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Abstract

Classical Hodgkin lymphoma is dominated by the non-neoplastic microenvironment, while the neoplastic Hodgkin-Reed-

Sternberg cells compose only a minority of cells in the lymphoma tissue. Both the Hodgkin-Reed-Sternberg cells due to their

expression of CD30 and PD-L1 and the microenvironment with abundant T cells and expression of PD1 are specifically targeted

by new treatment concepts. We aimed to understand the dynamics of therapeutic targets in patients treated with conventional

chemotherapy. We analyzed sequential biopsy specimens obtained at diagnosis and at relapse from the same patient for mor-

phology, immunophenotype, and microenvironmental components. The morphological subtype changed between primary and

relapse biopsy in 20% of cases. The immunophenotype was stable with respect to CD30, CD3, and LMP1 but variable with

respect to CD15 and CD20 expression. Gene expression revealed 8 upregulated and 20 downregulated genes at relapse (p ≤ 0.05)

with a consistent logarithmic fold change direction in at least 75% of all cases. For PD1, we found discrepant results between

gene expression analysis (decrease at relapse) and number of PD1-positive cells assessed by immunohistochemistry (unchanged

at relapse). PD-L1 in the neoplastic cells appeared unchanged between primary diagnosis and relapse. The expression of the

therapeutic targets CD30, PD1, and PD-L1 can reliably be assessed in tumor specimen at first diagnosis and is unchanged under

conventional chemotherapy.
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Introduction

Classical Hodgkin lymphoma (cHL) is characterized by an

abundant microenvironment and a low number of neoplastic

Hodgkin-Reed-Sternberg cells (HRSC). The composition of

the microenvironment rather than the morphology or

immunophenotype of the neoplastic HRSC is used to identify

morphological variants of the disease, of which mixed cellu-

larity (MC), nodular sclerosis (NS), and lymphocyte-rich are

the most frequent [1]. The relative abundance of these sub-

types strongly correlates with patient age at diagnosis and the

socioeconomic status of the geographic area in which the pa-

tient resides [2]. The composition of the microenvironment in

cHL is most likely a result of the interplay between the HRSC,

which secrete multiple chemokines, and the microenviron-

mental cells, which provide survival signals to HRSC [3].

Although the histologically defined subtypes of cHL are

not prognostically relevant under current treatment regimens

[1], the microenvironment of cHL has gained considerable

attention in molecular studies over the last years [4–7]. On
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the one hand, gene expression profiling of the whole lympho-

ma tissue indicated a correlation between the cellular compo-

sition of the microenvironment and patient outcome and sug-

gested that a high load of macrophages within the tissue is

associated with a poor prognosis [4, 8]. On the other hand,

blocking T cell signaling between programmed cell death 1

(PD1) expressed on T cells and PD1-ligand (PD-L1) led to

exceptional therapeutic success [9].

Despite the fact that the phenotype and the histological

subtypes of cHL have been known for decades, to the best

of our knowledge, studies systematically analyzing the dy-

namics of these features are lacking. The content of macro-

phages in primary biopsies has been associated with outcome

and is discussed as a relevant prognostic biomarker [10] but

only few studies have been assessing the macrophage content

in paired biopsies at diagnosis and at relapse [11].Moreover, it

is currently not knownwhether therapeutic targets like PD-L1/

PD1 and CD30 change under conventional chemotherapy and

which biopsies need to be assessed if the status should be

assessed for targeted treatment at relapse. In fact, we recently

showed that the number of PD1-positive cells increased in

patients relapsing after/under anti-PD1 treatment [12]. We

thus analyzed multiple biopsy specimens from cHL patients

and compared histological subtype, immunophenotype, and

microenvironment at diagnosis and at relapse to understand

which tissue needs to be analyzed when assessing the pres-

ence of therapeutic targets CD30, PD1, and PD-L1 or prog-

nostic biomarker such as the macrophage content in cHL.

Material and methods

Patients and tissue specimens

A test cohort of patients (n = 18) was identified in the files of

the Lymph Node Registry Kiel on the basis of the availability

of formalin-fixed paraffin-embedded (FFPE) tissue specimens

of sufficient size and quality obtained at the time of diagnosis

and relapse. Three patients were represented bymore than two

biopsies (total number of sequential biopsies n = 39). The

morphology and immunophenotype including expression of

CD30 of the test cohort were studied based on the available

tissue sections. Additionally, gene expression and staining for

CD68, CD163, PD1, and PD-L1 were performed using fresh-

ly cut FFPE sections. An independent validation cohort of

sequential specimens was obtained from the files of the

Departments of Pathology in Lübeck, Tübingen, and Ulm

using the same procedure for patient identification as for the

test cohort (n = 14 patients). The validation cohort was ana-

lyzed for morphology and immunophenotype (including

CD30) using the available sections and for CD68 using fresh-

ly cut sections. The study was conducted in accordance with

the recommendations of the ethics board of the Medical

Faculty, University of Kiel.

The median time between primary and relapse biopsy was

38 months (range 12 to 98) for the test cohort and 30 months

(range 12 to 105) for the validation cohort. Due to the retro-

spective nature of the study, clinical data on the patients were

not available.

Histopathology and immunophenotype

The histological subtype and the immunophenotype were

assessed by at least one experienced hematopathologist (FF,

CT, PM, WK). Stainings for CD20, CD30, CD15, CD3,

PAX5, and LMP1 were performed using standard techniques

in the participating labs and scored as positive if any fraction

of HRSC stained positive. The following antibodies and stain-

ing protocols were used: CD68 (Dako M0876, clone PG-M1,

pH 6, Histofine, manual staining), CD163 (Leica NCL-

CD163, clone 10D6, pH 6, Histofine, manual staining), PD1

(Cell Marque 315M-96, clone MRQ22, ER1-pH 6, Leica-

Bond stainer), PDL1 (Cell Signaling 13,684, clone E1L3N,

ER2-pH 8 Leica-Bond stainer). The number of PD1, PD-L1,

CD68, and CD163-positive cells was counted in three high-

power fields (HPF, 1000-fold magnification using oil immer-

sion). The average of the three HPF was calculated for further

analysis. The HPFs were selected from areas containing

HRSC. At least one unambiguously identified HRSC was

placed in the center of the HPF in order to determine the cell

count in very close proximity to the neoplastic cells. PD-L1

expression on malignant cells was analyzed by visual inspec-

tion and scored in steps of 0%, 1–25%, 26–50%, 51–75%, and

> 76% positive HRSC.

Gene expression profiling

RNA was extracted from FFPE tissue sections using

ExpressArt FFPE Clear RNA Ready Kit (AmpTec,

Hamburg, Germany), as previously described [13]. Gene ex-

pression analysis was performed on a cohort of n = 39 speci-

mens using the Nanostring (nCounter) technology and the

Immunology Code Set Kit that target 594 genes associated

with the immune system (nCounter, nanoString, Seattle,

USA), including 15 housekeeper genes.

Sample quality control was assessed by using the quality

metrics as implemented in the Bioconductor package

NanoStringQCPro in version 1.8.0 [14]. Of the 39 specimens

(18 primary tumors and 21 relapse samples), 8 specimens

were excluded due to low/insufficient RNA abundance. As a

consequence, only 13 lymphomas remained with good quality

data for both the primary and the relapse sample. For one of

the 13 lymphomas, we had two sequential relapse samples for

the same primary sample. We included both such that we

analyzed 14 pairs in total.
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The gene expression data were normalized by first taking

the log2 on the raw data and then subtracting the individual

median gene count from each sample. Next, the median of all

sample medians was added to each specimen to ensure posi-

tive normalized count values for each gene.

Differential gene expression analysis was performed using

generalized linear models of the negative binomial family as

implemented in the Bioconductor package NanoStringDiff

(version 1.6.0) [15–17]. Additionally, the paired nature of

the cohort was included in the model and housekeeper genes

(n = 15) were excluded from analysis. Resulting p values were

adjusted for multiple testing according to Benjamini and

Hochberg and a significance level for differential expression

was set to a False Discovery Rate (FDR) of 0.05.

Results

Histological subtype, immunophenotype,
and expression of CD30

In a combined analysis of the test and validation cohorts, the

histological subtype remained stable between primary and re-

lapse biopsy in the vast majority of cases (80%, Table 1).

However, a change from mixed cellularity (MC) to nodular

sclerosis (NS) subtype and vice versa as well as complex

pattern subtype alterations over time was also observed

(Table 1). A considerable number of cases varied in HRSC

phenotype in sequential biopsy specimens with respect to the

expression of CD15 (53%), CD20 (36%), and CD3 (6%)

(Table 2, Fig. 1). Expression of CD30 and the EBV protein

LMP1 were unchanged between primary and relapse biopsy

in all cases analyzed (Table 2). CD30 expression was detect-

able on virtually all HRSC at first diagnosis as well as at

relapse. We did not identify a case in which the CD30 expres-

sion was absent on a considerable number of HRSC (Fig. 1).

Macrophage content (CD68 and CD163)

We analyzed macrophage marker expression in the specimens

using stainings for CD163. The frequency of CD163-positive

macrophages did not show a significant difference between

primary and relapse biopsies (p = 0.3068, paired t test). We

additionally used CD68 as macrophage marker and extended

the analysis to the validation cohort but failed to find a differ-

ence between primary and relapse biopsy (Fig. 2). Gene ex-

pression analysis using Nanostring technology in the test co-

hort revealed 8 upregulated and 20 downregulated genes at

relapse (p ≤ 0.05, Supplementary figure 1, Supplementary ta-

ble 1) with a consistent logFC direction in at least 75% of all

cases. MRNA expression CD163 not significantly changed

between primary biopsy and relapse confirming the findings

of immunohistochemistry analysis (Supplementary tables 2

and 3). However, we were able to detect the previously report-

ed inverse correlation of relative changes in macrophage and

B cell signatures between primary and relapse specimens

(Supplementary figure 2).

PD1 and PD-L1

PD1-positive cells in the microenvironment were detected on-

ly in two specimens at a low level (16% in one primary biopsy

and 2% in one relapse biopsy). None of the other specimens

showed PD1-positive T cells in the 16 paired biopsies avail-

able for staining. HRSC were negative for PD1 in all cases.

For 13 paired biopsies, PD-L1 staining yielded results in both

the primary and the relapse biopsy (Fig. 1). PD-L1 expression

in the microenvironment did not show any significant differ-

ence between primary biopsy and relapse (p = 0.9946, paired t

test). More than 75% of HRSC were positive for PD-L1 in

primary and relapse biopsy in 10 patients and between 50 and

75% positive HRSC in two patients. A slight change in PD-L1

expression was observed only in one patient in whom the

primary biopsy showed 50–75% and the relapse > 75% PD-

L1-positive HRSC.

By Nanostring gene analysis PD-L1 (CD274), mRNA ex-

pression was not different between primary and relapse

confirming the results of immunohistochemistry. Of note, ex-

pression of PD1 (PDCD1) mRNAwas significantly downreg-

ulated at relapse (Supplementary table 1).

Discussion

In cHL, the lymphomatous enlarged tissue is predominantly

composed of a non-neoplastic microenvironment. The abun-

dance of non-neoplastic cells allowed the development of

prognostic signatures based on the composition of the micro-

environment and the identification of therapeutic targets to

[4–7, 18]. Especially the latter has attracted considerable at-

tention during the last years [19]. The introduction of

immune-checkpoint inhibitors that potentially interfere with

the interaction of HRSC and microenvironmental cells has

proven to be highly effective in cHL [9]. Since conventional

Table 1 Change of morphological subtype in sequential biopsies in all

sequential specimens analyzed (MC =mixed cellularity, NS = nodular

sclerosis, complex = multiple alterations in three available biopsy

specimens: NS to lymphocyte depleted to NS, NS to MC to NS, and

MC to lymphocyte rich to NS)

MC unchanged 10/30 (33%)

NS unchanged 14/30 (47%)

NS to MC 1/30 (3%)

MC to NS 2/30 (7%)

Complex 3/30 (10%)
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chemotherapy cures the vast majority of cHL patients at initial

disease presentation, the application of new drugs such as anti-

CD30 antibody-drug conjugates or immune-checkpoint inhib-

itors targeting the PD1-PD-L1 axis has been tested

Table 2 Immunophenotypic

alterations of Hodgkin-Reed-

Sternberg cells in primary and re-

lapse biopsy

CD20 CD3 CD30 CD15 LMP1

Positive unchanged 0/17 (0%) 0/17 (0%) 17/17 (100%) 7/17 (41%) 9/17 (47%)

Positive to negative 4/17 (24%) 1/17 (6%) 0/17 (0%) 3/17 (18%) 0/17 (0%)

Negative to positive 2/17 (12%) 0/17 (0%) 0/17 (0%) 6/17 (35%) 0/17 (0%)

Negative unchanged 11/17 (65%) 17/18 (94%) 0/17 (0%) 1/17 (6%) 8/17 (53%)

Fig. 1 Histology and immunophenotype. The upper panel represent

primary (a–d low, e–h high magnification) and the lower panel relapse

biopsies (i–l low and m–p high magnification). a, e, i, m = hematoxylin

and eosin staining; b, f, j, n = CD30 (expression unchanged); c, g, k, o =

CD15 (negative in primary and positive in relapse biopsy); d, h, l, p =

PDL1 (expression unchanged). Black boxes in low magnification

indicate areas selected for high magnification of respective staining.

The scale bar for low magnification represents 1000 μm, scale bar for

high magnifications 50 μm
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predominantly in relapsed patients [20]. Although there have

been major advances in the therapy of relapsed cHL, biolog-

ical studies of lymphoma tissue at relapse are very rare.

Moreover, analyses of sequential biopsies of lymphomas at

diagnosis and at relapse are virtually absent from the pub-

lished literature until recently [11]. Therefore, we do not know

so far whether predictive and prognostic biomarkers of cHL

are stable between pretreatment tissue and relapse and wheth-

er the assessment of the biomarkers at initial diagnosis is valid

for later relapses.

Similar to a previous report [11], we illustrate phenotypic

shifts in cHL after chemotherapy exemplified in changes of

the morphological subtype and the immunophenotype of

HRSC. With respect to biomarkers, we found potentially rel-

evant markers such as CD68/macrophage count to be un-

changed between primary biopsy and relapse. Previously pub-

lished studies suggested that CD30 expression might change

in sequential biopsies [21–23]. In contrast to these previous

publications, we demonstrate constant expression of CD30

between primary biopsy and relapse. Phenotype shifts be-

tween primary and relapse biopsies have been described in

sequential mediastinal gray zone lymphoma [24]. However,

our cohort only contains pure cHL. Of note, all biopsy spec-

imen analyzed in our study were from the pre-brentuximab

era.We cannot rule out that the variability of CD15 expression

is to some extent due to technical reasons since expression can

be weak or affect a subpopulation of cells only and might thus

be missed by visual inspection.

PD1 and PD-L1 are both therapeutic targets and biomarker

of outcome [25]. A recent publication found increasing levels

of PD1-positive T cells in cHL at relapse after conventional

chemotherapy [26]. We were not able to confirm these results.

Both methods applied—immunohistochemistry and gene

expression—did not detect an upregulation of PD1 at relapse.

In fact, PD1 was downregulated on the RNA level at relapse

and we did not find changes of PD1-positive cell counts at

relapse. These data are in line with those obtained by another

group that published PD1 levels in pairs of biopsies from

primary diagnosis and relapse after conventional [27].

Unfortunately, the data of the so far only previously published

gene expression data on biopsy pairs of cHL are not publically

available to the best of our knowledge and thus cannot be used

to confirm our results [11].

The discrepancy between gene expression and cell counts

in our study may be explained in several ways. First, protein

expression might be influenced by post-transcriptional mech-

anisms. Second, within a cell population, the expression of the

identifying gene/protein might be variably high expressed but

a broad spectrum of expression allows cells to be registered as

positive by immunohistochemistry. PD1 has been shown to be

downregulated in exhausted T cell which are primed to be

reactivated [28]. We cannot exclude that this population is

missed by our staining but detected by others [29]. Third,

the methods of assessing cell counts used in our study are

quantitative (counting) but restricted to a small preselected

a rea in the immedia te prox imi ty of the HRSC

(microenvironment) and do not necessarily reflect the cell

content in the whole tissue (macroenvironment) as gene ex-

pression profiling does.

To gain further insight into the functional relevance of mi-

croenvironment changes at relapse, methods need to be ap-

plied that assess quantitatively cell counts and simultaneously

allow to study the macro- and microenvironment within the

tissue sections, e.g., by image analysis of whole scanned sec-

tions. Finally, spatial organization of cell types in combination

with their abundance has been shown to provide relevant in-

sight into the interaction between HRSC and the microenvi-

ronment in vivo [29]. Of note, our method of immunohisto-

chemistry in fact is able to detect variability in PD1 expression

as we have shown recently in patients suffering from a relapse

after anti-PD1 treatment [12].

In summary, the number macrophages, a potential bio-

marker of outcome, remained stable between primary bi-

opsy and relapse. The expression of therapeutic targets

and potentially predictive biomarkers CD30, PD1, and

PDL1 remain stable as assessed by immunohistochemistry

between primary diagnosis and relapse. Thus, these bio-

markers can be reliably assessed using the primary biopsy,

e.g., if the biopsy confirming a relapse is not available or

insufficient for ancillary studies. Of note, these findings

Fig. 2 Content of CD68-positive

cells assessed

immunohistochemically in se-

quential biopsy specimens. CD68

cell content in the test cohort (a,

p = 0.2403) and validation cohort

(b, p = 0.7839). Primary and re-

lapse biopsy are connected by a

line. Y-axis indicates average

number of cells per three high-

power fields
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are restricted to patients treated with conventional chemo-

therapy and biomarker might well be more variable when

patients are treated with immune-checkpoint therapy [12].

Furthermore, the findings should be regarded as prelimi-

nary since the patient cohort analyzed in our study is

limited.
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