
Citation: Gu, L.; Hickey, R.J.; Malkas,

L.H. Therapeutic Targeting of DNA

Replication Stress in Cancer. Genes

2023, 14, 1346. https://doi.org/

10.3390/genes14071346

Academic Editors: Marietta Lee and

Dong Zhang

Received: 20 April 2023

Revised: 6 June 2023

Accepted: 7 June 2023

Published: 26 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Review

Therapeutic Targeting of DNA Replication Stress in Cancer
Long Gu 1,*, Robert J. Hickey 2 and Linda H. Malkas 1

1 Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of
City of Hope, Duarte, CA 91010, USA; lmalkas@coh.org

2 Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope,
Duarte, CA 91010, USA; rohickey@coh.org

* Correspondence: lgu@coh.org

Abstract: This article reviews the currently used therapeutic strategies to target DNA replication
stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to
toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to
compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor
suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted
to DNA damage response signaling pathways and repair machinery to maintain genome stability
and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by
inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the
clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To
address these issues, the article discusses a potential strategy to target the cancer-associated isoform
of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and
damage response network. Small molecule and peptide agents that specifically target caPCNA can
selectively target cancer cells without significant toxicity to normal cells or experimental animals.
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1. Introduction

A hallmark of malignancy is the enhanced rate of spontaneous DNA damage due to
compromised DNA replication machinery in cancer cells [1,2]. In addition, the enhanced
metabolic activity of cancer cells creates an elevated level of reactive oxygen species (ROS),
which can cause DNA damage. The loss of tumor suppressor genes or constitutive acti-
vation of oncogenes can also elicit substantial DNA damage, further exacerbating DNA
replication stress in cancer cells [3]. Whereas acquired genomic alteration is responsible
for tumor initiation and progression, which leads to more aggressive sub clones [4], it also
provides a key cancer vulnerability for therapeutic intervention. Lesions on DNA templates
frequently obstruct replication machinery and, if not resolved, cause the collapse of DNA
replication forks, leading to lethal double-stranded DNA breaks (DSBs) and apoptosis.
To support survival and proliferation and to maintain genome stability, cancer cells are
intrinsically addicted to DNA repair machinery and signaling pathways [5,6]. It is not
surprising that many chemotherapeutic drugs exploit the genetic instability of cancer cells
by overloading replication stress. This concept of targeting DNA for chemotherapy has led
to the development of numerous anticancer compounds over almost six decades. Based on
the mechanisms, these chemotherapeutic drugs are divided into alkylating agents which
modify DNA directly, agents targeting cancer cell metabolism, topoisomerase inhibitors,
and inhibitors of DNA repair pathways. Many of these drugs, often used in combina-
tion with other chemotherapies or radiation therapies, remain the mainstay of anti-cancer
chemotherapies. Here, we review the DNA-damaging strategies currently used for cancer
treatment in the clinic. It is important to note that, while DNA-damaging agents are gener-
ally effective in treating cancers, their clinical use is limited by their toxicity. In addition,
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drug resistance almost always arises. We review a potential strategy to address toxicity and
drug resistance by targeting the protein proliferating cell nuclear antigen (PCNA), which
plays a central role in the DNA replication and damage response network. In particular, the
discovery of the cancer-associated isoform of PCNA (caPCNA) [7] and the development of
small molecule and peptide agents that specifically target caPCNA allows for the selective
targeting of cancer cells without causing significant toxicity to normal cells or experimental
animals [8,9].

2. DNA Alkylating Agents

DNA alkylating agents, such as dacarbazine, cyclophosphamides, and Busulfan mod-
ify nucleotide bases, predominantly by attaching an alkyl group to DNA at guanine N7 [10].
Other sites of alkylation damage include N2 and O6 of guanine, N1 of adenine, and N3 of
cytosine, which are also involved in the therapeutic responses of alkylating agents [11,12].
Some DNA alkylating agents contain dual reactive groups, which can alkylate two different
bases and form interstrand and intrastrand crosslinks. For instance, Busulfan can form
interstrand crosslinks between the DNA bases guanine and guanine and between guanine
and adenine through its two labile methanesulfonate groups [13]. The prodrug cyclophos-
phamide can also form DNA crosslinks through its active metabolite, phosphoramide
mustard [14]. Although DNA replication machinery can tolerate DNA lesions to a certain
degree through various mechanisms [15,16], a high number of DNA lesions eventually
collapse the DNA replication fork, leading to the formation of lethal DSBs. Because DNA
alkylation agents react to DNA directly, their action is independent of the cell cycle. As a
result, they are effective in treating a broad range of cancers [17].

Platinum analogs, including cisplatin, carboplatin, and oxaliplatin, exert their anti-
cancer effects by a similar mechanism of action to that of alkylating agents [18]. Cisplatin,
the first in this class that was approved as an anticancer agent, began to be used for the
clinical treatment of testicular and bladder cancer in 1978 [19]. Inside cells, cisplatin is acti-
vated by hydrolysis in which its two chlorides are replaced with two water molecules [20].
This hydrolyzed product can bind to two DNA bases, predominantly at the N7 reactive
site on purine residues on the same DNA strand [21]. These intrastrand crosslinks, or
adducts, which block DNA replication, induce cell cycle arrest in the S and G2 phases to
enable cells to repair the damaged DNA [22]. Nucleotide excision repair (NER) [23] and
mismatch repair (MMR) [24] are involved in removing cisplatin adducts and repairing the
DNA lesions. If the level of DNA damage overwhelms the repair systems, cells will die via
apoptosis [25–27]. Cisplatin confers a significant survival benefit to cancer patients and is
now broadly used in the treatment of leukemia, lymphoma, and many solid tumors such
as breast, lung, gastric, and prostate cancers [28,29]. However, like most chemotherapeutic
drugs, the use of cisplatin almost always leads to drug resistance, the mechanisms of which
are mostly unclear [30,31]. In addition, cisplatin use is associated with systemic toxicities
to bone marrow and to renal, gastrointestinal, and peripheral neural systems [32,33]. Up to
one-third of patients receiving cisplatin treatment develop acute renal failure, and most
patients suffering from cisplatin-induced renal dysfunction never fully recover [34].

3. Targeting Nucleotide Metabolism

Agents that target nucleotide metabolism, called nucleotide antimetabolites, are a
group of purine or pyrimidine analogs that mimic the molecules cancer cells need to
synthesize DNA, thus disrupting DNA synthesis. The effectiveness of antimetabolites in
treating cancer is attributed to the increased metabolic demand of neoplastic cells, which
leads to increased nucleotide biosynthesis and DNA replication. These drugs inhibit DNA
replication mainly by depleting nucleotides, which, in turn, blocks DNA replication. Some
nucleotide analogs can also be incorporated into newly synthesized DNA and block DNA
replication fork progression. Notable examples include 5-fluorouracil (5-FU), a synthetic
analog of uracil that inhibits thymidylate synthase [35]. Thymidylate synthase methylates
deoxyuridine monophosphate into thymidine monophosphate. Administration of 5-FU
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limits the availability of thymidine nucleotides for DNA synthesis and induces cancer cell
death. Administration of 5-FU by intravenous injection is widely used in the clinic to treat
many solid tumors including breast, pancreatic, and gastrointestinal cancers [36]. It is
also used topically for treating skin cancers [37,38]. In addition, a rationally designed oral
prodrug [39] related to 5-FU, capecitabine, is also available for treating breast, pancreatic,
and gastrointestinal cancers [40].

Another important antimetabolite drug is gemcitabine, which has been used as a
chemotherapeutic drug for more than 20 years. Gemcitabine is a hydrophilic synthetic
pyrimidine nucleoside prodrug, whose cellular uptake is catalyzed by a family of cell mem-
brane nucleoside transporters including SLC28A1 (CNT1) and SLC29A1 (ENT1) [41,42].
Inside cells, gemcitabine undergoes several phosphorylation steps and is turned into the
pharmacologically active gemcitabine triphosphate (dFdCTP) [43]. Gemcitabine has mul-
tiple modes of action inside cells. The most important action of gemcitabine is inhibiting
DNA synthesis—it inhibits the enzyme ribonucleotide reductase (RNR), which is needed
to create new DNA nucleotides, thereby inhibiting DNA synthesis [44,45]. dFdCTP can
be incorporated into DNA, leading to the inhibition of DNA polymerases and preventing
replication fork progression [46]. The inhibition of RNR reduces the dNTP pool in cells
and further favors the incorporation of dFdCTP. These actions result in S and G2 cell cycle
arrest. Gemcitabine chemoresistance and variations in its potency are common but not
well understood. Mechanisms of chemoresistance likely involve multiple factors that affect
gemcitabine transportation, activation, and metabolism [47,48].

4. Targeting Topoisomerase I/II

Topoisomerases (TOPOs) are nuclear enzymes required for normal DNA replication
and cellular division. TOPO enzymatic activity rises significantly during DNA replication
because of topological issues, such as overwinding of the DNA duplex, which must be
released for DNA replication to continue. TOPOs are generally classified as type I or
type II based on their mechanism of action [49,50]. Type I topoisomerase (TOPO I) is
monomeric and makes single-strand DNA nicks that can untangle supercoiled double-
stranded DNA and relax localized DNA torsional tension [42,51]. In contrast, Type II
topoisomerase (TOPO II) is homo-dimeric or hetero-dimeric and addresses DNA topology
issues by making double-stranded DNA breaks [52]. Once DNA cleavages are made, the
TOPO enzymes are covalently linked to the 5′ or 3′ DNA phosphate [53,54]. Several TOPO
inhibitors have been approved for treating colorectal, lung, ovarian, and hematological
cancers. These drugs target this transitional cleavage intermediate. By stabilizing the TOPO-
DNA covalent complex, they prevent the religation of DNA breaks and the progression
of DNA replication, leading to cell death [55]. The compounds that function via such a
mechanism are often referred to as TOPO poisons to distinguish them from those that
inhibit the catalytic activity of TOPO.

Both TOPO I and TOPO II are therapeutic targets for a broad spectrum of cancers [55].
TOPO I inhibitors currently in clinical use include topotecan, irinotecan, and belotecan.
Topotecan is commonly used to treat metastatic ovarian cancer, cervical cancer, and small
cell lung cancer, often in combination with other chemotherapeutic drugs, including cy-
clophosphamide, doxorubicin, and vincristine [41,56,57], while Belotecan is approved to
treat small cell lung cancer. Irinotecan is a prodrug, and its anticancer effect depends on its
conversion to the active metabolite, 7-ethyl-10-hydroxycamptothecin (SN38), by enzymatic
cleavage of the C-10 side chain by carboxylesterase [58]. Irinotecan is approved to treat
metastatic colon cancer. Much effort has been made to improve the delivery of irinotecan
or SN38 and manage their side effects. This approach led to Onivyde®, a nanoliposomal
form of irinotecan, which has been approved to treat pancreatic cancer [59]. By protecting
irinotecan from premature metabolism in the plasma, this liposomal formulation enhances
irinotecan activation and cytotoxicity in tumor tissue [60].

TOPO II inhibitors in clinical use include etoposide, teniposide, doxorubicin, and
mitoxantrone. Derived from podophyllotoxin, etoposide, and teniposide act by trapping
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the TOPO/DNA covalent intermediate, leading to S and G2 cell cycle arrest and the ac-
cumulation of lethal DSBs [61,62]. Etoposide is a core agent of combination regimens for
treating several cancers such as SLCL, lymphoma, and leukemia. Teniposide is currently
used with other chemotherapy drugs for induction therapy to treat refractory acute lympho-
cytic leukemia in children. Doxorubicin and mitoxantrone, both anthracycline analogues,
which can intercalate into DNA through their anthraquinone ring [63]. The resulting
doxorubicin or mitoxantrone-DNA complex interferes with TOPO II enzyme activity and
induces S and G2 cell cycle arrest and DNA damage. Instead of binding to TOPO II directly,
doxorubicin and mitoxantrone inhibit TOPO II progression by DNA intercalation [63].
The planar aromatic rings of these types of compounds insert between two base pairs
of the DNA and stabilize the TOPO II/DNA complex, preventing the DNA helix from
unwinding during DNA replication and transcription. Mitoxantrone is administrated by
intravenous injection and used to treat advanced prostate cancer and acute nonlymphocytic
leukemia [64]. Doxorubicin, also administrated intravenously, is used to treat a broad range
of cancers including breast cancer, bladder cancer, Kaposi’s sarcoma, lymphoma, and acute
lymphocytic leukemia [65].

5. Targeting DNA Repair Signaling Pathways

Mammalian cells have developed comprehensive mechanisms to sense and activate
the DNA damage response (DDR), which is essential to maintain genome stability. The
DDR is regulated by multiple cascades of kinase signaling pathways including the DNA-
dependent protein kinase catalytic subunit (DNA-PKcs), ataxia telangiectasia mutated
(ATM), and ATM and RAD3-related (ATR) pathways [66]. As shown in Figure 1, once
activated by DNA damage, these kinase pathways activate checkpoint responses that arrest
the cell cycle, allowing cells to repair or bypass damaged DNA sites and restart stalled
or collapsed replication forks. Alternatively, if the DNA damage is beyond repair, then
collapsed replication forks lead to lethal DSBs and cell death by apoptosis. Whereas the
DNA-PKcs and ATM pathways mainly mediate the repair of DNA DSBs through the
error-prone non-homologous DNA end joining (NHEJ) pathway [67] and the error-free
homologous recombination (HR) pathway [68], the ATR pathway responds to DNA single-
strand breaks (SSBs), and stalled DNA replication forks [69]. Targeting the DDR, therefore,
enhances intracellular replication stress, stalled DNA replication, and lethal DSBs.
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5.1. Targeting the DNA-PK Signaling Pathway

DNA-dependent kinase (DNA-PK) plays an essential role in the NHEJ pathway and
interacts with multiple components of the DDR [66,70]. The catalytic subunit (DNA-
PKcs) of DNA-PK, encoded by the PRKDC gene, belongs to the phosphatidylinositol 3 (PI
3)-kinase (PIKK) family, and is a DNA-activated serine/threonine protein kinase [71]. DNA-
PKcs forms a holoenzyme DNA-PK with the heterodimer regulatory subunits Ku70 and
Ku80. Ku70 and Ku80 [72,73], encoded by the XRCC6 and XRCC5 genes, respectively, detect
DSBs by the Ku70/Ku80 heterodimer’s sequence-independent affinity [74] for available
ends of double-stranded DNA. The binding of Ku70/Ku80 to the ends of DSBs maintains
the stability of broken ends and initiates NHEJ. Ku70/80 is responsible for recruiting
canonical NHEJ factors such as DNA-PKcs, XRCC4, XFL, and DNA ligase IV to the broken
ends of DNA [75]. The interaction of DNA-PKcs with the Ku70/Ku80 heterodimer leads
to a direct interaction of DNA-PKcs with DSB ends and activation of the kinase activity
of the DNA-PKcs [72,76]. DNA-PKcs is regulated by auto-phosphorylation [71] as well as
phosphorylation by ATM [77]. Auto-phosphorylation can cause a conformational change
in DNA-PKcs, which allows for DNA end processing [78,79]. After sensing DNA damage,
cells face the choice of using the more efficient but error-prone NHEJ or the less efficient
but error-free HR pathway to repair DNA damage [80]. DNA-PK can inhibit HR activity,
thereby favoring NHEJ [81].

Given its role in multiple DDR nodes, DNA-PKcs has become an attractive anti-cancer
therapeutic target, especially in combination with genotoxic chemotherapy or radiation
therapy. Many small molecule inhibitors of DNA-PKcs are currently under development
through clinical trials (Figure 1). These compounds range from the early pan PIKK family
kinase inhibitor wortmannin [82,83] to selective DNA-PKcs inhibitors such as AZD7648 [84]
and M3814 [85]. AZD7648, a potent and highly selective DNA-PKcs inhibitor, works
efficiently to sensitize cancer cells to ionizing radiation and doxorubicin and induces
sustained tumor regressions in animal models. AZD7648 also works synergistically with
the PARP inhibitor olaparib to inhibit cell growth inhibition and induce apoptosis [84].
M3814, another DNA-PKsc selective inhibitor, also sensitizes cells to chemotherapeutic
agents, including anti-microtubule drugs such as paclitaxel and topoisomerase II inhibitors
such as daunorubicin [86]. In mouse tumor models, M3814 augments the antitumor
effects of chemotherapeutic agents such as calicheamicin, paclitaxel, etoposide, pegylated
liposomal daunorubicin, and 5-fluorouracil [87–89]. Of the DNA-PK inhibitors in Figure 1,
M3814 and AZD7648 (Table 1) are in clinical trials as monotherapies and in combination
with radiation or other chemotherapies [90].

Table 1. Major anti-DNA repair therapeutics approved for cancer treatment or in advanced development.

Target Agent Cancer Type Phase

ATR

Berzosertib Lung Cancer
Phase II

(Sources: clinicaltrials.gov)
Access date: 30 May 2023

AZD6738
Bile duct cancer

Clear cell renal cell carcinoma
Breast cancer

Phase II
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

BAY1895344
Advanced solid tumor

Non-Hodgkin’s lymphoma
Mantle cell lymphoma

Phase I
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

M4344 Recurrent ovarian cancer
Phase I

(Sources: clinicaltrials.gov)
Access date: 30 May 2023
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Table 1. Cont.

Target Agent Cancer Type Phase

Chk1

Prexasertib
Ovarian cancer

Triple-negative breast cancer
Small cell lung cancer

Phase II
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

SRA737 Advanced solid tumors
Non-Hodgkin’s lymphoma

Phase 1/II
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

WEE1 AZD1775

Advanced solid tumor
Refractory solid tumor

Triple-negative breast cancer
Ovarian cancer

Pancreatic cancer

Phase II
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

PLK1

Volasertib Myeloid acute leukemia
Phase III

(Sources: clinicaltrials.gov)
Access date: 30 May 2023

Onvansertib

Colorectal cancer
Breast cancer

Pancreatic cancer
Small cell lung cancer

Phase II
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

DNA-PK

AZD7648 Advanced malignancies
Phase I (completed)

(Sources: clinicaltrials.gov)
Access date: 30 May 2023

M3814
Pancreatic cancer
Prostate cancer

Locally Advanced Rectal Cancer

Phase II
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

DNA polymerase theta

NVB Tumors That Have Alterations in DNA
Repair Genes

Phase I
(Sources: clinicaltrials.gov)
Access date: 30 May 2023

ART4215 Advanced or Metastatic Solid Tumors
Phase I/II

(Sources: clinicaltrials.gov)
Access date: 30 May 2023

RP-6685 BRCA-mutant breast and ovarian cancers Preclinical development [91]

PARP

Olaparib
BRCA-mutant breast cancer

Ovarian cancer
Prostate cancer

Approved drug [92,93]

Rucaparib
BRCA-mutant prostate cancer

Recurrent Ovarian Cancer
BRCA-mutant Ovarian cancer

Approved drug [94–96]

Niraparib
Epithelial ovarian,

Fallopian tube, or primary peritoneal
cancer

Approved drug [97]

Talazoparib BRCA-mutant HER2-negative breast
cancer Approved drug [98]

5.2. Targeting ATM/CHK2 and ATR/CHK1 Signaling

After sensing DNA damage, it is paramount to arrest cell cycle progression to al-
low cells time to repair the damaged sites and thereby maintain genomic stability. The
ATM/CHK2 and ATR/CHK1 kinase cascades are the two main signaling pathways regu-
lating cell cycle arrest during DDR [66,99,100] (Figure 1). Like DNA-PKcs, both ATM and
ATR are members of the PIKK family. When a DSB occurs, ATM is activated in the pres-
ence of the Mre11–Rad50–NBS1 (MNR) complex through auto-phosphorylation [101,102].
ATM relays and amplifies the signal from MNR by phosphorylating its substrate enzymes,
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including Checkpoint Kinase 2 (CHK2), which, in turn, phosphorylates transcription factor
p53 [103]. The ensuing p53-dependent upregulation of cyclin-dependent kinase inhibitor
1 (p21Cip1) leads to the activation of the retinoblastoma (RB) protein and G1 arrest [104].
ATR is involved in a broad spectrum of DDR and is activated by DSBs and ssDNA [66,69]
as well as DNA crosslinks [105]. During ssDNA repair, ATR and ATR interacting protein
(ATR-ATRIP) complex is recruited to the ssDNA site and is activated by the hetero-trimetric
Rad9-Rad1-Hus1 clamp that is loaded onto 5′-recessed DNA by Rad17-RFC [106]. Many
ATR functions are mediated through its downstream target Checkpoint Kinase 1 (CHK1),
which mediates the phosphorylation of the cell division cycle 25 (Cdc25) family phos-
phatases and Wee1-like protein kinase (WEE1), leading to G2 cell cycle arrest, which is
pivotal for premitotic DNA repair [107,108]. In this context, numerous efforts were made
to develop inhibitors of the ATM/CDK2 and ATR/CHK1 pathways for targeted therapy
against cancer (Figure 1 and Table 1).

5.3. Inhibiting WEE1

WEE1 is a serine/threonine kinase that plays a key role in regulating cell cycle pro-
gression (Figure 1). Wee1 activation by Chk1 inhibits cyclin-dependent kinase 1 (CDK1),
a key G2/M checkpoint regulator that is required for cyclin-dependent entry into mito-
sis [109,110]. Genotoxic stress is common in cancer cells because of endogenous factors
such as reactive oxidative species, compromised DNA repair capacities, and the loss of G1
checkpoint control due to oncogene actions or the loss of tumor suppressor genes. As a re-
sult, cancer cells rely on WEE1 activity to initiate G2/M arrest and to provide time for DNA
damage repair. Inhibition of WEE1 prevents G2/M cell cycle arrest, leading to premature
mitotic entry with unrepaired DNA damage and subsequent cell death [109–111]. WEE1
also protects replication forks and inhibition of WEE1 can induce the uncontrolled firing
of replication origins, leading to increased replication stress [112,113]. Given these effects,
several WEE1 inhibitors (Figure 1 and Table 1) have been developed with a focus on engi-
neering synthetic lethality by using WEE1 inhibitors in combination with DNA-damaging
chemotherapies or radiation [114,115]. Importantly, greater than 50% of all human cancers
harbor mutations in the tumor suppressor gene p53, which plays a major role in genomic
stability by transcriptionally regulating downstream genes involved in the G1/S checkpoint
in response to DNA damage [116]. Preclinical studies found that abrogation of the G2 check-
point by WEE1 inhibition can sensitize p53-deficient cells to chemotherapies and radiation,
leading to mitotic catastrophe [109–111]. The most advanced WEE1 inhibitor in develop-
ment, AZD1775 (adavosertib) [117], is currently being investigated in more than a dozen
clinical trials targeting lung (NCT02513563), ovarian (NCT01164995, NCT02101775, and
NCT03579316), renal (NCT03284385), pancreatic (NCT02101775), uterine (NCT03668340),
bladder (NCT02546661), cervical (NCT03345784), hematopoietic (NCT04439227), and neu-
ral (NCT02095132 and NCT01849146) cancers. Many of these studies evaluate the ef-
fect of AZD1775 on p53-deficient cancers (NCT01164995, NCT02101775, NCT03668340,
and NCT01849146), BRCA-deficient cancers (NCT04439227), and/or in combination with
DNA-damaging agents (NCT02513563, NCT01164995, NCT02101775, and NCT03579316,
NCT02101775, NCT03668340, NCT02546661, NCT03345784, NCT02095132, and
NCT01849146). AZD1775 analogs with reduced cellular cytotoxicity have been reported
to address its dose-limiting toxicities including neutropenia, thrombocytopenia, anemia,
diarrhea, fatigue, and vomiting [118]. An AZD1775-based WEE1 degrader (ZNL-02-096)
reportedly shows distinct pharmacology than AZD1775 in preclinical development [119].

6. Targeting DNA Repairing Proteins
6.1. Targeting the PARP Pathway

Poly (ADP-ribose) polymerase (PARP) is a family of multi-function proteins that play
roles in DNA repair and genome integrity [120]. The family consists of 17 members [121],
among which PARP-1 is the most abundant in cells and plays dominant roles in regulating
DNA repair [122]. PARP-1 is critical for SSB repair and base excision repair (BER). PARP-1
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binds to SSB and activates its enzymatic activity to synthesize a poly (ADP-ribose), or PAR,
on itself and other DNA repair proteins including DNA ligase 3, DNA polymerase β (polβ),
and XRCC1 [123]. Therefore, PARP-1 is critical to the recruitment of DNA repair proteins
to the damaged sites (Figure 2). In addition to its role in SSB and BER repairs, PARP-1
supports DSBs repair in multiple ways, including the recruitment of MRE11 and NBS1 to
the damage sites [124], the transcriptional regulation of BRCA1 and Rad51 [125], both of
which play important roles in the HR pathway, and regulation of BRCA1 function [126].
Several PARP inhibitors gained FDA approval for treating cancers that harbor mutated
BRCA1 or BRCA2 genes [93,97,98,127,128]. BRAC1 and BRCA2 are both involved in
repairing DSBs by the HR pathway [129]. It is widely accepted that PARP inhibition blocks
SSB repair and causes DSBs to form. In cells deficient in BRCA1 or BRCA2, these DSBs
cannot be efficiently repaired, due to an impaired HR pathway [130]. Therefore, cancer cells
harboring mutated BRCA1 or BRCA2 are particularly sensitive to PARP inhibition [130,131].
Numerous studies have also demonstrated that PARP inhibition enhances the anti-cancer
therapeutic effect of other chemotherapeutic drugs and radiation [132–135]. Combination
therapies involving PARP inhibitors in combination with bevacizumab, paclitaxel, cisplatin,
topotecan, carboplatin, or gemcitabine are currently in clinical trials [136].
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6.2. Inhibiting DNA Polymerase Theta

DNA polymerase theta (POLθ) plays a key role in theta-mediated end joining
(TMEJ) [137,138], which is one of three DSB repair mechanisms (Figure 2). DSBs are
predominantly repaired by the NHEJ repair pathway during the G1 phase and by the HR
pathway during the S/G2 phases of the cell cycle. TMEJ is considered the only “backup”
DSB repair solution and is used when the NHEJ or HR response is insufficient or com-
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promised [139]. Importantly, POLθ is not significantly expressed in normal cells, but its
expression is increased in many cancers [140,141]. Patients whose tumors overexpress
POLθ are often associated with poor prognosis [142,143], possibly because the error prone
TMEJ activity could result in increased genetic diversity among tumor cells and increase
the chance of the development of drug resistance. Furthermore, cancer cells deficient in
the HR or NHEJ pathway, or deficient of the ATM kinase depend heavily on MMEJ and
are especially sensitive to POLθ disruption [142–144]. This phenomenon provides a strong
rationale for engineering synthetic lethality by inhibiting POLθ in cancer cells harboring
other DSB repair defects. Several Polθ inhibitors (Table 1) have been reported [91,145,146],
and two of them, ART4215 [146] and the antibiotic NVB [145], are being tested in clinical
trials against HR-deficient tumors. NVB is a coumarin antibiotic and was discovered in a
small molecule screen for inhibitors of POLθ ATPase activity. NVB binds to purified POLθ
protein, prevents its recruitment to DNA damage, and inhibits TMEJ repair. Importantly,
NVB selectively kills cancer cells harboring HR deficiency (BRCA1- and BRCA2-deficiency)
and potentiates the cytotoxic effect of PARP inhibition in HR-deficient cancer cells [145].
Moreover, NVB kills HR-deficient tumor cells, which have acquired resistance to PARP in-
hibitors [145], demonstrating its therapeutic potential in combination with PARP inhibition
for treating HR-deficient tumors.

6.3. Inhibiting RECQ Helicases

The evolutionarily conserved RecQ helicase family enzymes drive the unwinding of
DNA strands in the 3′ to 5′ direction and play important roles in genome maintenance
including DNA replication, DNA repair, transcription-associated stress management, and
telomere maintenance [147]. Humans have five RecQ helicases: RECQL1, Bloom syndrome
protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5 [148]. Defects
in RecQ helicase are associated with several genetic disorders including a predisposition
to tumorigenesis [148,149]. For instance, dysfunctional mutations in RECQL5 are associ-
ated with a susceptibility to breast cancer [150], head and neck cancer [151], and gastric
cancer [152]. Importantly, RecQ helicases are essential to the repair of DNA DSBs. For
instance, RECQL4 helicase promotes HR repair in the S and G2 cell cycle phases and
facilitates NHEJ through functional interaction with Ku70/Ku80 in the G1 phase [153–155].
Collectively, they are essential to each of the DSB repair pathways including the NHEJ,
HR, and alternative NHEJ pathway, which ligates DSB ends without the use of extensive
homology and in a Ku70/Ku80 independent manner [156]. Therefore, this family of en-
zymes provides a unique panel of potentially predictive biomarkers to choose therapeutic
agents that target DNA repair pathways. Preclinical studies also suggest that RecQ helicase
inhibitors are likely to work synergistically with other DNA-damaging agents to kill cancer
cells [157–160].

7. Targeting PCNA, the “hub” Protein of DNA Replication and Repair Networks

The ultimate challenge for cancer treatment is to selectively kill cancer cells while
sparing normal tissue. Many traditional chemotherapeutic drugs exploit the intrinsic ad-
diction to DNA repair machinery [5,6] and induce cell death by overloading replication
stress through their DNA damaging properties. Although effective initially, these DNA-
damaging agents cause severe side effects and often induce drug resistance [161], both of
which limit their long-term use in the clinic. In addition, the mechanism or mechanisms
leading to drug resistance are mostly unclear. More recently, many therapeutic agents
that target specific oncogenic signaling components, including cell cycle checkpoints, have
reached the clinic [162–167]. Although causing less severe side effects than early chemother-
apeutic agents such as cisplatin in general, the success of these target-based therapies is
limited by the rapid development of drug resistance [168–170] through the accumulation
of mutations within target genes or by the activation of alternate survival pathways. One
promising strategy to prevent such acquired drug resistance, which is inherent in the
adaptive and heterogeneous nature of cancers, is to target “hub” proteins whose functions
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are central to broad and essential cellular processes. The key is to target crucial processes,
such as the DNA replication or repair process, without causing unacceptable side effects in
non-malignant cells. Recent studies of PCNA provide proof of concept of this promising
strategy. PCNA is an evolutionally conserved protein found in all eukaryotic cells. Forming
a homotrimeric ring structure encircling DNA [171,172], PCNA acts as a central “hub”
to provide anchorage for more than a dozen proteins [173], mainly through its interdo-
main connector loop (IDCL) that spans from amino acid M121 to Y133 [171]. Proteins
that interact with this loop include p21 (CDKN1A) [174], DNA polymerase δ (Pol δ) [175],
flap endonuclease 1 (FEN1) [176], DNA methyltransferase (MeCTr) [177], and DNA ligase
1 (LIGI) [178], which interact with PCNA through their PIP-box domains [173,179]. In
addition to recruiting these proteins to chromatin, PCNA provides a sliding “working
platform” for these proteins to regulate DNA replication, cell cycle progression, and DNA
damage responses [180]. Because of PCNA’s fundamental role in cell growth, survival,
and mutagenesis, many attempts have been made in recent years to therapeutically inhibit
PCNA with promising results [174,181–183], demonstrating the potential of PCNA as a
therapeutic target for cancer treatment.

Importantly, a novel cancer-associated PCNA isoform (caPCNA) was discovered to
be the predominant PCNA isoform expressed in a broad range of cancer cells and tumor
tissues but was not highly expressed in non-malignant cells [7]. The caPCNA isoform was
not caused by a genetic mutation or alternative mRNA splicing but arose as a result of
posttranslational modification [184] that affects the protein structure and the accessibility
of the L126-Y133 region within the IDCL of PCNA [7]. A cell permeable peptide (R9-caPep)
containing the L126-Y133 sequence of PCNA selectively blocks PCNA interactions in cancer
cells and interferes with DNA synthesis and HR-mediated DSB repair, resulting in S-phase
arrest, an accumulation of DNA damage, and an enhanced sensitivity to cisplatin [9].
R9-caPep also selectively kills cancer cells with much less toxicity to human peripheral
blood mononuclear cells or neural crest stem cells and suppresses cell growth in a mouse
xenograft model without causing any discernable toxicity to the animals [9,185–187]. These
findings demonstrate that targeting protein–protein interactions involving the L126-Y133
region of PCNA may prove to be an effective approach to treating cancers with reduced
side effects.

Small molecule compounds, AOH1160 and its analogs, have also been developed
to target the caPCNA protein–protein interaction region [8]. AOH1160, which binds to
a PCNA surface pocket partly delineated by the L126-Y133 region, interferes with DNA
replication and blocks HR-mediated DNA repair, leading to cell cycle arrest, the accumula-
tion of unrepaired DNA damage, and an enhanced sensitivity to cisplatin treatment [8]. A
biologically stable analog of AOH1160, AOH1996, was developed to be orally available
to animals and suppresses tumor growth without causing significant side effects in mice
(unpublished results). AOH1996 is currently in a clinical trial (Phase 1 Study of AOH1996 in
Patients with Refractory Solid Tumors Protocol Type: Treatment, NCT ID: NCT05227326).

8. Challenges and Future Perspectives

A major challenge of anticancer chemotherapy is chemoresistance [188]. Some tumors
are refractory to drug treatment. The development of acquired resistance is common for
all existing chemotherapeutic regimes, which leads to disease reoccurrence. In addition,
the complexity of cancers also presents a significant clinical hurdle: how can we effectively
treat such diseases arising from varied and continual mutagenesis? Targeting proteins
that act as central “hubs” of cellular processes that are essential to dealing with cancer-
specific stresses may provide a novel strategy to overcome drug resistance. In addition to
the need to maintain genome stability, the survival of cancer cells depends on additional
pathways to deal with proteotoxic stress, mitotic stress, metabolic stress, and oxidative
stress. Although these pathways play normal and often ubiquitous cellular functions,
many rate-limiting proteins in these pathways are essential for dealing with the increased
stresses of cancer cells [6]. Unlike oncogenes, these non-oncogenic target genes do not



Genes 2023, 14, 1346 11 of 18

undergo oncogenic mutations or functionally significant genomic alterations in tumors and
thus represent points of intervention that are less prone to the development of resistance.
Cancer drug discoveries targeting these non-oncogenic pathways have yielded a number of
successful therapeutics [189–191]. As exemplified by the discovery of caPCNA, which led
to the development of first-in-class small molecules with superior anti-cancer properties,
AOH1160 and AOH1996, future studies to identify cancer-specific features of critical,
functional nodes in these networks may lead to safer and more effective therapies to
treat cancer.
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