumors

showed the highest infiltration by NK/T cells, with a rela-

tive decrease in monocytes/macrophages (Extended Data

Fig. 5b). The significantly elevated expression of stromal

cell-recruiting factors Pdgfa and Tgfb1 in tumor cells, as

well as a strikingly high non-immune stromal cell/tumor

cell ratio in naive and VPr tumors as compared with the

regressing tumor (55 and 21 vs. 5, respectively; Fig. 3b,

Extended Data Fig. 5c), indicate dynamic changes within

the stromal compartment during treatment relapse.

Histological examination of matched patient biopsies

showed that 50% (10/20) displayed increased thickness and

abundance of haphazardly organized collagen fibers in the

extracellular matrix (ECM), consistent with previous reports

[15]. Paucicellular dense connective tissue surrounded

blood vessels and separated neoplastic cells at the time of

vemurafenib progression (Extended Data Fig. 6a). More-

over, paired transcriptomics revealed decreased

melanogenesis-related gene expression in all patient tumors

with concomitant evidence of ECM changes at vemurafenib

relapse (Fig. 2c).

As tumor stiffness has been previously implicated in

drug-resistant niche development [15, 44], we sought to

further characterize the treatment-induced matrix changes in

greater detail. Using ARFI imaging [5], we discovered a

significant increase in tumor stiffness in vivo in VPr tumors

(Fig. 3c). Furthermore, both mature pyridinoline and

deoxypyridinoline collagen crosslinks were significantly

increased in VPr, as determined by mass spectrometry

(Fig. 3d, e; Extended Data Fig. 6b, c). Indeed, non-immune

stromal cells in the VPr tumor expressed significantly more

Tgfb1 and Tgm2 (encoding a collagen crosslinking

enzyme), and scored high for a fibroblast transforming

growth factor-β response signature (PMID: 29443960),

which included genes related to myofibroblast function

(Extended Data Fig. 5c). Together, these data suggest an

association between matrix remodeling and the differentia-

tion status of the melanoma tumor cells in both the human

and murine setting.

Having observed that matrix stiffness and collagen

crosslinking are significantly greater in vemurafenib-

progressing tumors in vivo, and that 88% of VPr tumors

display decreased differentiation, we sought to directly

interrogate this relationship by assessing whether matrix

stiffness was sufficient to induce melanocyte gene expres-

sion changes. In response to increasing matrix rigidity,

human and murine melanoma-derived cell lines exhibited

significant decreases in melanocyte marker gene expression

at stiffness levels ≥3 kPa (Fig. 3f, Extended Data Fig. 6d),

indicating that alterations of ECM stiffness can directly

impact melanocyte marker gene expression independently

from inflammation and vemurafenib exposure. To under-

stand whether these ex vivo matrix-induced cell-fate chan-

ges could impact therapeutic responsiveness, we subjected

matrix-converted cells to BRAFi- and MEK inhibitor

(MEKi)-targeted therapies, and observed significant pro-

tection imparted by increased matrix stiffness (Extended

Data Fig. 6g, h). Together, this data indicates that matrix

evolution can direct tumor cell-fate changes and negatively

impact treatment susceptibility.

Next, we sought to test the functional consequences of

the progressed tumor state—characterized by dediffer-

entiation, altered immune contexture, MAPK pathway re-

activation, and increased stiffness—by assessing second-

line MEKi treatment intervention responses. VPr tumor

responses to second-line cobimetinib treatment were

significantly impaired relative to vemurafenib-naive

tumors (PFS 77–252 days, respectively), despite evi-

dence of significant MAPK pathway suppression

(Extended Data Fig. 7a, b) [45, 46]. This recapitulates

differences observed in clinical responses to combination

vemurafenib and cobimetinib treatment between VPr

melanoma vs. treatment-naive (PFS 2.8 vs. 13.8 months)

[47]. Notably, although vemurafenib (BRAFi) failed to

provoke acquired genomic at relapse, exome sequencing

of matched pretreatment and first-line MEKi progressors

demonstrated acquired genetic alterations mostly in the

form of CNA (Extended Data Fig. 7c). Thus, mechanisms

of therapeutic resistance in this model are impacted by the

distinct selective pressure, i.e., are both treatment-

dependent and specific. Together, our findings show

that prior lines of therapy can significantly impair treat-

ment response relative to treatment-naive settings, both in

a preclinical and clinical context, emphasizing the
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importance of considering known mechanisms of resis-

tance in treatment decisions and sequencing.

Given that chronic vemurafenib treatment altered

melanoma dependency and responsiveness to second-line

intervention, we sought to more fully explore the phar-

macodynamic impact of MEKi on vemurafenib-relapsed

tumors. Acute MEKi treatment of VPr tumors resulted in

significant immune contexture changes, including

decreased myeloid-derived suppressor cell occupancy,

increased CD8 infiltration, and major histocompatibility

complex-I (MHC-I) expression (Extended Data Fig. 7d–

f), features previously reported in response to MEKi in

other tumor types and con [48, 49]. In addition, MEKi

treatment lead to significant re-expression of melanocyte

marker genes within tumors, which are also known tumor-

associated antigens (Fig. 4a). Taken together, MEK

inhibition of the relapsed tumors engenders pleiotropic

effects on both tumor and immune cells that could

potentially be leveraged using rationale combination

therapy.

Fig. 4 Second-line MAPK inhibition intervention reverts vemurafenib-

progressed cell state and increases survival. a Matched melanoma

differentiation marker gene expression from initial biopsy (IB),

vemurafenib-progressed (VPr), and day 7 post second-line crossover

cobimetinib-treated (7d PD) tumors plotted as a percent of IB. b

Maximum percent tumor volume change from VPr by treatment. c

Perforin transcript plotted as a percent of VPr plotted for three different

day 7 post second-line crossover treated (P (gray, n= 3), Co

(orange, n= 4), and CP (purple, n= 4)) tumors. d Fourth-order

smoothed tumor volume plot for second-line treatments (see Extended

Data Figure 7a for raw data). e Kaplan–Meier plot of animals by

treatment group with median survival. Notably, no animals were killed

in the combination treatment group due to tumor regrowth. This was

not the case for the single agent α-PD-L1 (100% of animals) and

cobimetinib (50% of animals) groups. *p < 0.05, **p < 0.005, ***p <

0.0005, ****p < 0.00005 by t-test in a. P-values in e by log-rank

(Mantel–Cox) test. 7d PD: vemurafenib-progressed samples that are

treated for 7 days with various second-line treatments; Co:

vemurafenib-progressed cobimetinib-treated samples; CP:

vemurafenib-progressed cobimetinib- and α-PD-L1-treated samples;

IB: initial biopsy; P: vemurafenib-progressed α-PD-L1-treated sam-

ples; VPr: vemurafenib-progressed samples
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To test the hypothesis that MEKi treatment engenders

an immune contexture and cell state more conducive to

immune checkpoint blockade therapy, VPr tumors were

stratified to receive α-PD-L1, cobimetinib, or the com-

bination treatment. Anti-PD-L1 had no effect on VPr

tumor growth; however, both cobimetinib and combina-

tion treatment caused regression of all lesions (Fig. 4b).

Response rates of the cobimetinib-containing treatment

arms were comparable; however, only combination

treatment displayed increased CD8 infiltration, significant

MHC-I upregulation, as well as enhanced Perforin

expression (Fig. 4c, Extended Data Fig. 7e, f). These data

suggest that combination MEKi and α-PD-L1 checkpoint

blockade results in a more robust immune activation.

Indeed, combination treatment of VPr tumors generated a

durable anti-tumor effect that was maintained in >85%

of animals for more than 100 days, doubling overall

survival in second-line treatment from 41 to 86 days,

relative to MEKi alone (Fig. 4d, e, Extended Data

Fig. 8a). Notably, no animals were killed in the combi-

nation treatment group due to tumor regrowth. Combi-

nation treatment resulted in sustained increases in CD8,

IFNγ, and Granzyme A, and significantly increased MHC-

I expression in all combination-treated samples (Exten-

ded Data Fig. 8b–e). Taken together, these results show

that combination MEKi and α-PD-L1 checkpoint block-

ade cooperate to provide a durable anti-tumor response to

the unique state created during vemurafenib monotherapy

relapse.

Clinical data analyses have illustrated reduced efficacy

of both targeted and immunotherapy following BRAFi

treatment in melanoma, spotlighting the need for a more

complete understanding of how prior lines of therapy can

impact responsiveness. Importantly, as combinatorial

therapeutic approaches targeting multiple tumor com-

partments are becoming more standard, not only the

malignant cells but all the tumor compartments will need

to be considered in rationale treatment design. Here we

begin to unravel how therapy-induced adaptation in

several tumor compartments can cooperate to mechan-

istically undermine follow-on treatment responses. Pre-

vious work illuminated the role of matrix stiffness in

protecting melanoma cell lines from treatment-induced

death [15]. More recently, the complex role of matrix-

induced cell-fate changes was reported in vitro [50] and

in vivo [27] using cell lines. Herein, we combine these

concepts by utilizing an unbiased means of tracing multi-

compartment evolution of paired biopsies in auto-

chthonous tumors. We discover that our model converges

on a distinct tumor cell state, characterized by dediffer-

entiated tumor cells, a stiffer stromal matrix, and a unique

immune contexture. Our work demonstrates that

treatment-induced matrix evolution can function to

impart cell-fate changes that decrease sensitivity to tar-

geted therapies and further, by reducing antigen pre-

sentation machinery and expression, impairs immune-

mediated approaches. Moreover, we demonstrate that

specific therapeutic interventions can revert many of

these features (Extended Data Fig. 9a–d).

The critical importance of previous lines of treatment in

determining response to follow-on regimens is traditionally

not addressed preclinically and is a key, translatable, finding

from our work. By demonstrating fidelity between the

resistance phenotype observed in the model and that of

greater than half of patient samples from two independent

clinical cohorts, we provide the rationale for studying such a

prevalent clinical outcome and, moreover, for applying this

particular model system to elucidate mechanistic features of

this type of therapeutic resistance. Hence, insights from our

second-line treatment studies can be leveraged to rationalize

cooperativity and durability of an immune-based combina-

tion strategy.
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