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Abstract 

Phosphodiesterases (PDEs), the only known enzymes to degrade 3’,5’-cyclic nucleotides, are being pursued as 

therapeutic targets for a number of diseases, including those affecting the nervous system, cardiovascular 

system, fertility, immunity, cancer, and metabolism. Although clinical development programmes have so far 

focused exclusively on catalytic inhibition, emerging evidence supports therapeutically targeting PDE function 

in additional ways, such as enhancement of catalytic activity and/or normalization of altered 

compartmentalization, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined 

appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making 

these pioneering drug discovery efforts tractable.  
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Introduction 

Conventional 3’,5’-cyclic nucleotide phosphodiesterases (PDEs) are members of a highly conserved 

superfamily of enzymes that degrade the canonical cyclic nucleotides 3’,5’-cyclic adenosine monophosphate 

(cAMP) and 3’,5’-cyclic guanosine monophosphate (cGMP) (1-6), as well as the non-canonical cyclic 

nucleotides 3’,5’-cCMP, 3’,5’-cUMP, 3’,5’-cIMP and c-di-GMP (7-9) (Figure 1). As extensively reviewed 

elsewhere (1), there are 11 families of PDEs that are grouped based on the homology of their C-terminal 

catalytic domain, and each PDE family has multiple isoforms that differ in terms of the length and complexity 

of their N-terminal regulatory domains (Figure 2). PDEs do not simply control the total cellular content of 

cyclic nucleotides, but rather create individual pockets or nanodomains of cyclic nucleotide signaling. It is this 

subcellular compartmentalization of cyclic nucleotide signaling that enables a single cell to respond discretely 

to multiple extracellular and intracellular signals. Thus, PDEs regulate a myriad of physiological processes, 

and their dysfunction has been associated with a number of pathophysiological states including those affecting 

the nervous system, cardiovascular system, fertility, immunity, cancer, and metabolism (Box 1). Because the 

location of a PDE is just as important to its overall function as is its catalytic activity, how the location of a 

given PDE isoform can change based on tissue type, age, or disease status—possibly due to factors such as 

activation of receptors, alterations in calcium signaling, or elevations in cyclic nucleotides—is of paramount 

importance when considering the therapeutic potential of a given PDE isoform (10-19) (Table S1).  

Importantly, no two PDE isoforms share the exact same combination of substrate specificity, tissue 

expression profile and subcellular localization (Table S1). This is quite important because there are a number of 

diseases where compartment-specific defects in cyclic nucleotide signaling have been identified. For example, 

the function of soluble guanylyl cyclase, but not particulate guanylyl cyclase, is significantly impaired in 

brains of Alzheimer’s patients and in vitro models of Alzheimer’s disease pathology (20-22), which would be 

expected to decrease cytosolic pools of cGMP. In contrast, in colon cancer, membrane-bound guanylyl cyclase 
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appears to be dysregulated/suppressed (23) and membrane-enriched PDE10A appears to be overexpressed 

(24), both of which would decrease membrane-proximal pools of cGMP. That said, cytosolic pools of cGMP 

may also be decreased in colorectal cancer cells, as PDE5A is also overexpressed in these cells (24), and—at 

least in heart and brain—PDE5 regulates pools of cGMP that are downstream of soluble guanylyl cyclases (25, 

26). 

With regard to compartment-specific changes in cAMP signaling, studies examining brain tissue from 

patients with bipolar disorder show no change in membrane but increased signaling in the cytosol, which is 

normalized by the classic mood stabilizer lithium (27-32). Other disease states where compartment-specific 

defects in cyclic nucleotide signaling have been noted include—but are not limited to—erectile dysfunction 

(33), hypertension (34), cardiac hypertrophy (25, 35), acrodysostosis (36-39), and Huntington’s disease (40, 41). 

The unique substrate/localization profile offered by each PDE isoform offers multiple degrees of freedom in 

the context of therapeutic targeting. As such, isoform-specific targeting could enable selective restoration of 

cyclic nucleotide signaling in affected compartments (i.e., provide efficacy) without affecting cyclic nucleotide 

signaling elsewhere (i.e., avoid side effects).  

As reviewed in detail below, there has been and continues to be strong interest in developing PDE-

targeted therapeutics for a number of diseases. Unfortunately, the majority of PDE-targeted therapeutics on 

the market are simply competitive blockers of substrate binding at the catalytic site that lack the ability to 

selectively target a specific isozyme within a single PDE family or sub-family. That said, novel therapeutic 

strategies are currently being explored to increase the selectivity and specificity with which PDEs are targeted 

(e.g., by targeting protein-protein interactions). Further, PDE activators are now being considered as agents for 

treating select diseases, as are the exploitation of PDEs as biomarkers for diagnosis and/or patient selection 

(Box 2). Here, we review the clinical successes and failures of PDE inhibitors to date and describe a number of 

ways in which the field is moving beyond pharmacological inhibition of PDEs for therapeutic gain. 
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Successes and failures in the clinic.   

Several PDE family-selective inhibitors have successfully reached the market, targeting diseases such as 

psoriasis, COPD and erectile dysfunction. On the other hand, many potent and selective PDE inhibitors have 

also failed when tested in clinical trials. We will summarize the main achievements and pitfalls in the 

development of marketed PDE inhibitors to consider factors that currently limit the effectiveness of such 

therapeutic agents. 

 

Marketed PDE inhibitors (PDEi’s) 

The non-selective PDE1 inhibitor (PDE1i) vinpocetine is not FDA approved but is available in over-the-counter 

supplements (e.g., Cavinton or Intelectol, Richter Gedeon; Cognitex, Life Extension) claiming to improve 

memory and recovery from stroke, likely due to increasing vasodilation (42). As extensively reviewed 

elsewhere (42), a number of clinical trials have examined the cognition-enhancing effects of vinpocetine—

either alone or in combination with another compound (e.g., caffeine or Ginko Biloba)—and have generally 

found improvement in healthy volunteers, individuals with cerebral hypofusion, and possibly aged 

individuals, but no improvement in AD patients. Reports of side effects associated with vinpocetine have 

generally been minimal (Table 1, (43)).  

Several PDE3i’s are currently marketed, with Cilostazol and Milrinone perhaps the most widely 

known. Cilostazol was officially approved by the FDA in 1999 for intermittent claudication; however, its off-

label uses include secondary prevention of cerebrovascular accident, percutaneous coronary intervention and 

coronary stent stenosis (c.f., (44)). Although cilostazol improves function across a number of domains, it is also 

associated with serious side effects (Table 1). As such, cilostazol is contraindicated for patients with severe 

heart failure, hepatic impairment, or renal impairment (45). Milrinone increases contractility of the heart and is 
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FDA approved for short-term management of severe congestive heart failure. It is particularly used in the 

context of end-stage heart failure for patients who prove resistant to optimal therapy and for those awaiting 

cardiac transplant (46). That said, the clinical utility of milrinone has been limited by significant side effects 

(Table 1) and the fact that it is cleared through the kidneys (i.e., generally not used in patients with renal 

failure) (46).  

Three so-called “second-generation” PDE4i’s are currently FDA approved, with a 4th compound 

marketed as an over-the-counter supplement. Roflumilast is a PDE4i that is FDA approved as an add-on 

therapy for chronic obstructive pulmonary disorder (COPD; Table 1). It is considered a third line treatment 

due to its gastrointestinal and weight loss side effects; however, it is reported to improve sugar metabolism in 

obese patients and may decrease cardiovascular events in patients with COPD (47). Apremilast is FDA 

approved for the treatment of moderate to severe plaque psoriasis and psoriatic arthritis (48-50) and is also 

being tested in a Phase IV trial for active ankylosing spondylitis (see below). The most common side effects for 

both of these orally-administered second-generation PDE4i’s are the same that plagued first-generation 

PDE4i’s (i.e, gastrointestinal disturbances; Table 1), albeit with much improved therapeutic windows (48). 

Crisaborole is a topically-applied ointment that is FDA approved for treatment of moderate atopic dermatitis 

in patients >2 years old. Given the topical nature of the drug, gastrointestinal side effects are avoided and, 

instead, hypersensitivity reactions are the major possible side effect. Clearly, there is an anti-inflammatory 

theme shared amongst these FDA-approved PDE4i’s. Zembrin in a non-selective PDE4 inhibitor (also acts as a 

5-HT uptake inhibitor) that is not FDA-approved but is a component of a number of herbal supplements 

claiming calming or mood-stabilizing properties (e.g., Calm, Doctor’s Best; Mood, Procera; Nutri-calm, 

Nature’s Sunshine) (51). fMRI imaging of the amygdala in humans supports an anxiolytic-like effect of 

Zembrin (51). Further, a Phase I trial found Zembrin was well tolerated and improved cognitive flexibility, 
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executive function, mood and sleep (52). As noted below, a number of PDE4i’s are currently being pursued to 

improve cognitive functioning (see below). 

There are 4 PDE5i’s currently FDA approved and marketed in the U.S., with a 2 additional PDE5i’s 

marketed outside the U.S.. All 6 PDE5i’s were originally marketed for erectile dysfunction (Table 1), with the 

most recent approval for avanafil based on its much more rapid onset of action. Sildenafil later received a 

secondary approval for pulmonary hypertension (contraindicated for pediatric patients, veno-occlusive 

disease, or sickle cell disease), as did tadalafil. These FDA-approved PDE5i’s are generally considered safe and 

well tolerated, with no increase in cardiac mortality or myocardial infarction (53). Given their shared 

mechanism of action, it is perhaps not surprising that they share largely similar side effect profiles (Table 1) 

with headache, flushing, dyspepsia, and vision disturbances being the most common adverse events (53). 

Interestingly, udenafil (Zydena, Mezzion Pharma)—one of the PDE5i’s used to treat erectile dysfunction in 

Korea, Russia and Philippines (54, 55)--has also been reported to improve cognitive function in patients with 

erectile dysfunction (56, 57). 

The success of a number of marketed PDEi’s validates PDEs as appropriate therapeutic targets in many 

pathological conditions. However, the presence of unwanted side effects resulting from the inability to target 

individual isoforms is the major limiting factor to success. It is notable that of the 11 PDE families, only agents 

that attenuate the activity of PDEs 1, 3, 4 and 5 have made it to market, despite significant efforts targeting the 

inhibition of other PDE families (see next). 

 

Failed PDEi clinical trials 

Despite the successes noted above, a number of PDEi’s that entered the clinic failed to make it to market. 

Pfizer’s selective PDE2i PF-05180999 was originally considered a candidate for cognitive impairments 

associated with schizophrenia based on its preclinical profile (58); however, it was brought into the clinic for 
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migraine. Despite the completion of earlier Phase 1 safety and tolerability studies, additional trials were 

terminated early due to safety concerns (Table 2). Exisulind inhibits both PDE2A and PDE5A (which are 

overexpressed in a number of precancerous and cancerous cell types) and triggers apoptosis in 

precancerous/cancerous cells with minimal effects on healthy cells (c.f., (59, 60)). Despite promising findings in 

multiple clinical trials, exisulind failed to secure FDA approval in 2000 due to deficiencies in safety and 

efficacy (Table 2, c.f., (59, 60)).   

As noted above, Cilastozol has gained FDA approval for intermittent claudication; however, clinical 

trials for other indications, such as type 2 diabetes mellitus peripheral neuropathy, have failed (61). That said, 

cilostazol significantly improved walking speed in these patients, suggesting improved peripheral blood flow 

as would be expected based on its current approved indication (61). 

The PDE4i cilomilast (Ariflo, GlaxoSmithKline) gained FDA approval in 2003 as a second-line 

treatment for COPD in patients who are poorly responsive to salbutamol (62). However, cilomilast never made 

it to market due to the severely dose-limiting nature of gastrointestinal side effects (e.g., nausea and vomiting, 

diarrhea, and abdominal pain (48)). The fact that cilomilast elicited more pronounced side effects relative to the 

other systemically-delivered PDE4i’s described above may be related to preferential inhibition of the PDE4D 

family relative to the other PDE4 subtypes (62). A novel PDE4i ASP9831 was tested in Phase I and II trials for 

non-alcoholic steatohepatitis based on preclinical findings, but failed to improve biochemical biomarkers of the 

disease (63). As target engagement in the organ of interest was not confirmed (63), the reasons underlying the 

lack of efficacy remain unclear.  

A number of clinical trials have attempted to extend therapeutic indications for PDE5i’s, but have 

failed. As reviewed extensively elsewhere (42), a number of trials have tested the effects of sildenafil or 

vardenafil on various measures of cognition in healthy volunteers or patients with schizophrenia and have 

largely found no effects (64-68). That said, one report from an Iranian clinical trial did report an improvement 
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in negative symptoms in patients with chronic schizophrenia when sildenafil was administered in addition to 

risperidone (69). Several studies were initiated to study sildenafil and/or tadalafil in patients with Duchenne or 

Becker Muscular dystrophy, with the hopes that the vasodilatory properties of the drugs would improve 

muscular ischemia; however, clinical trial outcomes have been mixed (Table 2; (70, 71)). 

Two PDE9i’s have been tested in the clinic for cognition-enhancing effects. Although PF-04447943 was 

found to be safe and well-tolerated, it failed to improve either cognition or dementia-related behavioral 

disturbances in a Phase II clinical trial (72). Similarly, BI 409306 was reported as safe and well tolerated in 

healthy subjects as well as patients with AD or schizophrenia; however, no positive effects on cognition were 

observed in either patient population (https://www.boehringer-ingelheim.com/PDE9-Inhibition-in-AD, 

accessed 04/30/19; (73-76)). Despite a failure to improve cognition in patients with schizophrenia, BI 409306 is 

still being tested in the clinic for prevention of schizophrenia relapse and prevention of first psychotic episode 

(Table 3). The failure of PDE9i’s to improve functioning in AD may be related to the fact that brain PDE9A is 

enriched in the nucleus and membrane (10) and, thus, is not in a position to directly regulate the cytosolic 

pools of cGMP that appear to be dysregulated in Alzheimer’s disease (20-22).  

A number of clinical trials have tested the PDE10i PF-02545920 in schizophrenia and Huntington’s 

disease (Table 2-3). Despite widely replicated efficacy in a number of preclinical assays intended to measure 

schizophrenia-relevant behaviors  (e.g., (77, 78)), PF-02545920 failed to improve symptoms in patients with 

either exacerbated, stable, or sub-optimally treated schizophrenia (Table 2; (79)). Further, in at least 1 trial, 

there were reports of motoric side effects such as dystonia (79).  Pfizer attempted to reposition PF-02545920 for 

Huntington’s disease based on decreased striatal expression of PDE10A being found in patients (Box 2) and 

promising efficacy of PDE10i’s in preclinical models of the disease (41, 80, 81). Unfortunately, PF-02545920 

failed to improve symptoms in patients with Huntington’s 

(https://clinicaltrials.gov/ct2/show/results/NCT02197130?sect=X70156#outcome1, accessed 04/30/19), and so 

https://www.boehringer-ingelheim.com/PDE9-Inhibition-in-AD
https://clinicaltrials.gov/ct2/show/results/NCT02197130?sect=X70156#outcome1
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efforts for this disease indication were terminated (https://clinicaltrials.gov/ct2/show/NCT02342548, accessed 

04/30/19). Several other PDE10i’s have also been pursued in the clinic for schizophrenia and/or HD, with some 

efforts subsequently suspended or terminated (Table 2) and others ongoing (Table 3—see more below). 

The unsuccessful translation of these PDEi’s from promising preclinical data to human testing suggest 

that therapeutic approaches targeting PDEs need to extend beyond occlusion of the enzyme’s catalytic site. Of 

particular note are the numerous failures seen in nervous system disorders, even when target engagement was 

verified. Expression of PDEs in the brain is particularly complex, with PDE isoforms differentially expressed 

across circuits, cell-types, and subcellular domains (10, 43, 82, 83). Thus, the challenge in evaluating the clinical 

potential for the next generation of PDE-modulating drugs is to gain novel insights about disease-related 

changes in PDE structure, function and regulation to understand how PDEs should be targeted in a 

compartment-specific manner for therapeutic gain. 

 

PDE inhibitors in development. 

Given the clinical successes of PDEi’s noted above, it is not surprising that traditional PDEi’s are still very 

much being pursued as potential therapeutics, particularly in the context of the central nervous system (CNS), 

cardiovascular system, reproductive system, cancer and metabolic disorders (Table 3). These efforts include 

the development of new chemical entities as well as repurposing of existing entities. Thanks to advances in our 

understanding of structural differences that exist between PDEs, coupled with extensive years-long medicinal 

chemistry efforts to optimize structure-activity relationships, more recently developed PDEi’s have been vastly 

improved in terms of selectivity and potency and have even demonstrated novel modes of action in some 

cases (i.e., acting as a negative allosteric modulator instead of direct catalytic inhibitor; (84-87)). Despite these 

advances in new chemical entities, there is still significant efforts to repurpose older PDEi’s. Drug repurposing 

efforts can be driven by computational or experimental approaches; however, most drug repurposing efforts 
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have been driven either by a better understanding of pharmacology or by a retrospective analysis of clinical 

effects that were observed during trials or marketed use of a drug for its original indication (c.f., (88)). Indeed, 

the PDE5i sildenafil was originally brought into clinical trials for angina but—following observations made by 

clinicians in that trial—was later repurposed for erectile dysfunction. Drug repurposing has several 

advantages including reduced risk and substantially reduced timelines and cost (e.g., $300 million for 

repurposed drug versus $2-3 billion for new chemical entity) due to the fact that the drug would already have 

passed preclinical and Phase I safety testing and possibly even formulation development (88). That said, there 

are a number of barriers to recouping expenses incurred by drug repurposing trials, particularly when they are 

carried forward by an entity other than the patent holder or following the expiration of the original patent (see 

(88) for further discussion).  

 

Non-selective inhibitor 

The non-selective PDE3-4-10-11 inhibitor Ibudilast, which also inhibits glial cell activation, is approved for use 

in Japan as a bronchodialator and has long been of interest as a therapeutic approach for neuropathic pain and 

substance abuse/withdrawal (89, 90). Recent clinical trials have tested Ibudilast in the context of amyotrophic 

lateral sclerosis, pain,  as well as opiate, methamphetamine, and alcohol abuse (Table 3) and positive effects 

have been reported for all trials completed to date (91-94).  

 

PDE1 inhibitors 

The broad PDE1 inhibitor ITI-214, which shows picomolar IC50s for PDE1A, PDE1B and PDE1C in enzymatic 

assays and >1000-fold selectivity versus its nearest neighbor PDE4 (95, 96), is being explored for CNS and non-

CNS indications. ITI-214 demonstrates cognition-enhancing effects in rodent models of long-term memory and 

working memory deficits (95-97), mimicking effects of a dopamine receptor 1 (D1) agonist (97) and occurring 
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at doses that leave efficacy of the antipsychotic risperidone intact (95).  Although the target mediating the 

cognition-enhancing effects of ITI-214 remains undetermined, PDE1B may be the most likely candidate given 

its expression in D1-expressing neurons (97) along with the fact that the a PDE1B-selective inhibitor showed 

similar cognition-enhancing effects (98). ITI-214 was moved into the clinic, with potential applications for 

cognitive deficits associated with schizophrenia, AD, and Parkinson’s Disease (96), with safety and tolerability 

established in healthy volunteers and patients with schizophrenia (Table 3). ITI-214 is also being explored in 

the clinic for heart failure (NCT03387215) given its ability to improve cardiac function in dog and rabbit 

models of heart failure (99) as a consequence of its inhibition of PDE1C (99). 

 

PDE2 inhibitors  

Like the PDE1i described above, a number of highly selective PDE2i’s have demonstrated cognition-

enhancing, anxiolytic and anti-depressant like-effects in animal models (c.f., (100)). TAK-915 entered Phase I 

trials to correlate plasma exposures with central target engagement with the purpose of informing dose 

selection for future trials targeting cognitive impairment in schizophrenia (101-103) (Table 3). Looking beyond 

the brain, PDE2i’s may hold relevance for cardiovascular function since elevated PDE2A expression has been 

found in failing human hearts as well as a large number of animal models of heart disease (c.f., (104)). Further, 

PDE2i’s may hold promise as an antifungal treatment for moderate to severe candidiasis infections, given that 

genetic deletion of pde2a reduces virulence and biofilm integrity of the fungal pathogen (c.f., (105)). 

   

PDE3 inhibitors 

Despite its existing FDA approval, the efficacy and safety of cilostazol is still very much a topic of 

investigation, with 27 active clinical trials registered on clinicaltrials.gov (accessed 04/30/2019) and 54 more 

drawn to a close within just the past 10 years. Numerous recent Phase IV studies appear focused on 
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broadening the therapeutic indications of cilostazol to include vasculature-related insults and nephropathies 

associated with Type 2 diabetes (Table 3), and recent reports suggest largely positive effects (44, 61, 106, 107). 

One study explored the efficacy of cilostazol in chronic tinnitus, and reported some improvement (108). 

Several prospective and retrospective studies have examined cilostazol as a primary or adjunctive treatment 

for cognitive deficits associated with AD and schizophrenia; the majority of which demonstrated positive 

effects of cilostazol on cognition (see (42) for review). The mechanism by which cilostazol elicits improved 

cognition has yet to be determined empirically. Given there is very little expression of PDE3A or PDE3B in the 

brain (83, 109), it may be likely that cognition-enhancing effects of cilostazol are driven by increased cerebral 

blood flow that comes with chronic—but not acute—dosing as opposed to inhibition of PDE3 isoforms directly 

in the brain (e.g., (110)).  

Novel therapeutic applications of cilostazol are also being explored in preclinical studies. For example, 

oral cilostazol (30 mg/kg) improved retinal stress, ischemia, and ganglion cell death in a rat model of diabetic 

retinopathy (111). In addition, PDE3A knockout (KO) mice are infertile (112) and chronic administration of 

cilostazol blocks pregnancy in naturally-cycling swine (113), suggesting potential utility of PDE3i’s for birth 

control or regulating in vivo oocyte maturation in the context of assisted reproduction. Indeed, administration 

of cilostazol to superovulated mice was able to improve in vitro fertilization rates of subsequently harvested 

oocytes, possibly by virtue of synchronizing the oocyte maturation (114). Because of the promise of PDE3 as a 

therapeutic target, coupled with concerns over side effect associated with cilostazol, alternative PDE3 

inhibitors are currently being sought in hopes of retaining efficacy associated with this target while avoiding 

side effects (115-117). 

 

PDE4 inhibitors 
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The PDE4 family is arguably the most studied of all the PDE families. A number of clinical trials have tested 

the effect of apremilast for indications beyond psoriasis and arthritis. Two Phase II studies are testing the 

efficacy of apremilast in combination with phototherapy to produce repigmentation in patients with Vitiligo 

(Table 3). Interestingly, a recent case report showed apremilast dramatically improved repigmentation in a 

woman with treatment-resistant Vitiligo (118). Multiple case reports have also described an ability of 

apremilast to improve symptoms in patients with treatment-resistant erosive oral lichen planus (119-121), 

perhaps motivating the recently registered Phase II study that will test the ability of apremilast to improve 

genital erosive lichen planus (Table 3).   

Additional indications are also being explored for roflumilast. Phase IV studies showed roflumilast 

reduced fat mass and, thus, body weight in obese women with polycystic ovary syndrome (PCOS); however, 

these reductions were smaller than those elicited by liraglutide (Table 3; (122, 123)). The PDE4 inhibitor TAK-

648 is being tested in the clinic in patients with Type 2 diabetes, based on preclinical data supporting such an 

indication (124). Roflumilast has also been tested for its ability to improve cognition and information 

processing in healthy humans, with promising results observed at a dose previously indicated as being devoid 

of side effects (125). Patients with stabilized schizophrenia receiving adjuvant roflumilast in a small Phase II 

trial showed no improvement in working memory but did show some improvement in verbal learning and 

memory (126).  Given these positive findings, roflumilast was tested in elderly subjects who demonstrated no 

change in spatial memory but improved verbal word memory with roflumilast treatment (127). Numerous 

preclinical studies have long pointed to the therapeutic potential of PDE4i’s in the context of schizophrenia 

and cognition (128-131). 

Cognition-enhancing effects have also been reported for the PDE4i HT-0712, which improved long-

term memory for word-lists without serious adverse events in elderly subjects experiencing cognitive decline 

(http://www.dartneuroscience.com/press_release/july_22_2008.pdf). The cognition-enhancing effect of HT-

http://www.dartneuroscience.com/press_release/july_22_2008.pdf
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0712 in humans is consistent with previous reports in mice (132, 133). The PDE4D negative allosteric 

modulator BPN14770 is also being pursued for improving cognitive impairment and has been tested for safety 

and/or efficacy in healthy elderly subjects, healthy volunteers with scopolamine-induced cognitive 

impairment, and adult males with Fragile X Syndrome (Table 3). In a press release, BPN14770 was described as 

having good safety and oral bioavailability and an ability to improve working memory in healthy elderly 

adults (http://tetradiscovery.com/wp-content/uploads/2016/11/FINAL-Tetra-Phase-1-121616-FINAL.pdf; 

accessed 04/30/19). These effects in humans are consistent with preclinical studies showing BPN14770 

improved a number of behaviors in a mouse model of Fragile-X Syndrome and antagonized the amnestic 

effects of scopolamine in mice (134, 135). Based on preclinical studies showing anxiolytic and cognition-

enhancing effects (136), the PDE4i GSK356278 entered Phase I safety trials for Huntington’s disease but 

adverse events limited the highest dose to that achieving only ~50% occupancy in brain (Table 3; (136)). Other 

nervous system disorders for which preclinical evidence suggests a therapeutic potential of PDE4i’s include 

ischemic stroke (132, 137-140), traumatic brain injury (141), axon regeneration (142), and substance abuse 

disorders (both causes and consequences, (143-146)). 

McCune-Albright Syndrome is a disease affecting endocrine tissues, skin and bones and is caused by a 

mutation that results in constitutive activation of the G-protein alpha subunit Gαs (Gαs*). Preclinical studies 

show that while Gαs* triggers increased cAMP levels in some tissues, it actually results in decreased cAMP 

levels in other tissues due to a PKA-dependent upregulation of PDE activity, particularly that of PDE1 and 

PDE4 (129, 147, 148). Consistent with this upregulation of PDE4 activity, the PDE4i rolipram was able to 

reverse deficits in a Gαs mouse models (129, 130). A clinical trial is currently underway that is using PET 

imaging to measure PDE4 expression in the brain and peripheral organs of patients with McCune-Albright 

Syndrome (Table 3). 
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More recent work is examining PDE4 in the context of cancer. Both preclinical and clinical data suggest 

roflumilast may exhibit anti-tumor activity for B-cell lymphomas (149). The PDE4i rolipram, in combination 

with cAMP-elevating agents, has been shown to suppress triple negative breast cancer both in vitro and in vivo 

in mice (150). Apremilast similarly induced tumor regression in mouse models of colorectal cancer (151). 

Perhaps even more interesting, inhibition of PDE4D specifically, either with genetic tools or the PDE4Di Gebr-

7b, resensitized chemotherapy-resistant ER-positive breast cancer cells (152). Although PDE4i’s have yet to be 

extensively explored in cancer patients, these early studies provide promise for the chemotherapeutic potential 

of PDE4is.  

 

PDE5 inhibitors 

A number of recent clinical trials have explored additional disease indications that might benefit from the 

vasodilatory properties of PDE5i’s. A cream version of sildenafil has recently been tested in a Phase II study 

examining female sexual arousal disorder (Table 3) as well as a study in which improved blood flow in 

patients with secondary Raynaud phenomenon was observed (153). International consortiums are testing 

sildenafil in intrauterine growth restriction in hopes that the vasodilatory properties of the drug will improve 

uteroplacental perfusion and, thus, fetal growth (154, 155). Initial results suggest sildenafil improves fetal 

growth and maternal blood pressure across species, including human, sheep, rabbit, and rodents (156, 157). 

Several studies have also explored the effects of sildenafil, tadalafil, or vardenafil in the context of metabolic 

disorders such as Type 2 diabetes and obesity, with the hopes that the vasodilatory properties of these drugs 

would improve glucose tolerance and insulin signaling and, thus, improve other endpoints such as elevated 

body weight, nephropathy, and cardiomyopathy (Table 3). Tadalafil improved insulin secretion, endothelial 

function, and abdominal lean mass content in non-obese men (158), and chronic sildenafil improved 

glycometabolic control, ameliorated visceral adiposity, and prevented remodeling in diabetic cardiomyopathy 
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(159-162). That said, vardenafil failed to reduce cardiovascular risk in men with type 2 diabetes (163).  

Interestingly, the positive effects of sildenafil on adiposity and diabetic cardiomyopathy are suggested to be 

independent of sildenafil’s vasodilatory properties, rather being mediated by epigenetic signaling and/or a 

reduction of inflammatory chemokines (159-162). It is important to note, however, that one of the studies 

examining the effect of sildenafil on glucose homeostasis was terminated early due to safety concerns (Table 

2). With regard to other indications related to nephropathy and cardiomyopathy, sildenafil has also been 

tested against media-induced nephropathy, and tadalafil is being explored in the context of kidney stones and 

endocrine cardiomyopathy (Table 3). A meta-analysis of older clinical studies suggest PDE5i’s could be an 

effective medical expulsive therapy for distal ureteral calculi, albeit not significantly improved relative to 

tamsulosin (164). With regard to the brain, two early-stage clinical trials are testing the ability of sildenafil to 

reverse concussion-related reductions in cerebrovascular reactivity (Table 3).  

As described for PDE4i’s, a number of trials are exploring the therapeutic potential of PDE5i’s as 

chemopreventives for solid tumors, multiple myeloma, and head and neck squamous cell carcinoma. Early 

reports suggest combining sildenafil with the chemotherapeutic regorafenib is safe in patients with solid 

tumors (165). Further, a number of in vitro and animal models of colorectal cancer suggest that PDE5i’s, either 

alone or as part of a multi-chemotherapeutic regimen, demonstrate an ability to prevent tumor growth (e.g., 

(24, 165, 166)). Similarly, reports from both retrospective and prospective trials suggest tadalafil promotes 

tumor immunity in patients with head and neck squamous cell carcinoma (Table 3, (167, 168)). Although 

PDE5i’s show significant anti-tumor effects, particularly with regard to colorectal cancer, they do not produce 

complete anti-tumorigenic effects (23). This lack of complete efficacy may be related to the fact that membrane 

GCs are inhibited in colorectal cancer (23), but PDE5 may be primarily regulating cytosolic GCs (25, 26). 

Alternatively, it may be related to the fact that both PDE5 and PDE10A—the latter a membrane-enriched PDE 

(82, 169)—are overexpressed in colorectal cancer cells (24). Indeed, PDE10i’s also inhibit growth of colorectal 
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cancer cells (170, 171); however, when both PDE5 and PDE10 are inhibited, anti-tumor efficacy is improved in 

preclinical models (24). Although enthusiasm for PDE5i’s as chemopreventives is growing (172), it should be 

noted that PDE5i’s similarly prevented prostate carcinogenesis in preclinical models but did not appear to 

reduce risk or recurrence in clinical studies (173). Perhaps even more concerning, PDE5A appears to suppress 

melanoma cell invasion in mice (174) yet a recent systematic review and meta-analysis showed that PDE5i’s 

actually increase risk for melanoma and basal cell carcinoma in humans (175). 

 

PDE9 inhibitors 

Although PDE9i’s thus far have failed in the clinic for brain diseases, they may hold therapeutic potential for 

cardiovascular diseases. In a mouse model of sickle cell disease, the PDE9i BAY73-6691 had immediate benefits 

on acute vaso-occlusive events (176), and a Phase 1 clinical trial has recently completed looking at safety, 

tolerability and PK/PD of the PDE9i PF-04447943 in patients with sickle cell anemia (Table 3). PDE9i’s may also 

hold therapeutic potential for cardiovascular indications as PDE9A expression is upregulated by cardiac 

hypertrophy and cardiac failure. Indeed, the PDE9i PF-04449613 reverses heart disease in animal models by 

controlling pools of cGMP downstream of pGCs (25). 

 

PDE10i inhibitors 

Despite the PDE10i clinical failures described above, TAK-063 was tested in healthy controls and patients with 

schizophrenia. In healthy controls, TAK-063 was reported to be safe and well tolerated (177), altering the 

effects of ketamine on brain activity in healthy controls, particularly in the striatum, substantia nigra, and 

ventrolateral prefrontal cortex ( 

https://clinicaltrials.gov/ct2/show/results/NCT01892189?sect=X70156#outcome1,  accessed 04/30/19). In patients 

with schizophrenia, although TAK-063 failed to demonstrate a significant effect on the total PANSS score, 

https://clinicaltrials.gov/ct2/show/results/NCT01892189?sect=X70156#outcome1,  accessed 04/30/19
https://clinicaltrials.gov/ct2/show/results/NCT01892189?sect=X70156#outcome1,  accessed 04/30/19
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there was a trend that mirrored effects sizes normally seen with risperidone (178). Furthermore, TAK-063 did 

significantly improve a number of secondary endpoints relative to placebo (178). It is not entirely clear why 

TAK-063 was able to succeed where PF-2545920 failed. While one study suggested that TAK-063 activates the 

striatal direct and indirect pathways in a balanced manner and PF-254920 activates the direct pathway more so 

than TAK-063 (179), other studies have reported that PF-254920 activates these pathways equally (77, 180). It is 

notable that TAK-063—but not PF-254920—increased sensorimotor gating in rodents as measured by prepulse 

inhibition of acoustic startle (PPI) (179), suggesting PPI may more accurately predict antipsychotic-like effects 

of novel compounds. Preclinical studies are also exploring the therapeutic potential of PDE10i’s in the context 

of L-DOPA-induced dyskinesias (181) and alcohol abuse disorders (144). 

 

Inhibition of PDE7, PDE8 or PDE11 

Studies describing the physiological function of the PDE7, PDE8, and PDE11 families are now emerging; 

however, inhibitors have not yet reached the clinic. Like many of the PDE families discussed above, early 

research suggests that PDE7i’s and PDE8i’s may have positive effects in diseases where cognition, 

neuroprotection, neuroinflammation, and/or motor function are impaired (e.g., multiple sclerosis and/or 

Parkinson’s disease; (182-186)). Similarly, PDE11i’s may hold potential for treating age-related cognitive 

decline (83) or as an adjunctive treatment to improve lithium responsiveness in patients with bipolar disorder 

(187, 188). PDE7i’s may also hold promise in treating leukemia (189, 190), and PDE8i’s may have potential for 

treating disorders associated with reduced androgen production in males as PDE8i’s, particularly when 

applied in combination with PDE4i’s, stimulate Leydig cell steroidogenesis (191, 192).  

 

Therapeutic strategies beyond inhibition   

Activating PDEs 
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Although efforts to pharmacologically modulate PDE activity to date have largely focused on inhibition, there 

are several disease states where PDE activation may be warranted. Tissue-, brain region-, and subcellular 

domain-specific decreases in PDE expression/activity and/or increases in cyclic nucleotide signaling have been 

implicated in select disease states, including some age-related deficits (193-195), Huntington’s disease (196), 

social isolation (197), migrane (198-202), retinitis pigmentosa (203), infertility (112), prostate cancer (204), 

melanoma and basal cell carcinoma (175), cardiac hypertrophy (35, 205), acrodysostosis (36), and polycystic 

kidney disease (206). Indeed, Mironid have developed PDE4 longform specific activators (mechanism as yet 

unknown; Table 4) for the treatment of polycystic kidney disease where increased adenylate cyclase activity 

caused by overexpression of vasopressin  V2R receptors results in elevated cAMP levels that drive cyst growth 

and disease progression (207).  There are several natural mechanisms by which PDE activity can be activated 

(Figure 3), and it is our contention that these avenues could be manipulated phamacologically to trigger PDE 

activation. 

 One route to PDE activation is by way of tandem GAF (cGMP-specific and stimulated PDE, Anabaena 

adenylyl cyclases, and E. Coli FhlA) domains (208) (Figure 3B). Although GAF domains have been identified 

in over 7400 proteins, in mammals they are only are found in the PDE families 2, 5, 6, 10 and 11 (6, 209). For a 

vast majority of non-PDE GAF domains the activating ligand is unknown, however for PDEs we know that 

cyclic nucleotides bind to  these pockets (Figure 3). PDE2 and PDE5 are activated when cGMP binds the GAF 

domain (210-212), and PDE10 is activated by cAMP binding the GAF domain (213). In the context of activation, 

binding of cyclic nucleotides to GAF domains is thought to cause structural changes that relieve autoinhibition 

of the PDEs (Figure 3). In contrast, cGMP binding the GAF-A domain of PDE6 enhances protein-protein 

interactions that inhibit PDE6 catalytic activity (214). This suggests that blocking cGMP binding of the PDE6 

GAF domain may provide a means of promoting PDE6 activity. It also suggests it may be possible to both 

activate and inhibit GAF-containing PDEs with small molecules at a site distinct from the catalytic domain. 
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Indeed, PDE11A is activated when a cGMP analog—but not cGMP itself—binds the GAF domain (213). 

Further, even though cGMP binding of the GAF domain activates PDE5 (210), a number of other types of 

molecules that bind the GAF domain inhibit PDE5 in its activated—but not basal—state (215). This is 

consistent with the fact that GAF domains are known to bind a diverse array of small molecules that are 

unrelated to cyclic nucleotides (208). The fact that GAF domains are only found in PDEs in mammals (6) 

makes GAF domains of high interest in the context of drug targeting (216). Importantly, mammalian GAF 

domains are sufficiently structurally divergent from one another (e.g., low degree of homology between PDE 

families and the tandem GAF domians are preceded by variable N-terminal stretches) as to allow selective 

pharmacological targeting of individual PDE families (210). Together, this suggests the GAF domains may 

provide an inroad for targeting reagents that selectively activate a given PDE isoform while avoiding off-target 

activity. 

PKA or PKG phosphorylation of PDE3 (217, 218), PDE4 (217, 219), PDE5 (220), and PDE8 (221) is also 

known to activate catalytic activity in a negative feedback loop. In the case of PDE4, for example, catalytic 

activity is inhibited when the UCR2 regulatory domain “trans-caps” the catalytic site; thus, occluding cAMP 

from reaching the enzymatic core of PDE4  (85, 222) (Figure 3C). PKA phosphorylation of the UCR1 regulatory 

domain blocks the ability of UCR2 to trans-cap the catalytic site, which locks PDE4 in the active state (85). 

Notably, select PDE4Di’s allosterically inhibit catalytic activity by promoting “trans-capping” (141); whereas, 

phosphatidic acid activates PDE activity by inhibiting trans-capping in a similar but mutually exclusive 

manner to PKA (223-225). Furthermore, the dominant negative peptide “UCR1C”, which corresponds to UCR1 

sequence, also activates PDE4 activity by inhibiting trans-capping (226). These results provide proof of 

principle that activation of PDE4 may be achieved by either small molecules or biologics that prevent UCR2 

from adopting a trans-capping conformation. 
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 PDEs may also be activated by manipulating protein-protein binding interactions. PDE6 is unique in 

the fact that the heterodimeric holo-enzyme includes two inhibitory subunits that span the catalytic pockets of 

the dimer, thus occluding cGMP from the catalytic site (227) (Figure 3D). Binding of the GTP-bound α-subunit 

of the heterotrimeric G-protein transducin relieves PDE6 inhibition by binding to the C-terminal region of 

PDE6 and its inhibitory subunits (228). The full crystal structure of PDE6 is not yet available (229); however, 

recent cryo-EM work (230) has confirmed the predicted structural organisation of the holo-enzyme, albeit 

without sufficient detail to inform pharmacological targeting. The success in upregulating PDE6 activity via 

gene transfer to combat retinitis pigmentosa (203) (see following section) suggests that PDE6 activation could  

be a viable therapeutic strategy for the treatment of vision loss. As discussed in greater detail below, it may 

also be possible to increase PDE activity by preventing the binding of PDEs to binding partners that sequester 

or suppress activity. 

 

Gene therapy 

Viral transfer of PDE genes, agents that silence PDE gene expression (e.g. antisense, silencing or microRNAs) 

(174, 231-235), or gene editing (e.g., Crispr/Cas9) (236) might also prove a useful means of therapeutically 

targeting individual PDE isoforms (Figure 4).  The best characterized PDE gene therapy approach to date 

targets PDE6 activity in the retina. A loss of transducin-mediated activation of PDE6 results in elevated cGMP 

levels, which causes the loss of primary rods and, ultimately, vision (237). Expression of recombinant PDE6α 

in the retina via an adeno-associated virus (AAV-PDE6α) preserved retinal structure, photo-transduction, and 

vision in retinal degeneration (rd) mice, as did AAV-PDE6β (238, 239). AAV-PDE6α similarly rescued retinal 

deficits in a mouse model that mimics human retinitis pigmentosa mutations (240). Experiments injecting 

AAV-PDE6γ into the retina have also proven successful in mice (241). In dogs, delivery of recombinant PDE6α 

using a tyrosine capsid-mutant AAV8 was able to stabilize cGMP levels and improve survival of 
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photoreceptor rods and cones in PDE6α-mutant dogs; however, several adverse effects related to the AAV 

injection were identified (203). The recent development of synthetic AAV vectors that target the retina in non-

human primates may provide the answer to these problems in the future (242). Notably, two clinical trials are 

underway testing the safety and efficacy of PDE6 gene therapy in retinitis pigmentosa (PhI NCT02759952, PhII 

NCT03328130; clinicaltrials.gov accessed 12/04/18). 

 A rapidly evolving approach within the gene therapy field is optogenetic medicine, which combines 

viral delivery of recombinant, light-activated proteins with biomedical devices that emit light of the specific 

intensity and wavelength needed to activate those proteins (243). With the field of personalized bioelectronic 

implants quickly evolving, optogenetic-based biomedical approaches are being pursued for neurological 

diseases, cancer, cardiovascular disease and metabolic disorders (243). Given that optogenetic-based 

approaches have now entered clinical trials (243), it is worth noting here that light-activated PDEs have been 

identified in lower organisms (244-246) and engineered in the lab (247). Both are being explored as biological 

tools in higher organisms. Activating or inhibiting a given PDE by a spatially and temporally restricted light 

emission, as opposed to a systemically administered pharmacological agent, may prove an ideal approach for 

treating diseases where cyclic nucleotide signaling is down regulated in one tissue yet upregulated in another 

(e.g., aging; c.f., (248)). It might also provide a means of avoiding side-effects associated with targeting PDE 

activity in a specific tissue (e.g., nausea/emesis associated with inhibiting PDE4 in the area postrema).   

 

Targeting location 

As production of cAMP is utilized by a variety of different Gs-coupled receptors to transduce signals, 

compartmentalization of signaling intermediates is crucial to define physiological outcomes specific to each 

receptor (249). This compartmentalization of cyclic nucleotide signaling is achieved by virtue of PDEs being 

tethered to a precise cellular location via binding partners (Table S1). Thus, promoting or disrupting isoform-
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specific protein-protein interactions may prove a viable approach to therapeutically target PDEs in an isoform-

specific manner, a level of specificity that has not been achieved with pharmacological inhibitors to date 

(Figure 4).  

 Proof of principle for such an approach first emerged with studies using dominant negative (DN) 

PDEs, catalytically inactive mutants that would displace their endogenous PDE. Using specific DN-PDE4 

isoforms, in vitro studies have successfully altered perinuclear cAMP signaling (250),  β-arrestin-dependent 

desensitization of the beta2-adrenergic receptor (251, 252), growth control of prostate cancer cells (204), 

prostanoid receptor-mediated cAMP signaling (253),  glucagon-like peptide-1 release (254), and cAMP 

gradients at the centrosome (255). DN-PDE4 tools have also yielded beneficial effects in vivo. For example, viral 

delivery of a DN-PDE4A5 to the mouse hippocampus was able to rescue localized cAMP signaling deficits and 

hippocampus-dependent memory impairments that were caused by sleep deprivation (256-258). In contrast, 

overexpression of a DN-PDE4B1 in the forebrain of mice did not affect hippocampus-dependent memory, 

although it did enhance hippocampal long-term potentiation in male mice (259). This finding underscores the 

importance of understanding the role of specific PDE isoforms, because a homozygous mutation in PDE4B 

(Y358C) that greatly reduces activity of all PDE4B isoforms by virtue of attenuating interactions with the 

scaffold protein Disrupted In Schizophrenia 1 (DISC1) improves both long-term potentiation and memory as 

well as other mood-related behaviors (260). It is interesting to note that nature has developed its own 

dominant-negative approach with PDE4A7, a PDE isoform that is targeted to specific subcellular 

compartments but is catalytically dead (261).  

One point to consider in adopting a DN approach is the fact that a single PDE isoform can 

contribute to more than one function in a cell via its participation in multiple distinct signaling 

complexes, which involve mutually exclusive protein-protein interactions (262) (Table S1; Figure 4). 

For instance, PDE4D5 is involved in a number of processes common in almost all cells, such as cell 
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growth, cell orientation, desensitization of Gs-coupled receptors, and inactivating the 

phosphorylation of ubiquitous chaperone HSP20 (263). The ability for PDE4D5 to have all these 

functions in a cell is a result of it being localized in different compartments by different anchors (e.g., 

RACK1 at leading edge of cells, beta-arrestin at transmembrane receptors, and HSP20 in the cytosol; 

Figure4; (263)). It is clear that this is also the case for a number of other isoforms based on proven 

protein-protein binding interactions (e.g., in heart tissue/cells, PDE4D3 can bind to either the 

ryanodine receptor, HSP20, or an AKAP9/Potassium channel complex—see Table S1) or based on 

inference from the fact that the exact same isoform can be found localized to multiple subcellular 

domains (e.g., ~50% of PDE11A4 in neurons localizes to the cytosol while 25% is localized to the 

nuclear fraction and another 25% to the membrane compartment (82)). Thus, a non-selective DN 

approach has the potential to influence multiple domains within the cell. To achieve a compartment-specific 

manipulation of a given PDE isoform, one could mutate the binding site(s) that mediates a particular protein-

protein interaction. Mutating isoform-specific binding sites has also proven a useful approach, revealing an 

integrin α5-PDE4A5 complex regulates endothelial inflammation (264), a PDE3A1-SERCA complex regulates 

myocardium contractility (265), and DISC1-mediated sequestering of PDE4B regulates hippocampal function 

(260). An alternative approach is to develop a peptide or small molecule that specifically competes for a given 

protein-protein binding site (266). This approach would displace only a specific “pool” of a given PDE isoform, 

while leaving the vast remainder unfettered in their respective signaling complexes (Figure 4).  

Indeed, a recent review suggests cell-permeable, peptide disruptors effectively manipulate specific 

PDE isoforms in a compartment-specific manner (266) and evidence continues to build. More recently, a 

PDE4D-FAK disrupting peptide prevented direction sensing and invasion of melanoma cells (267, 268) and a 

PDE8A-Raf1 disruptor retarded cancer cell growth promoted by a Ras mutation (221). Interestingly, the same 
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PDE8A-Raf1 peptide has also been used to target T cell adhesion and migration and was more potent than a 

PDE8-specific inhibitor in reducing inflammatory signaling (267). The effectiveness of PDE displacement has 

also been demonstrated in vivo, where intraperitoneal injections of a PDE4-HSP20 disruptor significantly 

attenuated hypertrophy-induced cardiac remodeling (269). Disrupting PDE homodimerization (that is, a PDE 

monomer binding to itself) may also prove an effective way to target PDE function in a domain-specific 

manner. Disrupting PDE11A4 homodimerization using a peptide recognizing its GAF-B domain was shown to 

selectively remove PDE11A4 from membrane-bound complexes but not the cytosol, which may hold utility for 

improving responsivity to the mood stabilizer lithium (187) or age-related cognitive decline (83). Conversely, a 

peptide or mutation that could stabilize PDE11A4 homodimerization might prove useful in treating the 

deleterious psychological effects of social isolation (197). Targeting homodimerization of PDE2, PDE4, or PDE5 

may also relocate the enzymes by virtue of changing susceptibility to regulatory post-translational 

modifications (6, 270). Indeed, nature appears to have taken advantage of dimerization as a mechanism to 

regulate PDE trafficking. For example, when PDE10A2 heterodimerizes with PDE10A19, PDE10A2 is 

prevented from trafficking to the membrane as it normally does under conditions of homodimerization (271). 

Such complex-specific targeting of PDE function may be required to achieve efficacy in absence of unwanted 

side effects, particularly in cases where multiple subfamily isoforms orchestrate a variety of physiologic 

responses by virtue of different protein-protein interactions (e.g., targeting various PDE3 isoforms for 

cardiovascular disease (272)).  

 

Targeting post-translational modifications 

As post-translational modifications (PTM) directly regulate PDE activity and location, PTMs could be 

considered a point of therapeutic control (Figure 5). As described above, PKA or PKG phosphorylation of 

PDE3 (217, 218), PDE4 (217, 219), PDE5 (220), and PDE8 (221) will stimulate catalytic activity. Phosphorylation 
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can also influence PDE cellular location by virtue of preventing other PTMs that promote membrane 

association (e.g., Palmitoylation) or changing protein-protein binding interactions. A great example to 

illustrate these principals is PDE10A2. PDE10A2 is palmitoylated in its N-terminal region, which directs 

membrane targeting and trafficking to dendrites (169). If, however, PDE10A2 undergoes isoform-specific 

phosphorylation by PKA on Thr16 (273), palmitoylation of PDE10A2 is attenuated and the specific membrane 

localization is lost (169). Interestingly, phosphorylation on the same site also interferes with the scaffolding of 

PDE10A2 by AKAP150 (274). Hence, although PDE10A catalytic activity is not directly affected by this PTM, 

cyclic nucleotide levels should increase within this compartment due to the absence of PDE10. Preliminary 

evidence also suggests that PDE11A4 can similarly be shuttled between membrane and cytosolic 

compartments by virtue of phosphorylation of N-terminal serines, although this is likely by virtue of altering 

protein-protein interactions as opposed to a direct insertion into the membrane (275). PKA phosphorylation of 

PDE4D3 drives an association with the mAKAP signaling complex to evoke rapid signal termination in the 

muscle compartment (276), which may have therapeutic implications given that polymorphisms in the 

PDE4D3-mAKAP binding site lead to a higher susceptibility to cardiovascular disease (277).  PDE4D enzymes 

also get phosphorylated by both casein kinase 1 (CK1) and glycogen synthase kinase 3β (GSK3β) in the 

catalytic region on a motif known as a “phosphodegron” (278). This action increases the affinity of the PDE for 

a ubiquitin ligase complex (Cullin 1 containing SCF E3 ligase) which promotes proteosomal degradation of the 

enzyme (278). Hence PDE phosphorylation not only affects activity, localization, and protein-protein 

interactions, it also regulates protein turnover. 

 It has been known for some time that increases in PKA activity promote the proteosomal degradation 

of short-lived proteins, an action that can be enhanced by PDE inhibitors (c.f., (279)). However, we are just 

starting to understand that the stability of PDEs can themselves be influenced by the ubiquitin-proteosome 

system (Figure 5). Ubiquitin conjugation is known to target proteins for degradation by the proteasome and 
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specificity is introduced at the level of E3 ligase-substrate interaction. We now know of multiple instances 

where PDEs interact definitively with one of the over 600 E3 ligase types to dramatically shorten PDE half-life 

and this could be a new point at which to direct innovative therapeutics. As mentioned above, PDE4Ds can be 

degraded by virtue of an SCF E3 (278), whereas PDE4B levels can be down-regulated by a different E3, 

Smurf2, to promote anti-fibrotic signaling in the liver (280). PDE4D5 can also be targeted for ubiquitin 

modification by the RING type MDM2 E3 ligase; however, this beta-adrenergic driven ubiquitination of 

PDE4D does not signal a degradation of the enzyme. Instead, it shifts PDE4 from binding RACK1 to binding β-

arrestin (281). PDE4s are similarly regulated by the ubiquitin-like protein SUMO (small ubiquitin-like 

modifier) (5). SUMO-conjugation tends to alter the location, activity or protein-protein interactions of a protein 

rather than tagging for destruction via the ubiquitin-proteosome system (282). Unlike ubiquitination, sites of 

SUMOylation can be predicted in the amino acid sequence of putative substrates as conjugation usually occurs 

on a lysine residue within the consensus h-K-X-D/E (where h is a bulky hydrophobic and X is any residue) 

(282). PDE4s from subfamilies A and D contain the consensus motif, whereas subfamilies B and C do not. This 

adds an extra layer of sub-family-specific regulation as SUMOylation serves both to protect against the 

inhibitory phosphorylation by ERK MAPkinases (283) and further enhances activity of the PKA 

phosphorylated longform PDE4 by locking it in the “open” non-UCR inhibited conformation (5). 

Two additional PTMs that trigger PDEs for destruction include S-nitrosylation and proline 

hydroxylation (Figure 5). PDE5 can be S-nitrosylated by NO on Cys220 (284), which targets the enzyme to the 

proteasome and reduces PDE activity. Under conditions of reduced NO bioavailability, as in heart disease, 

PDE5 is upregulated due to a loss of this S-nitrosylation-induced degradation (284).  Proline hydroxylation has 

also been identified as a modification that can tag substrates for recognition by E3 ligase complexes (285). In 

the heart, proline hydroxylases domain-containing proteins (PHDs) hydroxylate surface-associated prolines on 
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PDE4D enzymes, triggering their degradation (286). In this way, direct binding of PHDs to PDE4s increase 

cAMP without affecting adenylate cyclase activity. 

 

Challenges 

Although this is clearly an exciting time in the PDE field, there is much work that remains to be done. For 

therapeutics to be efficiently developed, we need to have a more thorough understanding of exactly where 

cyclic nucleotide signaling is disrupted in a given disease—in which tissue, cell types, and subcellular 

compartments. We then need to target a PDE in a defined locale, with the understanding that subcellular 

compartmentalization of a given PDE may vary depending on species, age, tissue type, or disease status (10-

19).  This consideration is equally important in the evaluation of potential efficacy and potential side effects. To 

maximize potential efficacy while minimizing potential side effects, one would target a PDE that is enriched, if 

not exclusively expressed, in the tissue of interest and that controls the same pool of cyclic nucleotides that is 

altered by the disease. At the same time, efforts to unravel the intramolecular signals responsible for 

trafficking each PDE also need to continue to inform more sophisticated therapeutic approaches that can 

preferentially target a given PDE in a given subcellular compartment. Along these same lines, we need to grow 

our understanding of how to stimulate PDE activity and how to target the PDE catalytic activity of dual-

specificity PDEs in a functionally-selective manner (i.e., target only its cAMP- or cGMP-hydrolytic activity, see 

(216) for further discussion). Perhaps by increasing the specificity of our approach, we can retain efficacy while 

mitigating the numerous side effects described above that have plagued PDE inhibitors to date. 

 An additional challenge is gain a better understanding of which physiological/disease processes are 

governed by PDE regulation of canonical versus non-canonical cyclic nucleotides. Research into the role of 

non-canonical cyclic nucleotides is rapidly evolving as new techniques and reagents facilitate functional 

studies (9). Cyclic cytidine monophosphate (cCMP) and cyclic uridine monophosphate (cUMP) are 
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synthesized by soluble guanylate and soluble adenylate cyclases in mammalian systems, although an as-yet-

to-be identified generator likely accounts for the majority of production given the dissociation between 

sGC/sAC and cCMP/cUMP expression patterns (9). ExoY, a bacterial nucleotidyl cyclase, is known to generate 

cUMP in non-mammalian systems  (7).  Hydrolysis of cCMP is catalyzed by PDE7A whereas cUMP is broken 

down by  PDE3A, PDE3B and PDE9A (7). Functionally both nucleotides have been shown to activate 

PKA/PKG (287), cyclic nucleotide gated channels (288), and cCMP is described as a partial agonist of EPAC 

(289). In a disease context, the non-canonical cyclic nucleotides play roles in promoting virulence of 

Pseudomonas aeruginosa infections (290) and triggering apoptosis of cancer cells (291); however much more 

research is needed to accurately characterize the pathophysiology involving these signaling molecules. 

Difficult issues facing the field will be defining specific non-canonical cyclic nucleotide signaling systems that 

are aberrantly regulated in disease, determining the mechanisms by which PDEs might preferentially degrade 

non-canonical vs. canonical cyclic nucleotides, and visualising the compartmentalisation of non-canonical 

signalosomes in specific locations within cells and tissues.  

 Finally, development of PDE-targeted therapeutics faces the same challenges as does all drug 

discovery—namely the high rate of failure in clinical trials. A recent study suggests that from 2000-2015, only 

13.8% of all compounds made it from Phase I to approval (292). When considering success rates for individual 

indications, we may gain insight into the likelihood that a PDE-targeted therapeutic will achieve success 

within a given disease area. For example, oncology saw only 3.4% of compounds made it from Phase 1 to 

approval; whereas, metabolic/endocrinology, cardiovascular, CNS, autoimmune/inflammation, genitourinary, 

and opthamology saw a success rate of 19.6%, 25.5%, 15%, 15.1%, 21.6%, and 32.6%, respectively (292). This 

certainly paints a grim picture for pursuing any type of therapeutic in the context of cancer; however, this 

failure rate also underscores the desperate need to develop novel therapeutic options.  It is then important to 

note that success rates were doubled for cancer compounds when patient selection biomarkers were employed 
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in the trials; the success rate for cardiovascular compounds similarly benefited (292). Importantly, expression 

or activity of PDEs themselves may prove viable biomarkers in this context (Box 2). 

 

Outlook 

Although the challenge of targeting localized pools of PDEs for purposes of correcting pockets of aberrant 

cyclic nucleotide signaling has proven difficult in the past, there are indications that innovative approaches 

and technological advances are making headway (see Table 4 for recent patent activity that includes PDE 

activators, biomarkers, and viral approaches). For example, agents that show remarkable selectivity for sub-

families of PDE4 are showing promising results in mouse models of learning and memory and translation to 

human disease would be a game changing advance (135). Additionally, novel delivery systems are being 

developed that can transport PDE inhibitors to precise tissues or cell types, thereby abrogating complications 

associated with systemic distribution (e.g., (293, 294)). In the future, novel delivery systems such as these could 

be employed to deliver agents that specifically disrupt the anchoring of single isoforms. Another approach 

with potential is the intelligent design of a new generation of PDE inhibitors that preferentially accumulate in 

or segregate from certain tissues or organs. The mild side-effect profile of Apremilast is largely due to its 

inability to penetrate the brain and engineering of similar restricted distribution profiles may unlock the latent 

abilities of other PDE inhibitors. Gene therapy that seeks to abrogate or enhance activity of single PDE 

isoforms in a cell type-specific manner may provide a way to combat disease or fight complications associated 

with ageing. There is also the possibility that an improved therapeutic window might be achieved by 

combining sub-optimal doses of PDEi’s with ineffective doses of downstream-target activators, which would 

result in an effective combined dose only in tissues and subcellular compartments where both molecules were 

present (e.g., (295)). Indeed, PKA, PKG, and Epacs have been implicated as therapeutic targets in their own 

right for a number of indications for which PDEi’s are being pursued, including diseases of the cardiovascular, 
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immune, and nervous systems as well as cancer (e.g., (129, 130, 296-300)). Further, several studies in a variety 

of tissues have attributed the beneficial effects of PDEi’s to the activation of PKA, PKG and/or Epac (e.g., (135, 

301-303)).  As we learn more about the functional role and molecular interactions of each PDE splice variant, 

and how the function and/or localization of an individual variant may be altered in a given disease, it will 

become clearer how we can successfully target PDEs in a specific fashion to achieve efficacy while avoiding 

side effects. Only with this detailed level of knowledge will we be able to realize the full potential of PDEs as 

therapeutic targets.  
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BOXES 

Box 1. Physiological roles of PDEs. 

Because PDEs are ubiquitously distributed and are the only enzymes to degrade 3’,5’-cyclic nucleotides, this 

superfamily of enzymes plays a role in numerous biological processes in health and disease. That said, the 

biological roles played by a given PDE isoform are unique due to its unique expression pattern at the level of 

tissue/organ, cell-type and subcellular compartment (Table S1). 

Most PDEs families are expressed in the nervous system where they regulate neurodevelopment and 

apoptosis, neuronal excitability, synaptic transmission and neuroplasticity (83, 109). Every brain region 

expresses more than one PDE, but no two PDEs exhibit the exact same regional distribution (83). For instance, 

PDE11A is the only PDE with brain expression restricted to the hippocampus. While PDE11A regulates how 

well an individual responds to the mood stabilizer lithium, it does not regulate basal anxiety- and depression-

related behaviors (187). In contrast, PDE4D is expressed in most brain regions and does appear to regulate 

basal depression-related behaviors (e.g., (304)). PDE1B, PDE2A, PDE7B, PDE8B and PDE10A are enriched in 

the striatum relative to other brain regions (83), and each has been implicated in regulating basic motor 

function; whereas, PDE5A and PDE9A have not (for review, see (83, 305)). In the retina, PDE6 function is 

central in mediating activation of the light response in rod and cones photoreceptors, and PDE6 mutations 

cause photoreceptor degeneration in retinitis pigmentosa (237, 306). 

In the cardiovascular system, PDE2, PDE3 and PDE4 isoforms control different subcellular pools of 

cyclic nucleotides to regulate important cardiac functions from myocardial contraction/relaxation to chronic 

cell growth and survival, and disruption of this PDE signaling has been associated with disease (for review, 

see (1)). For example, heart failure has been associated with reduced levels of PDE3A and PDE4D, which 

results in myocyte apoptosis and cardiac arrhythmias, respectively (235, 249). 
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Many cancers have been associated with reduced levels of cAMP and/or cGMP secondary to an 

elevation in PDE activity. For example, chronic lymphocytic leukemia cells exhibit increased PDE7B 

expression; leukemia, colon cancer, and glioma cells overexpress one or more isoforms of PDE4; and colon 

cancer cells and adenocarcinmoas exhibit elevated PDE5 activity (23, 307, 308).  

Inflammation of numerous tissue types can be increased by a drop in cAMP levels that is caused by an 

increase in cAMP-PDE activity.  For example, activity of PDE4—the predominant cAMP-hydrolyzing enzyme 

in the immune system—is elevated in the context of various inflammatory diseases, including psoriasis, COPD 

and asthma (309, 310). 

PDEs are also implicated in reproductive health. Several isoforms are present in granulosa cells as well 

as oocytes in preovulatory follicles of mammalian ovary regulating the meiotic cell cycle (311). Furthermore, 

many PDEs are expressed in cells of the spermatogenic pathway where they may regulate sperm motility (312, 

313), and PDE5 is expressed in the contractile tissues of the male excurrent tract and accessory where its 

increased activity contributes to erectile dysfunction (e.g., (34)). 

 

Box 2. PDEs as disease biomarkers. 

PDEs are also being explored as both diagnostic and patient-selection biomarkers. This super family of 

enzymes, like other genes, can be genotyped from blood samples to assess risk for specific diseases (e.g., high 

suicide risk, (314); PDE8A, NCT02855918). PDE mRNA and protein expression can be measured ex vivo in an 

isoform-specific manner from biopsied samples (e.g, excised tumors). Further,  imaging compounds can be 

engineered with relative ease to selectively target a given PDE family/sub-family in vivo. Thus, PDEs can be 

explored as biomarkers in diseases where tissue is readily biopsied (e.g,. cancers) and diseases where tissue is 

not (e.g., diseases of the brain).  
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Ex vivo biomarkers. Measurement of PDE4D7 is seen as a valuable biomarker for both pre-

surgical and post-surgical risk stratification to optimize treatment decisions (314, 315) (Table 4). 

Studies in patient samples showed that PDE4D7 expression is initially upregulated with the 

development of primary tumours but then is downregulated when the disease progresses to an 

androgen-independent state (e.g., in castration-resistant tumours) (316, 317), consistent with in vitro 

reports using prostate cancer cells (204). The analysis of PDE4D7 expression in biopsy/surgery 

samples has been applied to develop InformMDx™ (licensed by MDxHealth from Philips), a tissue-

based prognostic prostate cancer biomarker test to stratify patients by risk of disease progression and 

secondary tumors and, thus, inform post-biopsy/post-surgery treatment decisions 

(https://mdxhealth.com/press-release/mdxhealth-launch-agreement-philips-prognostic-prostate-

cancer-biomarker; accessed 12/03/18).  

PDE3A may also represent a useful cancer biomarker as it is greatly expressed in certain cancer cell types 

such as squamous carcinoma cell lines or gastrointestinal stromal tumour (GIST) cells (318, 319). Furthermore, 

cancer cell lines with the highest PDE3A expression proved the most susceptible to the chemotherapeutic 

effects of PDE3i’s (320). Thus, PDE3A expression could qualify as a biomarker for patient selection which 

improves patient care by reducing exposure to ineffective drugs and accelerates clinical development of novel 

therapeutic agents by testing them in targeted populations. 

In vivo biomarkers. Altered cyclic nucleotide signaling has been implicated in a variety of age-

related diseases of the brain (c.f., (248)). PDE10A is widely reported as downregulated in both the 

striatum and cortex of patients with Huntington’s disease, with the extent of PDE10A loss 

corresponding to the genetic burden associated with the disease (41, 80, 321, 322). A loss of PDE10A 

expression has also been observed in the basal ganglia of patients with Parkinson’s disease (323). 

https://mdxhealth.com/press-release/mdxhealth-launch-agreement-philips-prognostic-prostate-cancer-biomarker
https://mdxhealth.com/press-release/mdxhealth-launch-agreement-philips-prognostic-prostate-cancer-biomarker
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Importantly, highly-specific PDE10A positron emission tomography (PET) tracers shows that 

PDE10A expression in HD patients continues to decline over years (41). Thus, PET imaging of 

PDE10A could be a useful biomarker for assessing the initial diagnosis and subsequent progression 

of these neurodegenerative diseases (324). PET ligands also exist for PDEs 2, 4, 5, and 7 (325). 

 

FIGURE LEGENDS 

 

Figure 1. 11 families of PDEs degrade cyclic nucleotides. Both of the canonical cyclic nucleotide signaling 

pathways (cAMP and cGMP) are composed of numerous molecules responsible for the synthesis, execution, 

and breakdown of their signals. cAMP is synthesized by transmembrane adenylyl cyclases (ACs) that are 

activated by Gαs and inhibited by Gαi (326) as well as soluble ACs that are activated by bicarbonate and 

calcium (327). cGMP is synthesized by particulate guanylyl cyclases (pGCs) that are activated by natriuretic 

peptides and soluble guanylyl cyclases (sGCs) that are activated by nitric oxide (NO) (328). Both cAMP and 

cGMP activate cyclic nucleotide gated channels and allosterically modulate activity of select PDEs (6). In 
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contrast, only cGMP stimulates protein kinase G (PKG); whereas, cAMP activates protein kinase A (PKA), 

exchange protein activated by cAMP (Epac) and popeye domain-containing proteins (POPDC)(329). Signaling 

through either the cAMP or cGMP pathways ultimately leads to phosphorylation of a myriad of downstream 

targets, including the transcription factor cAMP response element binding protein (CREB). In addition to 

cAMP and cGMP, several PDEs also hydrolyze the non-canonical cyclic nucleotides (not included) cUMP 

(PDE3A, PDE3B, PDE9A), cCMP (PDE7A), and c-di-GMPa (bacterial PDEs), albeit with much lower affinity (7, 

8).  

 

Figure 2. The 21 phosphodiesterase (PDE) genes are grouped into families (name and substrate specificity 

listed to right of each illustration) based on the homology of their C-terminal catalytic domain (represented as 

a semi-ellipse). Due to alternate promoters and splicing events, each PDE family has multiple isoforms that 

differ in terms of the length and complexity of their N-terminal regulatory domains (depicted with different 
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shapes), which are thought to regulate subcellular trafficking, substrate affinity, and catalytic activity. The 

relative size and domain distances were drawn based on estimations from the Pfam/uniprot database, with the 

exception of the REC domain of PDE8 (estimated from (330)) and the second CaM domain of PDE1 (estimated 

from (313)). Illustrations represent the longest isoform for gene A of each PDE family. CaM, calmodulin-

binding domain; GAF, cGMP-binding PDEs Anabaena adenylyl cyclases and E. coli FhlA; TM, transmembrane 

domain of PDE3; UCR, upstream conserved region; REC, signal receiver domain; PAS, Per-Arnt-Sim domain. 
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Figure 3. Mechanisms that activate phosphodiesterase (PDE) catalytic activity. A) Calcium-calmodulin 

(CaM) binding to the CaM domains of PDE1 relieves N-terminal auto-inhibition of the catalytic site, thereby 

promoting enzymatic activity (331). B) Cyclic nucleotides binding to GAF domains of dimeric PDEs (shown 

here: cGMP binding the GAF-B domain of PDE2) are thought to promote catalytic activity by inducing an 

outward rotation of the catalytic domains and, thus, enabling access to substrates (332).C) Phosphorylation by 

PKA or PKG activates several PDEs (6). In the case of PDE4D, phosphorylation of the UCR1 domain by PKA 

causes UCR1 to bind its own UCR2 domain instead of the catalytic site of the other monomer, thereby locking 

the enzyme in an active state. D) PDE activity can also be modulated by protein-protein binding interactions. 

One such well-characterized example involves membrane-bound PDE6, where the rhodopsin-activated G-
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protein α-subunit transducin displaces the inhibitory PDE6γ C-termini from the catalytic sites on PDE6αβ, 

thus, promoting cGMP hydrolysis (333). 

Figure 4. Methods for targeting phosphodiesterase signaling with increasing specificity. Given the vast 

diversity of PDE isoforms, each with unique tissue expression profiles, subcellular compartmentalization, and 

protein-protein interactions, it is becoming clear that selective targeting of PDE function will be required to 

achieve efficacy while diminishing undesirable side effects. Small molecule inhibitors (e.g., cilomilast) are 

readily developed with family-specific selectivity (e.g., targeting PDE4 over PDE3); however, isoform 
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specificity remains a challenge (e.g., cilomilast inhibits PDE4D with only 7-fold selectivity versus PDE4B) (334). 

Conversely, gene therapy (i.e., expressing a recombinant construct to knock down or restore expression of a 

given PDE isoform) and dominant negative approaches (i.e., expressing a catalytically inactive PDE4D5 that 

displaces the endogenous isoform from its interacting partners) can target isoform subtypes exclusively (e.g., 

targeting PDE4D5 but not PDE4D3 nor PDE4B). That said, dominant negative approaches would influence 

signalling within all microdomains regulated by that isoform. The greatest specificity can be achieved with 

peptide/small molecule binding disruptors or mutagenesis approaches (not shown) that are designed  to 

prevent a specific PDE isoform from binding a specific partner, thus, altering signaling only within one specific 

complex. As shown here, a disruptor peptide that specifically prevents the interaction between PDE4D5 and β-

arrestin would lead to the recruitment of EPAC1 to β2 adrenergic receptors (βAR), but would leave PDE4D5 

regulation of heat shock protein 20 (HSP20) and RACK1 complexes intact (249, 335, 336). 
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Figure 5. Phosphodiesterase (PDE) regulation by post-translation modification (PTM). Cyclic nucleotide 

dynamics can be modulated by the addition of different functional groups to PDEs. Phosphorylation is a very 

common mechanism to control PDE activity as depicted by the action of PKA on PDE4D3. Both enzymatic 

activity and binding affinity of PDE4D3 for mAKAP are increased by PKA phosphorylation, allowing a faster 

signal termination in myocytes (276). Palmitoylation of PDE10A2 in its N-terminal region translocates the 

enzyme to the plasma membrane, although its phosphorylation by PKA can prevent the action of the 

palmitoyl acyltransferase (zDHHC) (169). Ubiquitination can influence PDEs function through the control of 

their stability. For example, the E3 ubiquitin ligase Smurf2 targets PDE4B for degradation which leads to the 

attenuation of liver fibrosis (280). S-nitrosylation can also tag PDEs for destruction. Thus, the covalent 
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incorporation of nitric oxide (NO) to the GAF-A domain of a PKG-phosphorylated and active PDE5, directs 

the enzyme to the proteasome (284). Hydroxylation of proline residues has emerged as another PTM to 

stimulate turnover of PDEs. Prolyl hydroxylase domain protein 2 (PHD2) action on PDE4D increases its 

recognition by E3 ligase complexes in cardiomyocytes (286). Finally, SUMOylation can intensify the activity of 

PDE4A and PDE4D. The SUMO transfer from the E2 conjugase UBC9-E3 enzyme PIASy complex to the PDEs, 

enhances their activation by PKA phosphorylation and repress their inhibition induced by ERK activity (5). 

  

Table 1. Marketed PDE inhibitors 

Generic name 

(Trade name) 
Indication Approved (year) Side effects 

Nonselective    

Theophylline  
Asthma and 

Bronchoconstriction 

FDA (1979), Canada (1965), 
approved worldwide 

Nausea, vomiting, diarrhea, 
headache, irritability, flushing and 
palpitations. 

Aminophylline  
Asthma and 

Bronchoconstriction 

FDA (1940), Canada (1957), 
several countries 

Stomach pain, diarrhea, headache, 
irritability, restlessness and insomnia 

Oxtriphylline  
Asthma and 

Bronchoconstriction 

FDA (1981), Canada (1975), 
Europe 

Stomach pain, nausea, vomiting, 
diarrhea, headache, irritability, 
restlessness, insomnia flushing, and 
increased urination 

Dyphylline  
Asthma and 

Bronchoconstriction 

FDA (1951), Canada (1962), 
Europe, Japan  

Stomach pain, nausea, vomiting, 
diarrhea, headache, irritability, 
restlessness, insomnia flushing, and 
increased urination 

Pentoxifylline Intermittent Claudication 
FDA (1984), Canada (1984), 
approved worldwide 

Belching, bloating, upset stomach, 
nausea, vomiting, indigestion, 
dizziness, and flushing, headache 

PDE1    

Vinpocetine 

Cerebral vascular 

disorders and memory 

impairment  

Europe, Mexico and Asia. 
USA as an over-the-counter 
dietary supplement 

Flushing, rashes, and minor 
gastrointestinal disturbances 
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PDE3                 

Cilostazol Intermittent Claudication 

FDA (1998), EMA (2000), 
Japan (1988), Asia and 
South America 

Headache, palpitations, diarrhea, 
dizziness, nasal irritation and 
pharyngitis 

Milrinone Congestive Heart Failure 
FDA (1987), EMA (2016), 
Canada (1995), Japan, China 

Ventricular/supraventricular 
arrhythmias, hypotension and 
headache 

Amrinone  Congestive heart failure 
FDA (1984), Canada (1984), 
China 

Thrombocytopenia, nausea, diarrhea, 
hepatotoxicity, arrhythmias and fever 

Enoximone Congestive heart failure Some countries in Europe 

Headache, diarrhoea, insomnia, 
hypotension, vomiting, nausea, 
tachycardia and arrhythmias 

Olprinone  Heart failure Japan (1996) Cardiac dysrhythmias and 
thrombocytopenia 

Pimobendan  Heart failure Japan (1994) Headache, palpitation, nausea and 
ventricular arrhythmias 

Anagrelide Thrombocythemia 

FDA (1997), EMA (2004), 
Canada (1998), several 
countries 

Headache, diarrhea, unusual 
weakness/fatigue, hair loss, nausea 
and dizziness 

PDE4                   

Roflumilast 

Chronic Obstructive 
Pulmonary Disease 
(COPD) 

FDA (2011), EMA (2010), 
Canada (2010), Russian 
Federation, South Korea 

Diarrhea, weight loss, nausea, 
headache, insomnia, decreased 
appetite  

Apremilast 
Psoriasis and psoriatic 
disorders 

FDA (2014), EMA (2014), 
Canada (2014) 

Diarrhea and vomiting, weight loss, 
mood changes 

Crisaborole 

Moderate Atopic 
dermatitis (patients >2 
years old) 

FDA (2016), Canada (2018) Hypersensitivity reactions of the skin 

Drotaverine  

Functional bowel 
disorders and alleviating 
pain caused by smooth 
muscle spasm  

Asia and Eastern European 
countries 

Fainting, nausea, vomiting and dry 
mouth 

Ibudilast  

(also inhibits 

PDE3, 10, 11) 

Asthma and dizziness 

related to cerebral 

infarction   

Japan (1989), South Korea 
(2002) Nausea, diarrhea and abdominal pain, 

depression, rash and fatigue 

Allergic conjunctivitis Japan (2000) 
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Tofisopam  

(also inhibits 

PDE10, 3, 2A) 

Anxiety 

Japan (1985), several 
European countries 
(Hungary, 1974), Jamaica, 
Thailand and Argentina 
(1982) 

Nausea, stomach discomfort, dry 
mouth, skin rash, insomnia, vomiting 
and drowsiness 

PDE5                           

Sildenafil 

Erectile Dysfunction 

FDA (1998), EMA (1998), 
Canada (1998), approved 
worldwide 

Headache, flushing, dyspepsia, nasal 
congestion, and impaired vision, 
including photophobia and blurred 
vision Pulmonary arterial 

hypertension (PAH) 
FDA (2014), EMA (2005) 
Canada (2006) 

Vardenafil Erectile Dysfunction 

FDA (2003), EMA (2003), 
Canada (2004), several 
countries 

Headache, flushing, and dyspepsia 

Tadalafil 

Erectile Dysfunction, 
benign prostatic 
hyperplasia 

FDA (2003), EMA (2002), 
Canada (2003), approved 
worldwide Headache, dyspepsia, back pain and 

myalgia 

PAH 
FDA (2009), EMA (2008), 
Canada (2010) 

Avanafil Erectile Dysfunction FDA (2012), EMA (2013) Headache, flushing, and 
nasopharyngitis 

Udenafil 
Erectile dysfunction and 
hypertension 

South Korea (2005), Russian 
federation (2008), Thailand, 
Colombia, Malaysia and the 
Philippines 

Headache, dizziness, reddening, nasal 
congestion, dyspepsia and impaired 
vision  

Mirodenafil Erectile Dysfunction South Korea (2007) Flushing, headache, nasal congestion, 
eye redness, nausea and dizziness  

Dipyridamole 
Postoperative 
thromboembolism 

FDA (1961), Canada (1962), 
several European countries, 

Japan, Taiwan, Russian 

Federation  

Headache, dizziness, nausea, 
diarrhea, muscle pain and vomiting  

PDE10A   

Papaverine 

Visceral spasm and 

vasospasm and erectile 
Dysfunction 

FDA, Canada (1951), 
approved worldwide 

Ventricular tachycardia, diarrhea, 
somnolence, vertigo, flushing and 
headache 

 

 



46 

 

 

                  Table 2. Clinical trials involving PDEs inhibitors that failed to reach the market for the described indication 

Compound / 

Manufacturer 
Indication Phase / Status 

Clinical trial 

ID  
Failure cause 

PDE2     

PF-05180999 / Pfizer 

Healthy volunteers 

(schizophrenia) 

Phase I / Completed 

2011 
NCT01429740 

Safety 

concerns 

Healthy volunteers 
Phase I / Completed 

2012 
NCT01530529 

Migraine 
Phase I / Terminated 

early 2014 
NCT01981499 

Migraine 

Phase I / Withdrawn 

prior to enrollment 

2014 

NCT01981486 

PDE2/5     

Exisulind (Aptosyn) / 

Cell Pathways 

Breast cancer 

neoplasms and 

metastases 

Phase I/II / 

Completed 2003 
NCT00037609 

Safety and 

efficacy 

deficiencies 

Breast cancer 
Phase II / Completed 

2008 
NCT00039520 

Non-small cell lung 

cancer 

Phase I/II/III / 

Completed 2003-

2007 

NCT00072618, 

NCT00085826, 

NCT00041314 

Small cell lung cancer 
Phase II / Completed 

2008 
NCT00041054 

Prostate cancer and 

prostatic neoplasms 

Phase II / Completed 

2006-2011 

NCT00078910, 

NCT00166478, 

NCT00166426, 

NCT00052845, 

NCT00283803 

Melanoma 
Phase II / Completed 

2011 
NCT00841204 

PDE3     

Cilastozol (Pletal) / 

Otsuka 

Pharmaceuticals 

Type 2 diabetes 

polyneuropathy 

Phase IV / 

Completed 2009 

NCT01076478 

(61) 

Lack of 

efficacy 

PDE4     

ASP9831 / Astellas Non-alcoholic Phase II / Completed NCT00668070 Lack of 
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Pharma steatohepatitis (NASH) 2010 (63) efficacy 

PDE5     

Sildenafil (Viagra or 

Revatio) or Tadalafil 

(Cialis or Adcirca) / 

Pfizer and Eli Lilly, 

respectively 

Duchenne Muscular 

Dystrophy (DMD) 

Early Phase I/Phase I 

/ Completed 2013 

NCT01359670, 

NCT01580501 

(70) 

Lack of 

efficacy 

Sildenafil (Viagra or 

Revatio) / Pfizer 

DMD and Becker 

Muscular Dystrophy 

(BMD) 

Phase II / 

Terminated early 

2014 

NCT01168908 

Safety 

concerns 
Impaired glucose 

tolerance 

Phase IV / 

Terminated early 

2016 

NCT01409993 

Tadalafil (Cialis or 

Adcirca) / Eli Lilly 

BMD 
Phase IV / 

Completed 2012 

NCT01070511 

(71) 
Lack of 

efficacy 
DMD 

Phase III / 

Terminated early 

2017 

NCT01865084 

Vardenafil (Levitra) / 

Bayer/GSK 
Type 2 diabetes 

Phase II / Completed 

2014 

NCT02219646 

(163) 

Lack of 

efficacy 

PDE9     

BI 409306 / 

Boehringer 

Ingelheim 

AD 
Phase II / Completed 

2017 

NCT02240693, 

NCT02337907 

(76)  

Lack of 

efficacy 

PF-04447943 / Pfizer AD 
Phase II / Completed 

2010 

NCT00930059 

(72) 

Lack of 

efficacy 

PDE10     

PF-02545920 (a.k.a. 

MP-10) / Pfizer 

 

Schizophrenia 
Phase I / Completed 

2007 
NCT00463372 

Lack of 

efficacy 

Schizophrenia 

Phase II / 

Terminated early 

2008 

NCT00570063 

Healthy volunteers 

(glucose metabolism) 

Phase I / Completed 

2011 
NCT01103726 

Schizophrenia 
Phase II / Completed 

2011 

NCT01175135 

(79) 

Schizophrenia 
Phase I / Terminated 

early 2012 
NCT01244880 

Schizophrenia 
Phase I / Completed 

2013 
NCT01829048 
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Schizophrenia 

Phase II / 

Terminated early 

2014 

NCT01939548 

Healthy male 

volunteers (PET 

imaging) 

Phase I / Completed 

2014 
NCT01918202 

Huntington's Disease 
Phase II / Completed 

2015-2016 

NCT01806896, 

NCT02197130 

Huntington's Disease 

Phase II / 

Terminated early 

2017 

NCT02342548 

OMS643762 / 

Omeros 

Schizophrenia 
Phase II / Completed 

2014 
NCT01952132 Safety 

concerns / 

Lack of 

efficacy MP-10 Huntington's Disease 

Phase II / 

Terminated early 

2016 

NCT02074410 

PBF-999 / 

Palobiofarma 

Huntington's Disease 
Phase I / Completed 

2015 
NCT02208934 Change in 

therapeutic 

indication 

(cancer) Huntington's Disease 
Phase I / Terminated 

early 2016 
NCT02907294 

Reported on Clinicaltrials.gov (accessed 04/30/19). Information is included for all clinical trials involving 

molecules whose pursuit was terminated after April 2009. 

 

 

 

 

       Table 3. Selected clinical trials involving PDEis pursued for new indications  

Compound / 

Manufacturer 
Indication Phase / Status Clinical trial ID 

PDE3, 4, 10, 11    

Ibudilast (AV-411, MN-

166) / MediciNova 

Opioid withdrawal 
Phase II / Completed 

2012-2017 

NCT00723177, 

NCT01740414 

Methamphetamine-

dependence 

Phase I / Completed 

2013 
NCT01217970 (91, 92) 

Alcohol use disorder 
Phase I / Completed 

2015 
NCT02025998 (94) 

Alcohol use disorder Phase II / Recruiting NCT03489850 
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Opioid abuse 
Phase II / Completed 

2017 
NCT01740414 (93, 337) 

Amyotrophic lateral 

sclerosis (ALS) (Biomarker 

study) 

Phase II / Active, not 

recruiting 
NCT02714036 

PDE1    

ITI-214 / Intracellular 

Therapies 

Schizophrenia  
Phase I / Terminated 

early 2014  
NCT01900522  

Parkinson's Disease  
Phase I/II / Completed 

2018 
NCT03257046  

Healthy volunteers (CNS 

engagement) 
Phase I / Recruiting NCT03489772  

 Systolic heart failure Phase I/II / Recruiting NCT03387215  

Vinpocetine / Rxmidas 

Pharmaceuticals/ 

Nootrobox 

Ischemic stroke 
Phase II/III / Completed 

2013-2015 

NCT01400035, 

NCT02878772 (338) 

Cognition enhancement 
Not Applicable / 

Completed 2017 
NCT02857829 

PDE2    

TAK-915 / Takeda 

 Healthy volunteers (PET 

imaging, schizophrenia) 

Phase I / Completed 

2016 
NCT02584569  

Healthy volunteers  
Phase I / Completed 

2016 
NCT02461160 

PDE3    

Cilostazol (Pletal) / 

Otsuka 

Pharmaceuticals 

Type 2 diabetic 

atherosclerosis 

Phase IV / Completed 

2010-2012 

NCT01252056, 

NCT00823849 (339)  

Chronic tinnitus  
Not applicable / 

Completed 2013 
NCT01378650 (108) 

 Alzheimer's Disease 
Phase IV / Completed 

2013 
NCT01409564 (340) 

Atherosclerotic events in 

type 2 diabetes 
Phase IV / Unknown NCT00886574 

 Mild Cognitive Impairment 
Not applicable / 

Completed 2015 
NCT01872858 

Ischemic events in type 2 

diabetic artery obstruction 
Phase IV / Recruiting  NCT02983214 

Antiplatelet aggregation in 

type 2 diabetes 

Phase IV / Active, not 

recruiting 
NCT03248401  

Antiplatelet aggregation in Phase IV / Recruiting NCT02983214 
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type 2 diabetes 

Antiplatelet aggregation in 

type 2 diabetes 
Phase IV / Unknown NCT02933788 

PDE4    

Apremilast (Otezla) / 

Celgene Corp. 

Vitiligo 
Phase II / Active, not 

recruiting 

NCT03036995,  

NCT03123016 

Lichen Planus of Vulva 
Phase II / Not yet 

recruiting 

NCT03656666, 

NCT03836885 

BPN14770 / Tetra 

Discovery 

Alzheimer's Disease 
Phase I / Completed 

2016-2017 

NCT02840279, 

NCT03030105 

Alzheimer's Disease 
Phase II / Not yet 

recruiting 
NCT03817684  

Fragile X Syndrome (FXS) Phase II / Recruiting NCT03569631 

Crisaborole (Eucrisa) / 

Pfizer 
Morphea Phase II / Recruiting NCT03351114 

GSK356278/ 

GlaxoSmithKline 
Huntington's Disease 

Phase I / Completed  

2012 

NCT01573819, 

NCT01602900 

Roflumilast (Daxas or 

Daliresp) / Astrazeneca 

Polycystic Ovary Syndrome  
Phase IV / Completed 

2014 

NCT02037672, 

NCT02187250 (122, 123) 

Cognitive deficits in 

schizophrenia  

Phase II / Completed 

2015 
NCT02079844 (126) 

Cognition (Dementia)  
Phase II / Completed 

2013-2015 

NCT01433666, 2013–
001223-39 (EudraCT) 

(125, 127, 341) 

Insulin and Blood Sugar 

Levels in Prediabetic 

Overweight and Obese 

Individuals  

Phase I/II / Completed 

2017 
NCT01862029 (342) 

HT-0712 / Dart 

Neuroscience 

Age-associated memory 

impairment (AAMI) 

Phase II / Completed 

2015 
NCT02013310 

N/A 
McCune-Albright 

Syndrome (PET imaging) 
Phase I/II / Recruiting NCT02743377 

TAK-648 / Takeda Type 2 diabetes 
Phase I / Completed 

2015 

NCT02480439, 

NCT02684396, 

NCT02430870 

Zembrin / ND Aged Individuals 
Phase I / Completed 

2012 
NCT01805518 (52) 

PDE5    
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ND 
Contrast Media-induced 

Nephropathy (CMN) 

Not Applicable / 

Unknown 
NCT01564303 

ND Diabetic nephropathy 
Not Applicable / 

Unknown 
NCT01566006 

Sildenafil (Viagra or 

Revatio) / Pfizer 

Diabetic cardiomyopathy 

(type 2 diabetes) 

Phase IV / Completed 

2009 
NCT00692237 (159-162) 

Metabolic syndrome 

(Skeletal muscle insulin 

signaling) 

Phase IV / Completed 

2016 
NCT02129725 

 Urolithiasis/urinary stones 
Phase IV / Active, not 

recruiting 
NCT02519153 

Migraine aura  Early Phase I / Recruiting  NCT02795351 

Solid tumors  
Phase I / Active, not 

recruiting 
NCT02466802 (165) 

mTBI or concussion Phase I / Recruiting 
NCT03417492, 

NCT02990078 

Sildenafil cream (SST-

6007) / Strategic 

science and 

technologies/Dare 

Sexual arousal disorder 
Phase II / Completed 

2017 
NCT02570282 

Tadalafil (Cialis or 

Adcirca) / Eli Lilly 

Type 2 Diabetes 

(Postprandial 

Hyperglycemia) 

Phase I / Terminated 

early 2011  
NCT01238224 

Head and neck squamous 

cell carcinoma 

Phase II / Completed 

2012-2016 
NCT00894413 (167)  

Head and neck squamous 

cell carcinoma 

Phase II / Active, not 

recruiting 
NCT01697800 

Obesity 
Phase IV / Completed 

2015 
NCT02554045 (158) 

Insulin secretion/ 

sensitivity in obesity  

Phase IV / Completed 

2015 
NCT02595684 (343) 

Aortic stenosis (AS) left 

ventricular 

remodeling/hypertrophy 

Phase IV / Terminated 

early 2017 
NCT01275339 

Multiple myeloma (MM) 
Phase II / Terminated 

early 2017  
NCT01374217 

Insulin Resistance in Type 2 

Diabetes  
Phase II / Recruiting  NCT02601989 

Diabetic cardiomyopathy 

(DC) 
Phase IV / Recruiting  NCT01803828 

Endocrine cardiomyopathy Phase II / Recruiting  NCT02611258 (344) 
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in Cushing Syndrome (CS) 

Access sheath deployment 

(Nephrolithiasis/kidney 

stones) 

Phase IV / Enrolling 2019  NCT03229889 

Lower urinary tract 

symptoms (prostatic 

hyperplasia) 

Phase IV / Recruiting  NCT02252367 

Obesity-related 

cardiometabolic 

dysfunction  

Phase II / Recruiting NCT02819440 

Anti-tumor Mucin 1 

vaccine efficacy in head 

and neck squamous cell 

carcinoma (HNSCC) 

Phase I/II / Recruiting NCT02544880 

Small Vessel Disease 
Phase II / Active, not 

recruiting 
NCT02450253 (345) 

PDE9    

PF-04447943 / Pfizer Stable sickle cell disease  
Phase I / Completed 

2016 
NCT02114203 (346) 

BI 409306 / Boehringer 

Ingelheim 

Healthy volunteers 
Phase I / Completed 

2011-2018 

NCT01343706, 

NCT01493570, 

NCT01505894, 

NCT01611311, 

NCT01841112, 

NCT02597998, 

NCT03505151, 

NCT02222168, 

NCT02438683 (74, 347, 

348) 

Alzheimer's disease, 

schizophrenia 

Phase I / Completed 

2017 
NCT02392468 

Schizophrenia 
Phase I / Completed 

2013-2016 

NCT01892384, 

NCT02281773 (73, 75) 

Schizophrenia or 

attenuated psychosis 

syndrome  

Phase II / Recruiting 
NCT03351244, 

NCT03230097 

Drug-drug interactions  
Phase I / Completed 

2016-2017 

NCT03151499, 

NCT03193307, 

NCT02853136, 

NCT02635750, 

NCT02248259 

PDE10    
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 [18F]MNI-659 
 Huntington's Disease (PET 

imaging) 

Early Phase I / 

Completed 2016/2017 

NCT02061722, 

NCT02956148, 2012–
003808-13 (EudraCT) 

(349) 

PBF-999 / 

Palobiofarma 
Cancer Phase I / Recruiting NCT03786484 

EVP-6308 (now FRM-

6308) / En Vivo 

Pharmaceuticals (now 

Forum 

Pharmaceuticals) 

Schizophrenia 
Phase I / Completed 

2014 

NCT02001389, 

NCT02037074 

RO5545965 / 

Hoffmann-La Roche 
Schizophrenia 

Phase I / Completed 

2013-2017 

NCT01923025, 

NCT01711801, 

NCT01864226, 

NCT02019329, 

NCT02824055 

TAK-063 / Takeda 

Schizophrenia 
Phase I / Completed 

2014 

NCT02370602, 

NCT01892189, 

NCT01879722 (177) 

 Schizophrenia 
Phase II / Completed 

2016 
NCT02477020 (350) 

 

Reported on Clinicaltrials.gov (accessed 04/30/19) with an end date after April 2009 

PK/PD, Pharmacokinetics and Pharmacodynamics; ND, not described 

 

 

 

 

 

 

 

 

Table 4. Selected recent patents involving PDEs 

Patent # Subject Assignee Author 
Priority 

Date 

Publicatio

n Date 

CN108904493

A 

PDE4 inhibitor and purpose for 

preparing novel anti-

inflammatory drugs 

Hu Y Hu Y 12/08/2018 30/11/2018 

WO201816714

2 

Treatment of idiopathic 

pulmonary fibrosis [with a 

PDE4 inhibitor] 

Takeda GMBH 

Hanauer G,  

Nikam S,  

Hazama M 

16/03/2017 20/09/2018 

CN107163052

A 

Immunodetection method for 

various PDE5 inhibitor drugs 
Univ South China 

Agricult 

Shen Y, Hua Y, 

Xu Z, Yang J, 

Wang H, Sun 

Y, Lei H 

18/04/2017 15/09/2017 

CN107412214

A Application of PDE4 Inhibitor 
Guangzhou 

Lanssonpharm 
Xu L 31/07/2017 01/12/2017 
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[FCPR16 for the treatment of 

PD] 

Jianzhi Tech Co 

Ltd 

US2019046528 

Method of preventing hair loss 

or promoting hair growth by 

using PDE3 inhibitor 

Seoul Nat Univ 

Hospital 

Kwon O,  Choi 

HI,  Jo SJ,  Kim 

KH 

08/08/2017 14/02/2019 

JP2019047763

A 

Rhodopsin PDE [as an 

optogenetic tool for light control 

of intracellular cyclic 

nucleotides] 

Nagoya Institute 

Of Technology 

Kandori H, 

Tsunoda SP, 

Yoshida K 

12/09/2017 28/03/2019 

US2018369188 

Application of PDE4 inhibitor 

ZL-N-91 in preparation of 

medications for lung cancer 

proliferation and metastasis 

Guangzhou 

Sinogen 

Biomedical Tech 

Ltd 

Zhao AZ,  

Gong S,  Lin Y,  

Li F,  Li X 

05/02/2016 27/12/2018 

CN107287239 

Gene therapy vector and 

medicine for retinal pigment 

degeneration [adenovirus 

encoding PDE6B] 

Shenyang Fuming 

Biological Tech Co 

Ltd 

Pang J 11/04/2016 24/10/2017 

CN107312824 

Applications of PDE3A in 

determination of tumor 

treatment effect of Anagrelide 

Shanghai Inst 

Materia Medica 

Cas 

Yu Q,  Liu J 26/04/2016 03/11/2017 

CA2975049 

PDE inhibitors to repair brain 

and/or retinal injury in human 

newborns 

Wintermark P Wintermark P 10/08/2016 10/02/2018 

AU2017317575 

Treatment of nonalcoholic fatty 

liver disease [with PDE4 

inhibitors] 

Takeda GMBH 

Hanauer G,  

Nagabukuro H,  

Amano Y 

26/08/2016 28/03/2019 

AU2017330067 

T cells with increased 

immunosuppression resistance 

[expressing PDEs for the 

treatment of cancer] 

Adaptimmune Ltd 
Laugel B,  

Skibbe K 
23/09/2016 18/04/2019 

WO201806070

4 

Compounds and their use as 

PDE4 activators [for the 

treatment of disorders requiring 

a reduction of cAMP] 

Mironid Ltd 
Adam JM,  

Adams DR 
28/09/2016 05/04/2018 

CN108135886 
PDE4 inhibitor for the treatment 

of diabetic nephropathy 
Takeda GMBH 

Hanauer G,  

Vollert S,  

Hazama M,  

Matsuo T 

29/07/2015 08/06/2018 

US2018221373 
Method of treating insomnia 

[with PDE5 inhibitors] 
Rosenberg LI Rosenberg LI 16/09/2015 09/08/2018 
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WO201707029

3 

PDE9 inhibitor and levodopa 

therapy [for treating PD or 

Parkinsonism] 

Ironwood 

Pharmaceuticals 

Inc 

Leventhal L,  

Townsend TM 
20/10/2015 27/04/2017 

WO201607554

3 

Treatment of multiple sclerosis 

with combination of 

Laquinimod and a PDE4 

inhibitor 

Teva Pharma,  

Piryatinsky V,  

Kaye J 

Piryatinsky V,  

Kaye J 
13/11/2014 19/05/2016 

AU2014307802 

Treatment of cognitive 

impairment with combination 

therapy [of a PDE4 inhibitor 

and an Acetylcholinesterase 

inhibitor] 

Univ Maastricht 

Yamada T,  

Prickaerts J,  

Van Duinen M,  

Sambeth A,  

Blokland A 

16/08/2013 10/03/2016 

US2017326145 

Composition comprising PDE5 

inhibitor for inhibiting apoptosis 

of nerve cells 

Aribio Inc,  Sk 

Chemicals Co Ltd 

Kim MH,  

Choung JJ,  Ku 

SK 

04/12/2012 16/11/2017 

JP2016199574 

Novel composition for the 

treatment of cystic fibrosis [with 

a PDE4 inhibitor and a 

prostacyclin] 

Scipharm Sarl 

Freissmuth M,  

Gloeckel C,  

Koenig X,  

Keuerleber S 

07/02/2011 01/12/2016 

HUE036489 
PDE inhibitors for transvaginal 

use in the treatment of infertility 
Prokrea Bcn S L 

Pardina Palleja 

MC,  Vaz-

Romero Una 

MA 

23/06/2011 30/07/2018 

US2018289632 

Treatment of addiction and 

impulse-control disorders using 

PDE7 inhibitors 

Omeros Corp 
Demopulos G,  

Gaitanaris G 
08/11/2010 11/10/2018 

JP2015212262 
PDE1 inhibitors for ophthalmic 

disorders 
Intra Cellular 

Therapies Inc 

Davis R,  

Fienberg AA 
25/02/2009 26/11/2015 

US2017051291 

RNAi-mediated inhibition of 

PDE4 for treatment of cAMP-

related ocular disorders 

Arrowhead 

Pharmaceuticals 

Inc 

Yanni JM,  

Chatterton JE,  

Gamache DA,  

Miller ST 

28/12/2005 23/02/2017 

US2018185402 

Use of PDE3 inhibitors for the 

reduction of heart size in 

mammals suffering from heart 

disease 

Boehringer 

Ingelheim 

Vetmedica GMBH 

Daemmgen J,  

Joens O,  

Kleemann R 

25/03/2004 05/07/2018 
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