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Abstract. Colorectal cancer (CRC) is the third most frequent 
malignancy and represents the fourth most common cause 
of cancer-associated mortalities in the world. Despite many 
advances in the treatment of CRC, the 5-year survival rate of 
patients with CRC remains unsatisfactory due to tumor recur-
rence and metastases. Recently, cancer stem cells (CSCs), have 
been suggested to be responsible for the initiation and relapse of 
the disease, and have been identified in CRC. Due to their basic 
biological features, which include self-renewal and pluripotency, 

CSCs may be novel therapeutic targets for CRC and other cancer 
types. Conventional therapeutics only act on proliferating and 
mature cancer cells, while quiescent CSCs survive and often 
become resistant to chemotherapy. In this review, markers of 
CRC-CSCs are evaluated and the recently introduced experi-
mental therapies that specifically target these cells by inducing 
CSC proliferation, differentiation and sensitization to apoptotic 
signals via molecules including Dickkopf-1, bone morphogenetic 
protein 4, Kindlin-1, tankyrases, and p21-activated kinase 1, 
are discussed. In addition, novel strategies aimed at inhibiting 
some crucial processes engaged in cancer progression regulated 
by the Wnt, transforming growth factor β and Notch signaling 
pathways (pyrvinium pamoate, silibinin, PRI-724, P17, and 
P144 peptides) are also evaluated. Although the metabolic 
alterations in cancer were first described decades ago, it is only 
recently that the concept of targeting key regulatory molecules 
of cell metabolism, such as sirtuin 1 (miR-34a) and AMPK 
(metformin), has emerged. In conclusion, the discovery of CSCs 
has resulted in the definition of novel therapeutic targets and the 
development of novel experimental therapies for CRC. However, 
further investigations are required in order to apply these novel 
drugs in human CRC.
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1. Introduction

Colorectal cancer (CRC) is one of the most common malig-
nancies and a major cause of cancer-related death worldwide. 
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It is the second most common type of cancer in both genders 
(women: 10.1%; men: 12.4%) and the number of newly diag-
nosed CRC cases continues to grow. CRC, according to the 
WHO, is the third most common cancer, with 1,361,000 cases 
worldwide in 2012 (1).

The primary treatment of CRC is surgical resection. 
However, approximately 25% of CRC cases are detected in 
stage IV (with distant metastases) and almost 50% of CRC 
patients will develop metastasis during their lifetime (2). The 
treatment outcomes for these patients are unfavorable, since 
conventional therapies affect proliferating and differentiated 
cancer cells from the tumor mass and save cancer stem cells 
(CSCs). This approach seems to explain the initial post-therapy 
tumor shrinkage, which is often followed by relapses resulting 
from the activity of CSCs (3).

Chemotherapy of patients with CRC can be performed 
either as monotherapy (capecitabine, ir inotecan) or 
with a combined protocol (4-6): LVFU2: 5‑fluorouracil 
(5-FU) + calcium folinate racemate (or levofolinic acid in 
equivalent dose); FOLFOX4: 5‑FU + calcium folinate race-
mate (or levofolinic acid in equivalent dose) + oxaliplatin; 
FOLFOXIRI: 5‑FU + calcium folinate racemate (or levo-
folinic acid in equivalent dose) + oxaliplatin + irinotecan; 
FOLFIRI: 5-FU + calcium folinate racemate (or levofolinic 
acid in equivalent dose) + irinotecan; CAPOX (XELOX): 
Capecitabine + oxaliplatin.

Presurgical radiotherapy can be included in two different 
ways. The first involves five fractions of radiotherapy (5 Gy) 
each a week before surgical intervention. The second thera-
peutic mode involves a total of 50.0-50.4 Gy divided into 1.8 or 
2.0 Gy fractions, combined with chemotherapy using fluoro-
uracil, either with calcium folinate or with capecitabine. In the 
second protocol, surgery is delayed and is performed at least 
six weeks after the last course of radiotherapy. Both protocols 
ensure similar efficacy (7,8).

Additionally, in recent years, new drugs targeting growth 
factors or their surface receptors have been introduced as addi-
tional therapy for the treatment of CRC (Table I).

Although about 50% of patients respond to conventional 
therapy, most develop drug resistance during the course of 
treatment, and recurrence of the disease often follows (9,10). 
Our review presents the current state of knowledge concerning 
experimental CRC treatment protocols targeting CSCs through 
the induction of their proliferation, differentiation, and sensiti-
zation to apoptotic signals. The combined therapy consisting 
of two distinct constituents: Conventional drugs and the novel 
anti‑CSC factor; an improvement of the anticancer therapy 
efficacy and a reduction in undesirable side effects is hoped for.

2. Identification of cancer stem cells in colorectal cancer

Under physiological conditions, the pool of normal cells 
is maintained in tissues and organs due to the presence of 
small subpopulation of stem cells with a great capability to 
self-renew, proliferate, and differentiate. A tumor can be seen 
as an abnormal type of tissue whose growth and development 
are depend on a population of stem cells, termed CSCs (11-13). 
These CSCs may gain their specific properties-such as 
self-renewal, unlimited proliferation potential, and ability to 
differentiate into any mature cancer cell type-as a result of 

neoplastic transformation caused by the accumulation of some 
genetic and epigenetic aberrations. Additionally, they develop 
specific protective mechanisms, such as those directed against 
immune cells, or insensitivity to standard chemotherapeutics. 
The CSC hypothesis remains controversial, but the occurrence 
of CSCs has been identified within both hematological and 
solid tumors, such as breast and CRCs (11-13).

The identification of CRC-CSCs is based on a set of 
CSC-associated protein markers (Table II). It is not clear if all 
of these biomarkers influence CRC progression with the same 
effect. Furthermore, the great range of these proteins may result 
from the genetic heterogeneity of cancer cells both within the 
tumors of a particular patient and between patients (11,14,15). 
Experimental data from the rodent model of CRC suggest 
that only 1 in 25 cells (16), or 1 in 262 cells (13,16), possesses 
the characteristic features of CSCs in the total population of 
CRC cells. This diversity may result from the complexity of 
experimental settings. The initial verification of new markers 
for the isolation of CSCs often follows discoveries in the field 
concerning either normal tissue stem cells or CSCs of different 
tumors. However, the selection of the most universal and useful 
CSCs markers has yet to be performed.

A minor Bmi‑1‑positive subpopulation of CSCs is 
characterized by low mitotic activity, and thus is supposed 
to constitute the pool of cells which are resistant to 
chemotherapeutics and responsible for tumor relapse through 
intense proliferation following therapy (17,18). According to 
the CSC hypothesis, conventional chemotherapeutics reduce 
the tumor mass, but are not sufficiently efficient to eliminate 
all cancer cells, on account of the presence of chemoresistant 
CSCs. Efficient DNA repair mechanisms, telomerase activity, 
insensitivity to proapoptotic signals, and high levels of expression 
of ATP‑binding cassette transporters (ABC transporters) are 
postulated as the main causes of chemoresistance (19-21).

CD133 protein. The identification and classification of CSCs is 
rather controversial, as none of the known markers are universal 
and reliable for the identification of CSCs in all experimental 
settings (Table II) (22). The most commonly used marker of 
CRC-CSCs is prominin-1, also named CD133 (22). CD133+ 
cells are able to reproduce a CRC tumor in a mouse xenotrans-
plantation model, whereas CD133- cells cannot rebuild cancer 
bulk (11,13). However, the research groups of Ricci‑Vittani and 
Shmelkov showed independently that CD133- cells also possess 
high proliferative and differentiating potential, comparable 
to those of CD133+ CRC-CSCs (13,14). CD133+ CRC-CSCs 
isolated from human tumors may be cultured in vitro for as long 
as one year without any change in their phenotype, gaining the 
ability to form undifferentiated tumor spheres which maintain 
the ability to engraft (13). Moreover, it has been shown that 
even a single CD133+ cell is able to reproduce the tumor mass 
in vivo (23). Human CRCs resistant to a conventional 5-FU 
treatment have been found to be enriched in CD133+ cells; this 
is directly correlated with a worse outcome for patients (24). 
However, knockout of CD133 has been found not to affect the 
clonogenicity of cancer cells, suggesting that CD133 is a passive 
marker, rather than a CSC-promoting factor (25-27).

CD44 protein. CD44 is a transmembrane glycoprotein, a 
receptor of hyaluronic acid that participates in many cellular 
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processes, including growth, survival, differentiation and 
motility. CD44+ CD133- cells isolated from human CRC 
tumors have been shown in vivo to efficiently initiate a xeno-
graft tumor that possesses similar properties to those of the 
primary tumor. Knockdown of CD44 strongly reduced prolif-
eration of these cells and inhibited tumorigenicity in a mouse 
xenograft model (26,27).

Aldehyde dehydrogenase 1. Aldehyde dehydrogenase 1 
(ALDH‑1) has been identified in both nonmalignant and malig-
nant stem cells. In many neoplasms-such as colon, pancreas, 
breast, and urinary bladder cancers-this enzyme has been 
shown to be associated with disease progression (16,28-31). 
Generally, ALDH-1 is responsible for detoxification and 
defending against free radicals, although it plays a crucial func-
tion in cancer recurrence due to the downregulation of CSCs' 
metabolism during conventional chemotherapy (16,28-31). The 
activity of ALDH-1 may be pharmacologically blocked via the 
specific inhibitor DAEB (diethylaminobenzaldehyde) (30). A 
combination of DAEB with conventional chemotherapeutics, 
such as doxorubicin and paclitaxel, increases the level of 
oxidative stress in cells, enhancing their susceptibility to free 
radicals and apoptosis. The first promising results of such an 
approach were demonstrated for breast cancer cell lines (32).

3. The characteristics of CRC‑CSCs being considered for 
CSC‑targeting therapeutic strategies

The discovery of CSCs in various tumors has provided 
new opportunities to overcome chemoresistance and 

radioresistance of tumor cells through the targeting of this 
unique population (Fig. 1). To achieve this goal, diverse strate-
gies have been used: the induction of CSC differentiation, the 
inhibition of the epithelial-mesenchymal transition (EMT), 
the reduction of angiogenesis, and the suppression of specific 
signaling or metabolic pathways. Significantly, our increasing 
understanding of the cellular and molecular mechanisms that 
regulate CSC quiescence, cell cycle progression, self-renewal, 
and resistance to proapoptotic signals and chemotherapeutics 
may provide new therapeutic modalities that will reduce 
morbidity and increase the overall survival of CRC patients.

Induction of CRC‑CSC differentiation. The first of the 
therapeutic approaches is based on the induction of CSC 
differentiation into more mature types of tumor cells, resulting 
in a reduction of CSC number. In contrast to CSC, mature 
cancer cells have no self-renewal ability, cannot proliferate 
unlimitedly or induce immunological tolerance, and are more 
susceptible to conventional chemotherapy. Such a therapeutic 
strategy has been already used in promyelocytic leukemia 
patients being treated by retinoic acid (RA). Increased intra-
cellular RA concentration upregulates the expression of its 
normal retinoic acid receptor, RAR, which competitively 
displaces the cancer-mutated receptor, PML-RAR. RA func-
tions as an agonist of steroid hormone receptors and, due to the 
binding to transcription factors in the nucleus, may induce the 
differentiation of abnormal blasts (33).

Impairment of cell cycle checkpoints in CRC‑CSCs. Blocking 
of the cell cycle checkpoint proteins represents a novel 

Table II. Markers of colorectal cancer stem cells.

Author, year Marker Function (Refs.)

Ricci‑Vitiani et al, 2007;  CD133 Prominin‑1; membrane glycoprotein, present on (13,177‑179)
Botchkina, 2013;  the surface of actively proliferating stem cells; 
Haraguchi et al, 2008;  function unknown
Zhu et al, 2009
Manhas et al, 2016;  CD44 P Glycoprotein 1; membrane hyaluronic acid receptor (2,23,26,178,180)
Vermeulen et al, 2008;  
Du et al, 2008; 
Haraguchi et al, 2008;
Botchkina et al, 2009
Manhas et al, 2016;  CD166 ALCAM; membrane glycoprotein, adhesion molecule (2,23,180)
Vermeulen et al, 2008;
Botchkina et al, 2009
Huang et al, 2009; ALDH1 Aldehyde dehydrogenase, detoxification enzyme, transforms (16,181)
Zhou et al, 2015  retinol to retinoic acid, which regulates proliferation of cells
Vermeulen et al, 2008 CD29 β1 integrin, adhesion molecule (23)
Manhas et al, 2016;  CD24 Heat‑stable antigen; membrane glycoprotein,  (2,23)
Vermeulen et al, 2008  adhesion molecule
Manhas et al, 2016 ESA Epithelial specific antigen, EpCAM, CD326; membrane (2)
  glycoprotein, adhesion and signaling molecule;

ALDH1, aldehyde dehydrogenase 1; ESA, epithelial‑specific antigen; ALCAM, activated leukocyte cell adhesion molecule; EpCAM, epithe-
lial cell adhesion molecule.
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approach to treatment aimed at overcoming CSC resistance 
to conventional cancer therapy. This approach is based on the 
assumption that cells with dysfunctional checkpoints prolif-
erate in an uncontrolled manner, which could cause genome 
and metabolic destabilization and lead to cell death.

The combination of two potential therapeutic compounds, 
flavonoid morin and telomerase inhibitor MST‑312, has been 
demonstrated to lower tumorigenicity of CSCs by targeting 
signal transducer and activator of transcription 3 (STAT3) and 
telomerase in human CRC cells. A morin/MST-312 combina-
tion has been shown to inhibit the phosphorylation of cellular 
proteins such as p53 and check point kinase 2 (Chk2), which 
are known to play crucial roles in DNA damage checkpoint 
control. Inhibition of CRC HT29 and SW620 cells' prolif-
eration in the morin/MST-312 dose-dependent manner and a 
decrease in CD44+ CRC-CSC count were observed (34).

Martino-Echarri et al studied six CRC cell lines and 
showed that those expressing a mutated APC gene exhibited 
a limited response to 5-FU. The sensitivity of APC-mutated 
CRC cells to 5‑FU was significantly increased by deactivating 
the Chk1 kinase using antisense siRNA-mediated knock-
down (35). These data suggest that cancer cells (enriched by 
CSCs) lacking the activity of cell cycle regulating proteins are 
much more sensitive to proapoptotic stimulation (35).

Inhibition of epithelial‑mesenchymal transition. Cancer cells 
derived from epithelial tissue undergo differentiation during 
which they lose the features of their original tissue and gain 
some properties of connective tissue cells, during a process 
called epithelial-mesenchymal transition (EMT), which is 
essential for acquisition of the invasion phenotype. EMT is 
regulated by many intracellular signaling pathways, such 
as Wnt, Nanog, and transforming growth factor β (TGFβ), 
whose functions are impaired during cancer transforma-
tion (36). Moreover, during EMT, non-CSCs may obtain some 

characteristics of CSCs through transdifferentiation, which 
enables the transition to the more primitive state and, as it 
happens, cells have been much better in acquiring therapy 
resistance (37,38). EMT is one of the possible ways to alter the 
features of cancer cells, especially of CSCs, which are known 
to be responsible for the lack of susceptibility to standard 
chemotherapy (39). The most frequently diagnosed metastases 
in CRC patients occur in the liver, and the mean 5-year survival 
rate of such patients is approximately 10% (40).

4. Crucial signaling pathways associated with efficient 
maintenance of CRC‑CSCs: Potential targets for therapy 
of CRC‑CSC

Wnt signaling crucial for CRC‑CSC features and survival. 
The Wnt/β-catenin pathway has been implicated in the 
maintenance of the intestinal crypt stem cell pool, and Wnt 
signaling dysregulation (through either loss of APC function 
or oncogenic β‑catenin mutations) has been identified in 70% 
CRC tumors (41,42).

The Wnt pathway is evolutionary conserved and consists 
of a family of secreted glycoproteins, known as the 19 
distinct Wnt ligands in mammals (1,42-44). The importance 
of this pathway is revealed by its role in the establishment 
of embryonic axis, cell fate determination, maintenance of 
adult tissue homeostasis, and regeneration (45,46). Thus, loss 
of APC allows gastrointestinal stem and progenitor cells to 
continue proliferating without dying (41,42). Moreover, in a 
proof-of-principle assay, β-catenin was demonstrated to be 
required for clonal growth of human CRC cell lines, and 
targeted deletion of the mutated, constitutively active form of 
β-catenin abolished the ability of the CRC cell line SW480 
to grow in vitro (47). Our paper is aimed at presenting a few 
therapeutic compounds that target the cytoplasmic β-catenin 
destruction complex or inhibit expression of the target 
genes (1,42) (Fig. 2).

A recent study has suggested that one protein, p21-activated 
kinase 1 (PAK1) is an effective stimulator of the Wnt/β-catenin 
pathway and may be a good target for CRC treatment, since 
PAK1 inhibition has been found to give a synergistic effect 
with 5-FU (48). It has been shown that PAK1 is associated with 
the maintenance of stem-cell-like features of CRC-CSCs, such 
as the expression of CD44, tumorigenicity, and spherogenicity 
in both in vitro and in xenograft tumor models in vivo (48).

Pyrvinium pamoate, an antiparasitic drug, has been shown 
to inhibit LRP6-mediated axin degradation and the potency of 
β-catenin stabilization (49). Pyrvinium treatment of HCT116 
and SW480 CRC lines with mutated APC or β-catenin 
(CTNNB1) genes inhibited both Wnt signaling and cell prolif-
eration. Additionally, some other findings have demonstrated 
the allosteric activation of CK1α to be an effective mechanism 
for inhibiting Wnt signaling (49).

The discovery of tankyrases (ADP-ribosylating enzymes) 
and their role in the direction of axin for ubiquitination and 
proteasomal degradation (50-53) has made a significant contri-
bution to this field, as it may provide a new way of targeting the 
Wnt pathway (53). Inhibition of tankyrases causes the stabili-
zation of axin, which enhances the destruction of β-catenin 
and reduces Wnt signaling (51). Tankyrase (Tnk) inhibition 
with the use of new compounds, such as JW74 and XAV939, 

Figure 1. The features characteristic for CRC-CSCs and crucial signaling 
pathways which are under consideration in regards to CSC-targeting thera-
peutic strategies. CRC, colorectal cancer; CSC, cancer stem cell.
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has also been shown to reduce growth, induce apoptosis and 
differentiation of cancer cells, and inhibit stem-cell properties 
and migration of CSC-like cells in cancer lines of diverse 
origins (osteosarcoma, neuroblastoma, colon) (42). Several 
small Tnk inhibitors have been reported to possess anticancer 
efficacy against cell lines of diverse origin, both in vitro and 
in vivo in xenograft mouse models (50,51,54,55). However, the 
clinical utility of Tnk inhibitors is at present limited by intes-
tinal toxicity and low therapeutic index in a mouse model (56).

PRI‑724, a second generation specific CBP/catenin (cyclic 
AMP response element binding protein) antagonist has been 
shown to be safe in preclinical studies. PRI-724 disrupts the 
complex of β‑catenin with CBP, which reduces the expression 
of a subset of Wnt target genes that are important in the prolif-
eration of CRC cells (57). Several phase I/II trials are ongoing 
in hematological malignancies, pancreatic cancer, and colon 
cancer, testing the effectiveness of PRI-724 compound (58). 
Moreover, PRI-724 induced differentiation of CRC xenografts, 
accompanied by tumor growth suppression (42,59). Recently, 
the antineoplastic activity of the LF3 compound, which directly 
inhibits β-catenin/TCF4 interaction, was reported (59). LF3 
treatment of colon, head, and neck cancer cells resulted in the 
suppression of Wnt activity and reduced self-renewal proper-
ties of CSCs (54).

Dickkopf‑1 (Dkk1) as a potential target in CRC therapy. 
Dkk1-a potent, soluble Wnt pathway inhibitor-is reported to 
be a promising molecule in potential therapy of CRC (60). 
It has an affinity to one of the coreceptors LRP5/6 affecting 
the formation of the active receptor complex, Frizzl/LRP5/6, 
which induces endocytosis of those receptors, inhibiting Wnt 
signaling.

Additionally, Dkk1 has a role in embryogenesis and its level 
is regulated by negative feedback with Wnt pathway effectors, 

such as β-catenin (61). However, in CRC, this mechanism 
is disturbed by mutations and epigenetic changes in genes 
encoding β-catenin (62). It has been shown in 217 CRC patients 
that Dkk1 overexpression is inversely related to tumor grade, 
presence of metastasis, and the recurrence rate of colon cancer. 
In samples obtained from patients with high Dkk1 levels, 
increased expression of E-cadherin and cytoplasmic β-catenin, 
and a reduced level of vimentin (an EMT marker) were observed 
in comparison to Dkk1-negative samples (62). Additionally, the 
overexpression of Dkk1 in CRC HCT-116 cells allowed the 
maintenance of epithelial phenotype and led to diminished 
expression of transcription factors characteristic of EMT 
(such as Snail and Twist), but also decreased the expression of 
CSC markers (such as CD133 and Lgr-5) (63). An immuno-
cytochemical analysis has shown a correlation direct between 
Dkk1 expression and decreased microvessel density, as well as 
VEGF expression in CRC tumors. CRC cells overexpressing 
Dkk1 formed smaller tumors following xenotransplantation, 
with a significantly lower number of small blood vessels (64). 
Hence, the Dkk1 protein can suppress the progression of the 
colon cancer, possibly through EMT inhibition, and could serve 
as a potent target of antitumor therapy (64,65).

Natural compounds targeting the Wnt signaling pathway. 
Flavonoids, polyphenolic compounds, constitute a very large 
group of natural products and are one of the most characteristic 
classes of compounds in plant metabolism (42). Their thera-
peutic anticancer properties have been studied for decades and 
are related to the ability of these molecules to modulate the 
Wnt/β-catenin signaling pathway (66-68). Flavonoids have 
been shown to affect different elements of this signaling 
pathway, varying from ligand receptor recognition and binding 
(Wnt/Frizzled/LRP5/6), to the methylation of genes encoding 
Wnt components (1).

Figure 2. The influence of chosen compounds/proteins on the Wnt signaling pathway which are under consideration as either potential therapeutic targets 
(continuous line) or potential therapeutic/adjuvant agents (dotted line).
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Quercetin, one of the most studied flavonoids in clinical 
trials, has been suggested as a potential anticancer drug in 
CRC (1,67,68) due to its modulation of Wnt activity (1,56,57). 
Quercetin interacts with β-catenin and inhibits the binding 
between β-catenin and TCF (69). Moreover, quercetin, as 
well as the flavonoids luteolin and apigenin, inhibits GSK‑3β, 
which is a multifunctional serine-threonine kinase involved 
in the formation of β-catenin destructive complex in cyto-
plasm (67,68).

Silibinin, a flavonolignan from milk thistles, has been 
shown to exert chemoprevention of intestinal cancer in vitro 
and in vivo in a mouse model (70,71). The pilot study on CRC 
patients who were administered silipide, an oral formulation 
of silibinin and phosphatidylcholine, demonstrated increased 
levels of silipide in blood, liver, and tumor tissue (70-72). In 
an experimental follow-up to that study, silibinin has been 
shown to suppress the growth of CRC SW480 cells in culture 
and the growth of xenografts through downregulation of 
β-catenin-dependent signaling (71). The effect of silibinin 
on CRC‑CSCs from the HT29, SW480, and LoVo lines has 
been shown to be mediated by blocking IL-4/-6 protumori-
genic signaling and is associated with decreased mRNA and 
protein levels of various CSC-associated transcription factors, 
signaling molecules, and surface markers (such as CD44, 
NANOG, TERT, SOX‑2, SOX‑9, and WT1). Furthermore, 
differentiation assays have indicated the formation of more 
differentiated clones by silibinin due to the shifting of CSC 
cell division to asymmetric. These findings support the clinical 
usefulness of silibinin in CRC intervention and therapy (73).

Recent clinical trials thus suggest that targeting down-
stream components of the neoplastic Wnt pathway may be a 
novel therapeutic approach for CRC treatment.

Nanog is crucial in CRC‑CSC activity. Nanog is a crucial 
transcription factor involved in the maintenance of pluripo-
tency and self-renewal ability in undifferentiated embryonic 
stem cells (74). This protein is thought to be responsible for 
many aspects of cancer development typical of CSCs, such as 
proliferation, self-renewal, migration, epithelial-mesenchymal 
transition, and resistance to conventional chemotherapy. Its 
increased expression has been found to correlate with worse 
prognosis in many types of cancer, including liver, kidney, 
colon, prostate, brain, and endometrial cancers (74-82). 
NANOG activation in cancer cell cultures promotes their 
transformation into CSCs, as has been shown following ecto-
topic overexpression of NANOG/NANOG8 in the colon and 
prostate cancer cell lines (75,80,81).

Meng et al (83) provided evidence that Nanog can be used 
as a prognostic factor of CRC after they examined 75 human 
CRC samples, which showed that overexpression of NANOG 
strongly correlated with poor prognosis and lymph node metas-
tasis (83). Another study conducted immunohistochemical 
analysis of the expression patterns of CSC‑specific markers 
(such as CD44, CD133, Nanog, and Oct3/4) and of immuno-
suppressive molecules HLA-G and HLA-E in advanced CRC 
tumor tissues and noncancerous colon biopsies. Statistically 
significant increased expression of these genes in CRC tumor 
tissues has been found in comparison to colon biopsies of 
healthy subjects. These findings suggest that CRC‑CSCs may 
have increased expression of HLA-G and HLA-E, which 

may be considered as an immune-evasive mechanism and 
may thus become new potential targets in the elimination of 
CRC-CSCs (84).

Lentivirus-mediated Nanog overexpression has been 
revealed to significantly improve the proliferation and migra-
tory abilities of CRC cells; Nanog was thus supposed to induce 
EMT through upregulation of the Slug and Snail transcription 
factors. Moreover, Nanog silencing mediated by interfering 
RNA in breast cancer MCF‑7 and MDA‑MB‑231 cells resulted 
in a reduced size of the tumor in a xenotransplantation model 
and decreased proliferation of these cells (85). Silencing of 
the NANOG gene was associated with diminishing activa-
tion of cyclin D1 and cyclin-dependent kinases (85,86). 
Downregulation of Nanog in embryonic stem P19 cells 
resulted in the reduction of pluripotency markers such as 
Fgf4, Klf2, Mtf2, Oct-4, Rex1, Sox1, Yes, and Zfp143, whereas 
overexpression of NANOG restored their primary expression 
levels (86). Interestingly, the expression of cyclin D1 and c-myc 
were markedly downregulated, and the cell cycle was blocked 
at the G0/G1 phase following the knockdown of NANOG, 
while the expression of cyclin E and signal transducers and 
activators of transcription 3 (STAT3) remained unaffected in 
breast cancer cells (85).

Embryonic NANOG is considered an important regulator 
of pluripotency, whereas NANOGP8 (NANOG-pseudogene) 
plays a crucial role in tumorigenesis (75). NANOGP8 can 
substitute for NANOG in directly promoting stemness in CRC; 
this conclusion was drawn from the observation that 80% of 
human CRC liver metastases expressed NANOG and 75% of 
the metastases contained NANOGP8 transcripts (76). The 
effects of NANOG inhibition-such as reduced spherogenicity, 
growth, and expression of embryonic-like transcription factors 
(Oct4, Sox2)-were partially reversed by the overexpression 
of NANOGP8 (76,81). Recent studies have suggested that the 
knockdown of NANOG/NANOG8 genes impairs the ability to 
migrate and metastasize in xenograft mouse models, as well as 
the progression of the cell cycle and resistance to apoptosis in 
CRC cells and embryonic carcinoma cells (75,76,86). Nanog 
inhibitors administered with cisplatin and other chemotherapeu-
tics had a synergistic effect, and led to apoptosis of esophageal 
cancer cells (25). The lentivirus vector-mediated inhibition of 
NANOG/NANOG8 in CRC cells (Clone A, CX‑1, LS 174T) 
decreased the level of Bcl‑2 antiapoptotic protein and increased 
sensitivity to proapoptotic factors ABT‑737 and ABT‑199 (87). 
Such combined cell treatment, including inhibitors of Nanog 
and the modulation of proapoptotic Bcl‑2 family proteins, may 
provide a new potential therapeutic approach for CRC-CSCs.

Immunocytochemistry and microarray examination 
showed that NANOG1 expression was limited only to very 
small population of CSCs, which made up 0.5-2% of all CRC 
cells (75). Furthermore, NANOG1 expression showed a positive 
correlation with c-JUN and Wnt/β-catenin/TCF4 expres-
sion (75), which are known to be disrupted in CRC oncogenic 
transformation (41,42). The ectopic expressions of OCT4 and 
NANOG in lung adenocarcinoma cells led to an increased 
percentage of CD133+ cells and sphere formation rate, and 
promoted drug resistance and epithelial-mesenchymal transi-
tion (EMT) (88,89). Since Nanog directly inhibited EMT, it 
has been suggested that it should be considered as a potential 
therapeutic approach (89).
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TGFβ inhibitors target the epithelial‑mesenchymal 
transition. TGFβ belongs to a superfamily of approximately 
30 different pleiotropic proteins that control cell prolifera-
tion, migration, adhesion and apoptosis, maintaining tissue 
homeostasis. Of the three isoforms of TGFβ (TGFβ-1, 
TGFβ-2 and TGFβ-3), TGFβ-1 has been most widely studied. 
Signaling is mediated by binding to cell membrane receptors 
(TGFβR1 and TGFβR2), which results in the phosphoryla-
tion of cytoplasmic SMAD proteins being translocated 
to the nucleus and binding with activators or repressors of 
genes associated with proliferation, survival, and migration. 
However, in specific situations, such as the advanced stages 
of cancer, TGFβ promotes the progression of the disease. 
During neoplastic transformation, cells lose their suscep-
tibility to TGFβ signaling, which then acts as an autocrine 
promoter of invasion and metastasis (90,91).

TGFβ is a positive regulator of processes associated with 
EMT. Among other effects, it stimulates the modification of 
morphology and the loss of cell polarity, decreases E-cadherin 
expression, and increases the expression of key transcription 
factors, such as Snail1/2, Twist, and Zeb1/2 (90). The synthetic 
proteins P17 and P144, designed to inhibit TGFβ1-mediated 
pathways, have recently been considered as a useful tool in 
a clinical approach aimed at reducing liver metastases from 
CRCs, lymphomas, and thymomas (92,93). Additionally, the 
administration of peptide P17 blocked the adhesion of cancer 
cells to cancer fibroblasts and significantly reduced metastasis 
to the liver, proliferation, and angiogenesis in xenotransplanta-
tion model (94). In a CRC CT26 cell line, P17 peptide was 
involved in the blockage of the T regulatory (Treg) lympho-
cytes, which synergistically increased the total effect of this 
compound (92).

The complex analysis of the role of Kindlin-1 in the TGFβ 
pathway strongly suggests that this regulatory molecule may 
be a new anticancer target. Kindlin-1 is known to be essential 
for the maintenance of the structure of cell-matrix adhe-
sion (95). Recently, Kindling‑1 has been identified as directly 
interacting with the key TGFβ/SMAD3 signaling components 
in numerous CRC cell lines (SW1116, SW480, SW620, Caco2, 
HCT116, RKO, LST and HT29). Kindlin-1 expression has 
been found to correlate with the progression of CRC and poor 
prognosis (96).

BMP regulates differentiation and maturation. Bone morpho-
genetic protein 4 (BMP4), belonging to the TGFβ superfamily, 
has been suggested to be a key regulatory factor in the differ-
entiation of CSCs in CRC (50,97). BMP4, which is secreted 
by the connective tissue cells of the intestinal wall, has been 
shown to regulate the maturation and differentiation of normal 
epithelial cells via paracrine signaling (30,98,99). The distri-
bution of BMP4 increases along the colon crypt axis from 
bottom to top, and thus its signaling increases toward the top 
of the crypt. The loss of BMP4 activity in the intestinal epithe-
lium may lead to altered maturation of epithelial cells and, 
in consequence, to the development of CRC (100). Recently, 
BMP pathway suppression has been suggested as an essential 
factor leading to inflammation-induced tumorigenesis of 
CRC in a mouse model of colonic polypoidogenesis where 
adenomatous polyps arise several months after induction (97). 
Additionally, silencing the BMP4 gene by transplacental 

RNAi administration appeared to be sufficient to induce the 
formation of colorectal polyps in mice (101).

It has been shown that BMP4 stimulates the maturation 
and apoptosis of CSCs by reducing β-catenin levels in the 
nucleus (98,102). Recombinant BMP4 was able to stimulate 
maturation, differentiation, and apoptosis, leading eventually 
to higher susceptibility to chemotherapy in human CRC-CSCs. 
Administration of this protein to nude mice bearing a tumor 
originating from CRC-CSCs improved the antitumor effect of 
oxaliplatin and 5-FU. The observed effects did not depend on 
either SMAD4 expression or microsatellite stability (103).

Additionally, a meta-analysis has demonstrated that the 
locus rs4444235 of the BMP4 gene may be considered as a 
risk factor for CRC in some ethnic populations (East Asians 
and Caucasians) (104). Moreover, Dragon (RGMb, a member 
of the repulsive guidance molecule family) has been found to 
be upregulated in CRC. Both mRNA and protein levels were 
increased in tumor tissue proportionally to CRC progression. 
The knockdown of the Dragon gene with the use of shRNA 
(small hairpin RNA) led to a lowered proportion of CD133+ 
CRC-CSCs in CT26.WT and CMT93 cell lines (105). Dragon, 
as a co‑receptor for BMP signaling (106), has been suggested 
as a new target for anti-CRC therapy (105).

Recently, triiodothyronine (T3) has been described 
as playing a role in the regulation of BMP4 signaling by 
sensitizing CRC‑CSCs to chemotherapeutics via significant 
attenuation of Wnt pathway signaling, and, by extension, via 
reduction of their tumorigenicity. The influence of T3 on 
BMP4/Wnt pathway was demonstrated when sphere‑forming 
CSCs from patient samples treated with 5-FU and oxaliplatin 
presented increased cell death (up to 75%) (107).

Blocking Notch pathway increases the efficiency of anti‑
cancer therapy. Under normal circumstances, Notch signaling 
clearly plays an important role in the maintenance of colon 
crypt homeostasis. However, the inappropriate activation of 
the Notch signaling pathway has been reported to be associ-
ated with CRC-CSCs. An upregulated Notch pathway has 
been found to play a role in CSC viability, tumorigenicity, and 
self-renewal (108,109).

In humans, Notch signaling shows high activity in 
adenomas and early stage CRCs (65,110), but low activity 
in advanced, later stage, and metastatic CRCs (111). The 
molecular mechanisms that cause Notch signaling to be 
important for early stage CRC initiation are not understood, 
and only a few mechanistic studies of Notch signaling in 
human CRC cell lines have been performed (109). Moreover, 
Hoey et al demonstrated that, by inhibiting DLL4 (Delta-Like 
4 Ligand), an important component of the Notch pathway, with 
human monoclonal antibody in colon carcinoma xenografts, 
tumor growth and the frequency of CSCs were reduced in 
comparison to the control (112). Combination treatment with 
irinotecan and anti-hDLL4 reduced tumor growth and CRC 
stem cell frequency at higher levels than the anti-DLL4 treat-
ment alone (112,113). This indicates that inhibiting Notch 
signaling reduces CSC frequencies and sensitizes tumor cells 
for irinotecan treatment.

However, treatment with anti-DLL4 antibody leads to 
serious toxic effects in the liver, including sinusoidal dilation 
and centrilobular hepatocyte atrophy, as observed in mice, 
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monkeys, and rats (114). Using athymic nude mice as a model 
system, prominent thymic atrophy in immune-competent 
animals treated with anti-DLL4 antibody was observed. 
Chronic DLL4 blockade has been shown to activate endothelial 
cells, disrupt the homeostasis of organs (including the heart, 
lung, liver, and skin) and induce vascular tumors (114). These 
reservations notwithstanding, further studies were conducted 
on both CRC patient-derived specimens (in colon tumor 
xenografts in NOD/SCID mice) and CRC lines (HCT116 and 
SW480), and these confirmed the efficacy of such potential 
therapeutic strategy (115,116).

Van Es and colleagues (117) demonstrated that the blocking 
of the Notch cascade with a γ-secretase inhibitor dibenzaz-
epine (DBZ) induced goblet cell differentiation in adenomas, 
even in mice carrying a mutation of the Apc gene, and 
subsequent tumor growth arrest (117). Additionally, another 
group induced expression of the Notch intracellular domain 
in the intestinal epithelium of transgenic mice, impairing 
both differentiation of the goblet and enteroendocrine cells 
and resulting in intensive proliferation of immature intestinal 
progenitor cells (118).

Notch signaling plays an important role in the determina-
tion of cell fate. In recent years, this signaling pathway has 
been shown to play a critical role in regulating the balance 
between proliferation, differentiation, and apoptosis of cells 
in various tissues (108,109). The interaction between Notch 
receptors and their ligands (Jagged 1 and 2, and Delta-like 1, 
3, and 4) results in the proteolytic cleavage of Notch receptors 
by γ-secretase and other proteases, which releases the Notch 
intracellular domain (NICD) from the plasma membrane and 
initiates its subsequent translocation into the nucleus. After 
nuclear translocation, NICD binds to and forms a complex 
with one of three transcriptional regulators (119-121).

Moreover, the Jagged1 gene (JAG1), which encodes a 
Notch ligand, has been reported to be transcriptionally acti-
vated by the β-catenin/TCF4 complex (122). The expression 
of JAG1 was limited to enteroendocrine cells of the human 
small intestine epithelium and was undetectable in the mucosa 
of human large intestine. In contrast, increased expression was 
found in half of human colon tumors, although not all tumors 
with elevated Wnt signaling displayed elevated Jagged1 (122). 
Experiments on mice have demonstrated that elevated levels 
of Notch signaling in most intestinal tumors co-occurred with 
increased JAG1 expression. Targeting of Jagged1 could thus 
be effective in downregulating Notch signaling in a subset of 
tumors, as shown in the human HT29Cl16E CRC line (122).

Endothelial cells have been reported to promote the CSC 
phenotype of human CRC cells through the secretion of the 
soluble form of Jagged1. In human CRC specimens, CD133- 
(a basic CRC-CSC markers) and NICD-positive CRC cells 
have been found to colocalize in perivascular regions (119,123).

Microarray analysis has identified a group of Wnt/β-catenin 
downstream genes that are directly regulated by Notch (65). 
These genes were repressed by γ-secretase inhibitors and 
upregulated by active Notch1, even in the absence of β-catenin 
signaling, through β-catenin-mediated transcriptional activation 
of the Notch-ligand Jagged1 in Ls174T CRC cells. Consistently, 
the expression of activated Notch1 partially reversed the effects 
of blocking Wnt/β-catenin pathway in tumors implanted 
into nude mice. These results suggest that Notch activation, 

accomplished by β-catenin-mediated upregulation of Jagged1, 
is required for tumorigenesis in the intestine (65).

Moreover, a recent study in nude mice indicated that a 
subpopulation of CRC HCT116 cells chemoresistant to 5-FU 
and oxaliplatin, enriched in CD133+CD44+ CSCs, was more 
sensitive to γ-secretase inhibitor (DAPT), which depleted 
the cells in vitro and reduced the growth of tumors derived 
from these cells (124). Another study reported that upregula-
tion of Notch1 in colonic cancer cells may provide a specific 
protective mechanism in response to conventional chemo-
therapeutics (125). These findings suggested that inhibiting 
the Notch pathway may be an effective strategy for targeting 
CRC-CSCs and overcoming the resistance of CRC cells to 
conventional chemotherapeutics.

5. Metabolic target strategy

Although it has been commonly accepted that neoplastic 
transformation is caused by many genetic and epigenetic 
factors, little is known of how it affects the metabolism of 
cancer cells. There are only few reports concerning selected 
aspects of cancer cell metabolic adaptations which impede 
cancer progression.

Recent studies have demonstrated overexpression of SIRT1 
(silent mating type information regulation 2 homolog 1) in 
cancer cells resistant to 5-FU and described its implication for 
the promotion of tumorigenesis and the development of drug 
resistance (126). SIRT1 is a NAD+-dependent histone deacety-
lase that can deacetylate histones and a number of nonhistone 
proteins. SIRT1 has been shown to regulate various cellular 
processes, including senescence and cell survival under geno-
toxic and oxidative stress (127,128). A recent meta-analysis 
showed that, in CRC patients, SIRT1 expression correlates 
with the development of invasion, lymph node metastasis, and 
TNM stage, thus suggesting that SIRT1 may be regarded as a 
negative prognostic marker of the overall survival rate of CRC 
patients (128). SIRT1 has also been shown to be one of the 
target genes of miR-34a, a small noncoding RNAs that may 
control gene expression (126,129,130). It has been found that 
miR-34a inhibits SIRT1 expression directly through binding 
to the 3'-UTR of its mRNA in HCT116 CRC cells (129). The 
introduction of miR-34a into 5-FU-resistant DLD-1 cells 
significantly limited their resistance to 5-FU, which was 
accompanied by the reduced expression of SIRT1 and E2F 
family proteins (126,129). These findings suggest that targeting 
the SIRT1 gene could decrease resistance to 5-FU in human 
CRC by increasing p53 apoptosis-promoting activity (129).

SIRT1 has been suggested as a key protein in maintaining 
stem-like features of CRC-CSCs, since SIRT1 was coexpressed 
with the CD133 marker, and overexpressed in colorectal 
CSC-like cells (131). Moreover, SIRT1 deficiency decreased 
percentage of CD133+ cells and their tumorigenicity and the 
abilities to form colonies and spheres (131). Additionally, 
the knockdown of SIRT1 gene in CRC SW620 cells reduced 
expression of several stemness-associated genes (such as Oct4, 
Nanog, and Tert) (131). These findings suggest that SIRT1 can 
be considered as a novel prognostic marker or a new target for 
anti-CRC therapy.

Other studies have focused on a different aspect of cancer 
cell biology-the Warburg effect, the strong tendency of cancer 
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cells to switch their metabolism into anaerobic respiration 
(glycolysis), to secrete lactate, and take up high levels of 
glucose, even in the presence of oxygen in their niche; it partic-
ularly affects CSCs (132). This unusual phenomenon has been 
found to be associated with carcinogenesis due to the inac-
tivation in cancer cells of some metabolic checkpoints, such 
as dysregulation of AMPK (energy rheostat AMP-activated 
protein kinase) (10,133,134). The Warburg effect is postulated 
to create an environment favorable to CSC survival and the 
reprogramming of non-CSCs into CSCs (135). These observa-
tions imply that the elimination of CSCs alone may not be an 
effective therapeutic approach, because they can be regener-
ated from non-CSCs. Thus, an optimally effective cancer 
therapy should rely on the administration of drugs targeting 
different types of cells within the tumor mass.

Metformin improves anticancer therapy effectiveness. 
Recently, some inhibitors of AMPK have been considered as 
potential anticancer therapeutic agents (136-138). Metformin 
(MET) is the best-established compound in this group of 
anticancer molecules. MET is an extensively prescribed and 
well‑tolerated first‑line therapeutic drug for type‑2 diabetes 
mellitus, which has demonstrated more effective anticancer 
effects in cancers characterized by hyperinsulinemia, such as 
breast and colon cancers (139,140). This evidence supports the 
qualification of MET to preclinical and clinical trials of cancer 
therapy (136-138).

Metformin has been described as agent capable of directly 
and indirectly influencing cancer cells through the reduction of 
glucose and insulin levels in the cancer niche, which decreases 
cancer progression (139,141). The very first observations of 
the effects of MET on cancer development were demonstrated 
in diabetes complicated with CRC; in such patients, CSCs 
showed lower proliferation and higher rates of apoptosis than 
patients not pretreated with MET (141). In the same study, it 
was reported that MET enhanced the antiproliferative effects 
of 5-FU on CD133+ CSCs in SW620, SW480, and HCT116 
CRC cell lines (141-143). Recent analyses of the role of MET 
treatment in the occurrence of CRC among type-2 diabetes 
mellitus patients have shown that MET may reduce CRC 
incidence (144-146).

Moreover, MET has recently been identified as a poten-
tial and attractive anticancer adjuvant drug, combined with 
conventional chemotherapeutics to improve treatment effi-
cacy and decrease chemotherapeutic doses. The molecular 
mechanisms underlying the anticancer effects of MET include 
insulin-dependent and AMPK-dependent effects, selective 
targeting of CSCs, reversion of multidrug resistance and inhi-
bition of tumor metastasis (147-149). Positive effects of such 
synergistic combinatory therapy have been described for a 
broad spectrum of cancers, including CRC, gastric, hepatic, 
pancreatic, breast, lung, and prostate cancers (139,148).

The combination of MET and 2-deoxyglucose induces 
p53-dependent apoptosis via the AMPK pathway and expres-
sion of a functional p53 in p53‑deficient prostate cancer cells. 
In addition, such combined therapy arrests prostate cancer 
cells in the G2/M phase and switched the cell death pattern 
from autophagic to apoptotic, independently of p53 (136). 
In CRC SW480 cells, MET inhibited cell growth mainly by 
blocking the cell cycle at the G0/G1 phase, downregulating 

the expression of cyclin D1, and decreasing telomerase 
activity (143).

Another study demonstrated that MET effectively sensi-
tizes human DLD-1, HT29, Colo205, and HCT116 cell lines 
to the proapoptotic activity of tumor-necrosis-factor-related 
apoptosis-inducing ligand (TRAIL) (134). At the same time, 
MET has been shown to upregulate Bax and downregulate 
antiapoptotic myeloid cell leukemia 1 (Mcl-1) levels in CRC 
cells, responsible for increased TRAIL-mediated cell death in 
those human CRC cell lines (134).

MET has been shown to inhibit cancer transformation 
and selectively kill CSCs in four genetically different types 
of breast cancer (MCF‑7, MCF10A ER‑Src, SKBR3, and 
MDA‑MB‑486). The administration of MET and doxorubicin 
collectively reduced the number of both CD44highCD24low 
CSCs and non-CSCs during in vitro culture. Furthermore, 
this combinatorial therapy reduced tumor mass and prevented 
relapse significantly more effectively than doxorubicin alone 
in a xenograft mouse model (150).

Moreover, MET-treated breast cancer cell lines showed 
downregulation of the CD44+CD24-/low cell proportion via 
repression of EMT, including through decreasing the level of 
ZEB, Twist, and Snail2 transcription factors (151). Surprisingly, 
this combination was effective with a fourfold lower dose of 
doxorubicin than used in treatment with the chemotherapeutic 
alone, which enables the reduction of toxicity and an increase 
in the effectiveness of this therapeutic approach.

However, the therapeutic anticancer activity of MET seems 
to be controversial, as some groups have not shown its anti-
proliferative and proapoptotic effect in CRC lines (141,143). 
Sui et al suggested that MET cannot induce these therapeutic 
effects as a single agent (152). A possible explanation of these 
diverse results may be the dependency of MET effectiveness on 
the experimental settings and cell lines used, as Sui et al (152) 
used HT29, HCT116, and RKO cells, while the other authors 
used SW620, and SW480 CRC cell lines (141,143).

6. Chemoprevention: Nonsteroid anti‑inflammatory drugs 
in CRC therapy

After the discovery of increased prostaglandin levels within 
cancer tissue, including CRC (153,154), the regular use of 
nonsteroidal anti‑inflammatory drugs (NSAIDs) was hoped to 
provide new therapeutic anticancer effects that would slow the 
progression of the disease. The issue of NSAID use in cancer 
prevention has been supported by growing evidence from a 
number of observational studies and post-trial follow-up 
data (153). Of all cancers, aspirin and indomethacin have been 
shown to be most effective at reducing the risk of CRC, and 
even at lower doses demonstrate a 30-40% effectiveness in 
preventing CRC (153). A case-control study conducted between 
1976 and 2011 and including 8634 CRC patients (and 8553 
control patients) from the United States, Canada, Australia, 
and Germany has demonstrated that regular use of aspirin or 
NSAIDs reduces the risk of CRC (153,155). In a genome-wide 
investigation of interactions between genes and environment, 
the use of aspirin or NSAIDs was associated with a lower risk 
of CRC, and this association differed depending on genetic 
variation at two SNPs (single-nucleotide polymorphisms) on 
chromosomes 12 and 15 (154).
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The common mechanism through which NSAIDs and their 
derivatives act is the inhibition of β-catenin/TCF transcriptional 
activity and, consequently, downregulation of target genes such 
as cyclin D1. Indomethacin is a cyclooxygenase 1 (COX‑1) and 
COX‑2 inhibitor and exhibits anti‑inflammatory and analgesic 
properties. In addition to the more general inhibition of the 
β-catenin/TCF pathway mentioned above, indomethacin 
impairs β‑catenin gene expression, as shown by the signifi-
cant reduction of the corresponding mRNA in CRC cell 
lines (SW480, SW948, LoVo, and HCT‑116) (43,153,156,157). 
Furthermore, indomethacin stimulates β-catenin degradation 
in a manner independent of APC/GSK3β and proteasome (the 
Wnt ‘noncanonical’ pathway), even in cells bearing a mutated 
APC or β-catenin gene CTNNB1.

Aspirin downregulates the Wnt/β-catenin pathway in CRC 
cells, leading to reduced transcription of the target genes. 
Unlike other NSAIDs, this effect seems to be mediated by 
stabilization of β-catenin in its transcriptionally inactive form 
(i.e., its phosphorylated form), hampering its activity as a tran-
scription factor (155). All NSAIDs, in addition to their effects 
on β-catenin and related pathways, act as ligands of PPARγ 
(Peroxisome Proliferator-Activated Receptors) by stimulating 
PPARγ-dependent effects, such as cell cycle block, differentia-
tion, and apoptosis. PPARγ costimulates the expression of cell 
cycle inhibitors, such as p18, p21 and p27 (155).

Although aspirin and NSAIDs have an undisputable 
preventive role in CRC development, their wider use in cancer 
prevention needs to be carefully considered, on account 
of the increased risk of bleeding from the gastrointestinal 
tract (153,154,156).

7. Conclusions

In this review, we have summarized the state-of-art in 
experimental CRC treatment targeting CSCs to prevent or 
reverse their chemoresistance and reduce their metastatic 
potential. It is hypothesized that creating combined therapy 
regimens, in which conventional drugs are supplemented 
with novel CSC-targeting drugs, might offer improved overall 
and cancer-free survival rates. A potential dose reduction of 
conventional chemotherapeutics would help limit their toxicity 
and improve patients' quality of life.
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