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In
ammation has a pivotal role in the pathogenesis of ischemic stroke, and recent studies posit that in
ammation acts as a double-
edged sword, not only detrimentally augmenting secondary injury, but also potentially promoting recovery. An initial event of
in
ammation in ischemic stroke is the activation of microglia, leading to production of both pro- and anti-in
ammatorymediators
acting through multiple receptor signaling pathways. In this review, we discuss the role of microglial mediators in acute ischemic
stroke and elaborate on preclinical and clinical studies focused on microglia in stroke models. Understanding how microglia can
lead to both pro- and anti-in
ammatory responses may be essential to implement therapeutic strategies using immunomodulatory
interventions in ischemic stroke.

1. Introduction

Stroke is the second leading cause of death worldwide and
most victims su�er from disabilities such as paresis and
speech defects [1]. One of the major causes of stroke is an
interruption of cerebral blood 
ow resulting in ischemia [2].
	e incidence and mortality of stroke increase with age,
and as the elderly population is rapidly growing in most
developed countries ischemic stroke is a common societal
burden with substantial economic costs [3]. Although great
advances have beenmade in understanding the diversemech-
anisms of neuronal cell death induced by ischemic stroke,
clinically e�ective neuroprotective therapies are limited [1].
Recent studies suggest that cells other than neurons may be
involved in the pathogenesis of ischemia and that a functional
“neurovascular unit” comprises neuronal, glial, and vascular
elements [4, 5].

A
er ischemic stroke, an in
ammatory response is initi-
ated within a few hours, with the activation of microglia and
astrocytes and the production of chemoattractants, cytokines,
and chemokines [6–8], with the subsequent in�ltration of
blood-derived cells such as leukocytes [9, 10]. 	ese cells

interact with one another via intricate signaling pathways.
Recent studies show that systemic in
ammatory status prior
to and at the time of stroke is a key determinant of acute
outcome and long-term prognosis [11, 12]. Inhibiting in
am-
matory responses a
er stroke can prevent brain injury and,
therefore, improve neurological outcome [13]. Conversely,
it has been suggested that suppressing in
ammation could
be detrimental and long-term functional recovery could be
worse when in
ammation a
er stroke is inhibited [14, 15].
Taken together, in
ammatory responses a
er ischemic insult
could be bene�cial or detrimental, probably depending on
the stage of stroke and environments; nevertheless, more
work is needed to elucidate the role of in
ammation during
stroke.

Microglia are activated a
er ischemic stroke, changing
shape and phenotype, similar to macrophages in systemic
in
ammation. Activated microglia have the potential to
phagocytose, present antigens, and produce cytokines and
matrix metalloproteinases (MMPs) that disrupt the blood
brain barrier (BBB) [10]. Peripheral leukocytes can then
in�ltrate into the brain and further exacerbate in
ammation
and brain damage [15].
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Interestingly, microglial activation causes the release of a
number of in
ammatory mediators that are either cytotoxic
or cytoprotective [16]. Microglial phagocytosis contributes
to restoration of tissue homeostasis by clearing pathogens
and necrotic cells, suppressing in
ammation, and facilitating
brain repair [9, 17]. Recent studies, thus, suggest thera-
peutically targeting microglia in stroke. Here, we focus on
the roles of microglia in neuroin
ammation a
er ischemic
stroke.

2. Microglia under Normal
Physiological Conditions

In the resting state, microglia survey the CNS microenviron-
ment by continuously extending and retracting rami�ed pro-
cesses [18, 19]. 	ey control synapse number and remodeling
in the developing brain and clear debris in the healthy adult
CNS [20].Depending on the brain area,microglia can express
di�erent proteins and display various morphologies [21] and
respond di�erently according to injuries [22]. Microglia are
mostly located in the gray matter, where they ramify radial
processes [21]. 	e activation and cell fate of microglia are
in
uenced by their location. A
er focal ischemia for an hour
followed by 24 h of reperfusion, the number and length of
microglial processes decrease and the expression of CD11b
increases in the ischemic core, indicating that microglia in
this region are activated [23]. On the other hand, microglia
remained inactivated with more rami�ed processes in the
penumbra-salvageable region a
er reperfusion around the
peri-infarct area [24]. Taken together, quiescentmicroglia are
not simply “resting,” but rather they continuously survey and
prepare to change phenotype and function in response to a
variety of stimuli in their surroundings.

3. Microglia during Acute Ischemic Stroke

In
ammation of acute ischemic stroke is a dynamic pro-
cess induced by brain-resident microglia and blood-derived
leukocytes [25, 26]. Activation of microglia is the �rst step of
the in
ammatory process even within minutes [7, 27]. Two
to three days following ischemia, the activation and ampli-
�cation of microglia peak and continue for several weeks
[28, 29]. Meanwhile, in�ltration of neutrophils begins a
er
1 day of stroke, followed by in�ltration of macrophages a
er
2 days of stroke [25]. Although the precise roles of microglia
in ischemic stroke have not yet been fully understood, recent
studies strongly suggest multiple functions. 	e population
of microglia increased in the ipsilateral hemisphere of stroke,
while it remained at basal levels in the contralateral hemi-
sphere [30]. In the ischemic environment, microglia can
phagocytose tissue debris as well as secrete proin
ammatory
cytokines, resulting in further damage [31]. In contrast,
microglia also can secrete anti-in
ammatory mediators [32,
33] to alleviate in
ammation. Defective microglial activa-
tion/proliferation signi�cantly increased the size of infarction
and the number of apoptotic neurons a
er stroke [34],
which supports the pivotal role of microglia a
er ischemic
stroke.

3.1. Di	erent Phenotypes of Activated Microglia: M1 and
M2. During microglial activation a
er ischemic stroke, cell
morphology is changed either to M1, the typically activated
phenotype, or to M2, an alternatively activated phenotype;
this phenotypic switch depends on the type of stimulation
(Figure 1). M2 microglia are regarded as “healing cells”
that contribute to recovery a
er damage and secrete anti-
in
ammatory mediators such as interleukin- (IL-) 10, trans-
forming growth factor- (TGF-) �, IL-4, IL-13, and insulin
growth factor- (IGF-) 1, as well as various neurotrophic
factors [32, 35–39]. On the other hand, M1 microglia are
considered as proin
ammatory, producing proin
ammatory
meditators such as tumor necrosis factor- (TNF-) �, IL-1�,
and interferon- (IFN-) �. M1 microglia express CD80, CD86,
andMHC class II on the cell membrane and present antigens
to T cells [40]. In addition, M1 microglia tend to induce
neuronal cell death more readily than M2 microglia [41].
For this reason, inhibiting the M1 phenotype has been sug-
gested as a plausible therapeutic strategy in cerebral ischemia
models. In ischemic stroke, the M2 phenotype is dominant
in both local microglia and newly recruited macrophages at
earlier stages, but the M1 phenotype population increases
progressively in peri-infarct regions, suggesting that neurons
under ischemic condition trigger changes toward the M2
phenotype in microglia and macrophages [41]. Considering
these opposing roles of microglia, stroke therapies should
not be focused on simply suppressing microglia but instead
on balancing the bene�cial and detrimental reactions of
microglia.

As there is no single speci�c marker for microglia and
activated microglia changes to amoeboid morphology with
an enlarged cell body and stout processes, it is di�cult to dis-
tinguish them from macrophages and myeloid-derived cells
that in�ltrate the injured brain tissue [42]. Since microglia
and macrophages originate from primitive myeloid cells, a
number of markers such as CD11b, F4/80, and Iba-1 are
the same [35, 43]. Although di�erent phenotypes of acti-
vated microglia express unique cell surface proteins, markers
for each phenotype have not been determined speci�cally
because of the similarities to other cell types. To date,
several markers have been identi�ed for activated M1 and
M2 microglia (Table 1). As a marker for M1, MHC class II
is used as M1 microglia participate in antigen presentation
in immune reactions [44]. On the other hand, M2 microglia
express high levels of antigen-presenting molecules such as
Ym-1 and CD206 [24].

3.2. Di	erential Microglial Expression in Ischemic Stroke
(Ischemic Core versus Penumbra). As the number of microgl-
ia increases a
er ischemic stroke, the pattern of microglial
response is di�erent depending on the location of the lesion.
In the ischemic core, globular Iba1+ED1+ cells appear 7 days
a
er transient ischemia [45]. In another study, when mea-
sured 24 h a
er cerebral ischemia followed by reperfusion,
microglia/macrophages in the ischemic core expressed high
levels of CD11b, indicating activation and formation of an
amoeboid phenotype [23]. Twenty-four hours a
er focal
ischemia without reperfusion, few CD11b+CD68+ cells were
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Figure 1: Phenotypes and activation of microglia a
er ischemic stroke. Under ischemic conditions, microglia change their morphology
and become activated. Activated microglia are characterized as either an M1 classically activated phenotype or an M2 alternatively activated
phenotype.Microglial activation induces transcription associatedwith the in
ammatorymediators. According to their phenotypes,microglia
can promote proin
ammatory (byM1) or anti-in
ammatory (byM2)machinery. IGF-1: insulin-like growth factor 1; IL-1�: interleukin-1 beta;
IL-6: interleukin-6; IL-10: interleukin-10; TGF-�: transforming growth factor-beta; TNF-�: tumor necrosis factor-alpha.

Table 1: Markers for distinguishing activated and resting microglia.

Name Markers References

CD11b
Both resting and activated

M/M
[24, 75]

CD45
Nucleated hematopoietic

cell surface
[30, 76]

CD68 (ED1)∗ Active phagocytosis M/M [24, 45, 77]

Iba-1
Both resting and activated

M/M
[78, 79]

F4/80
Both resting and activated

M/M
[35, 43]

IB4
Both resting and activated

M/M
[15]

Ym-1 Activated M/M (M2) [24]

Iba-1+, CD206+ Activated M/M (M2) [24]

Iba-1+, CD16/32+ Activated M/M (M1) [41]
∗CD68 and ED1 are virtually the same molecule (CD68 is used more in the
human context, while ED1 is the name of that protein in rodents). M/M:
microglia and macrophages.

identi�ed in the ischemic core, and CD68 (same as ED1 in
rodents), marker for phagocytosis, was highly expressed by
day 7. At 24 h, Ym-1 and CD206, markers for the M2 pheno-
type, were exclusively found in the ischemic core, suggesting
that the microglia/macrophages participate in tissue repair
in the ischemic core [24]. Another study also con�rmed M2
phenotype dominance of microglia/macrophages by �nding
Iba1+/CD206+ expression at 24 h a
er stroke in the ischemic

core; the expression was highest at 5 days a
er insult,
decreasing a
er 14 days [41]. As disease severity increases,
however, microglia decrease in number and disintegrate;
numerous dead CD11b+ cells were found in the ischemic
core at 72 h a
er stroke [46], and, similarly, CD11b+ cells
showed disintegration in the ischemic core at 7 days a
er
permanent focal cerebral ischemia induced by photochem-
ically induced thrombosis (PIT) method or middle cerebral
artery occlusion (MCAO), whereas there are an increased
number of microglia and macrophages in the penumbra
[47, 48]. Altogether, it is assumed that ischemia induces
injury to microglia in the infarct core in the early phase,
and, subsequently, M2 microglia/macrophages migrate into
the area during the �rst week, followed by a decrease in
microglial number a
erwards. In contrast, the number of
M1 microglia/macrophages increases over the �rst 2 weeks
(Table 2). Microglia respond dynamically to ischemic stroke,
as an early “anti-in
ammatory” M2 phenotype, followed by
a transition to a “proin
ammatory” M1 phenotype. Severe
ischemic state of core environment including ischemic neu-
rons could prime microglial M1 phenotype or death. 	ese
dual roles of microglia suggest that stroke therapies should be
shi
ed from simply suppressing microglia toward adjusting
the balance between bene�cial and detrimental microglial
responses.

Unlike the ischemic core, microglia in the penumbra
seem to be highly activated [22]. In a permanent ischemic
stroke model, CD68 is expressed on rami�ed CD11b+ cells in
the penumbra at 6 h and, continuously, increases in the hyper-
trophic amoeboid cells of the ischemic core [24]. However, it
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Table 2: Microglial marker expressions in the ischemic core and peri-infarct zone.

Location Marker Model
Expression

(a
er reperfusion)
Reference

Ischemic core

Iba1 1.5 h tMCAO 24 h, 4–7 d (peak) [45]

Iba1+, ED1+ 1.5 h tMCAO 7 d [45]

CD11b 1 h tMCAO 24 h [23]

CD68 pMCAO 7d

[24]Ym-1 pMCAO 24 h

CD206 pMCAO 24 h

Iba1+, CD206+ 1 h tMCAO 1 d, 5 d (peak)
[41]

Iba1+, CD16/32+ 1 h tMCAO 3 d, 14 d (peak)

Peri-infarct zone

Iba1+, ED1− 1.5 h tMCAO 3.5 h, 7 d (peak) [45]

CD11b+, CD68+ pMCAO 6h [24]

F4/80 pMCAO 24 h, 3 d (peak) [49]

CD11b pMCAO 1 h [23]

CD68 pMCAO 24 h [24]

CD68+, MHC II+ pMCAO 3–7 d [51]

pMCAO: permanent middle cerebral artery occlusion and tMCAO: transient middle cerebral artery occlusion.

should be noted that CD11b can be expressed on both resident
and in�ltrating phagocytes. Within 90min of transient focal
ischemia a
er reperfusion, the number of Iba1+ED1− cells
increases from 3.5 to 7 days and then decreases by day 14
[45]. A
er 8 and 24 h of focal cerebral ischemia, the length
and the number of processes of microglia/macrophages in
the penumbra decrease, demonstrating their activation [23].
In addition, CD11b and F4/80 are prominently expressed in
the penumbra [23, 49]. Ym-1+ and CD206+ cells were not
detected in the penumbra from 1 to 7 days a
er permanent
MCAO [24], while the IBA-1+ and CD206+ cells were highest
at day 5 in the penumbra a
er 60min of transient MCAO
[41]. 	e di�erence in animal models may account for the
discrepancies between these two studies. Given that the
in�ltrating cells are recruited much more in permanent
MCAO [50], this might be coming from a higher number
of in�ltrating cells or a lower survival of resident cells.
Most CD68+ microglia/macrophages were located in the
penumbra [24, 46].Markedly proliferating residentmicroglia
with few in�ltrating blood-derived macrophages a
er focal
cerebral ischemia were detected at 2 and 3 days of transient
MCAO over 3 days a
er 30 or 60min of occlusion but signif-
icantly reduced in 60min of occlusion compared to 30min of
occlusion [7]. Moreover, in the penumbra of permanent focal
ischemia, CD68+ microglia were accompanied by increased
expression of MHC class II on the cell surface from days
3 to 7 [51]. Taken together, proliferating and activated
microglia predominate in the penumbra, and their number
increases over the �rst week a
er stroke. Although these
studies are limited because they did not di�erentiate resident
microglia from in�ltrating macrophages, one implication is
that the change of microglial phenotype occurs dynamically
and consistently and the location of the microglia is cru-
cial. 	is suggests that therapeutic approaches to regulate
microglia need to be targeted speci�cally by brain region
(Table 2).

In clinical studies, abundant activated microglia have
been found histologically in the ischemic core as well as
penumbra within 1-2 days a
er onset [52, 53]. Similar to
the rodent stroke model, these cells remained for several
weeks and were predominantly placed in the peri-infarct

zone. Positron emission tomography (PET) with 11C-labled
PK11195 enables in vivo imaging the presence of activated

microglia [54–56]. 11C-labled PK11195 has signi�cant binding
potential in the core and penumbra at 2 days and remained
until 30 days, however, with less speci�city to di�erentiate
in
ammatory cells due to binding mitochondrial peripheral
benzodiazepine receptors which are expressed in activated
microglia, macrophages, astrocytes, granulocytes, and lym-

phocytes [57, 58]. Recently, increased [18F]-
uoro-2-deoxy-
D-glucose (18F-FDG) PET imaging in the peri-infarct area
shows association with activated microglia and in�ltrated
cells [47]. Further studies are needed to clarify the glucose
metabolism and microglial response a
er ischemic stroke.

4. Therapeutic Approaches Modulating
Microglial Response

4.1. Genes and Cells. 	e cytokine IL-1 has been strongly
implicated in the pathogenesis of ischemic brain damage.
Although ischemic damage compared with wild-type mice
was not signi�cantly altered in mice lacking either IL-1a
or IL-1b alone, mice lacking both forms of IL-1 exhibited
dramatically reduced ischemic infarct volumes compared
with wild type (total volume: 70%; cortex: 87% reduction)
[59].

Toll-like receptors (TLRs) are signaling receptors in the
innate immune system that trigger speci�c immunological
responses to systemic bacterial infection. Microglia express
TLRs which lead to gene expression of proin
ammatory
cytokines [35]. TLR4 and TLR2 are the most marked TLRs
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in microglia, and they are increased a
er ischemia [15]. In
addition, TLR4 was localized with CD11b-positive microglia
in the ischemic striatum [60]. In this respect, TLR4 but
not TLR3 or TLR9 knockout (KO) mice had signi�cantly
smaller infarct areas and volumes at 24 h a
er ischemia-
reperfusion compared with wild-type mice [60]. Some
previous studies focused on an important role of TLR2
signaling in brain ischemia. Temporal analysis with 
ow
cytometry of themicroglial/macrophage activation pro�les in
TLR2-KO mice and age-matched controls revealed reduced
microglial/macrophage activation a
er stroke and reduced
capacity of resident microglia to proliferate, as well as
decreased levels of monocyte chemotactic protein-1 (MCP-1)
and consequently lower levels of CD45 high/CD11b+ express-
ing cells [61].

Recently, MMPs have been regarded as important mole-
cules in neuroin
ammation as well as neuronal apoptosis.
Several reports have shown that activated microglial cells
are crucial in white matter lesion (WML) pathology. A
transplanted microglial cell line (HMO6) and mesenchymal
stem cell line (B10) migrated to sites of WMLs, including
the corpus callosum (CC) and caudoputamen (CP), reduced
the severity of WMLs, and inhibited the accumulation and
activation of microglia and astrocytes. Transplantation of
both cell types reduced the level of MMP-2 mRNA in
microglia of the CC. MMP-2 protein level and activity
were also both greatly reduced in the same region. 	ese
results indicate that transplantation of either microglial cells
or mesenchymal stem cells could inhibit chronic cerebral
ischemia-induced WML formation by decreasing MMP-2
expression inmicroglia and decreasingMMP-2 activity in the
CC region [62].

Expressions of MMP-1, -3, -8, and -9 were signi�cantly
induced by single or combined treatment with the immunos-
timulants lipopolysaccharide (LPS) or phorbol myristate
acetate (PMA) in primary cultured microglia and BV2
microglial cells. Inhibition of MMP-3 or -9 signi�cantly
suppressed the expression of inducible nitric oxide syn-
thase (iNOS) and proin
ammatory cytokines and the activ-
ities of nuclear factor-kappa B (NF-�B), AP-1, and p38
mitogen-activated protein kinase (MAPK) in LPS-stimulated
microglia [63]. Taken together, various microglia-derived
cytokines, signal receptors, and neuroin
ammatory proteins
reported that their knockoutmodels may play a neuroprotec-
tive role in ischemic brain injury su�ciently.

4.2. Chemicals. Propofol confers neuroprotection against
focal ischemia by inhibiting microglia-mediated in
amma-
tory response in a rat model of ischemic stroke. Propofol
treatment reduced infarct volume and improved the neuro-
logical functions. Moreover, molecular studies showed that
mRNA expression of microglial markers CD68 and Emr1
signi�cantly increased, and mRNA and protein expressions
of proin
ammatory cytokines TNF-�, IL-1�, and IL-6 were
augmented in the peri-infarct cortical regions of vehicle-
treated rats 24 h a
er MCAO [64].

2,3,5,4�-Tetrahydroxystilbene-2-O-�-d-glucoside (TSG),
an active component, has been reported to be bene�cial for

human health and used as an antiaging agent. Recent studies
have shown that TSG presents numerous pharmacological
properties including antioxidant, free radical-scavenging,
anti-in
ammation, and cardioprotective e�ects. Microglia
BV2 cell lines were used to investigate the antineuroin
am-
matory e�ects of TSG. TSG reduced LPS-induced microglia-
derived release of proin
ammatory factors such as TNF-�,
IL-1�, and nitric oxide (NO). Further, TSG attenuated LPS-
induced NADPH oxidase activation and subsequent reactive
oxygen species (ROS) production [65].

Cryptolepine signi�cantly inhibited LPS-induced pro-
duction of TNF-�, IL-6, IL-1�, NO, and prostaglandin
E2 (PGE2). Protein and mRNA levels of cyclooxygenase-
2 (COX-2) and iNOS were also attenuated by cryptolepine
[66]. Kalopanaxsaponin A, a triterpenoid saponin isolated
from Kalopanax pictus, inhibited iNOS, COX-2, and TNF-�
expressions in LPS-stimulated microglia, while kalopanaxs-
aponinA increased anti-in
ammatory cytokine IL-10 expres-
sion [67]. Fucoidan treatment signi�cantly inhibited exces-
sive production of NO and PGE2 in LPS-stimulated BV2
microglia. It also attenuated expression of iNOS, COX-
2, MCP-1, and proin
ammatory cytokines, including IL-1�
and TNF-�. Moreover, fucoidan exhibited anti-in
ammatory
properties by suppressing NF-�B activation and downregu-
lating extracellular signal-regulated kinase (ERK), c-Jun N-
terminal kinase (JNK), MAPK, and AKT pathways [68].
Geniposide decreased the secretion of TNF-�, IL-1�, IL-
6, IL-8, and IL-10 from cultured microglial cells. It also
downregulated TLR4 mRNA expression in the microglia
[69]. Treatment with LXA(4) ME suppressed neutrophil
in�ltration and lipid peroxidation levels, inhibited the acti-
vation of microglia and astrocytes, reduced the expression
of TNF-� and IL-1�, and upregulated the expression of anti-
in
ammatory cytokines IL-10 and TGF-� 1 in the ischemic
brain [70]. Compared with the vehicle group, rosuvastatin
prevented the impairment of neurological function and
decreased the infarct volume. 	e increases in activated
microglia,macrophages, and superoxide levels usually caused
by ischemia/reperfusion were signi�cantly ameliorated by
rosuvastatin. Rosuvastatin also inhibited the upregulation

of gp91phox and p22phox, phosphorylation of NF-�B, and
induction of COX-2 and iNOS [71]. 	ese studies suggest
that chemicals such as propofol, TSG, and cryptolepine
have experimentally neuroprotective e�ects and they may be
therapeutic target for clinical application.

4.3. Augmentation of Anti-In�ammatory Response. Early
studies showed that the administration of the anti-in
amma-
tory cytokine IL-10 protects against permanent MCAO in
mice. IL-10 was overexpressed in astrocytes, microglia, and
endothelial brain cells in IL10T compared with wild-type
mice. Four days following MCAO, IL-10T mice showed
a 40% reduction in infarct size that was associated with
signi�cantly reduced levels of active caspase 3 compared with
wild-type mice [72]. Subcutaneous administration of IGF-
1 also resulted in signi�cantly reduced infarct volumes and
an increase in motor-sensory functions in normotensive rats
[73].
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Figure 2: 	e roles of microglia in ischemic stroke. 	e bal-
ance between proin
ammatory and anti-in
ammatory responses is
important for determining outcomes a
er stroke.

TIPE2 (TNF-�-inducible protein 8-like 2 or TNFAIP8L2)
is essential for maintaining immune homeostasis. Some
genetic studies suggested the role of TIPE2 in the regulation
of TLR function and the link between TLRs and ischemic
cerebral injury. 	e genetic ablation of the TIPE2 gene
signi�cantly increased the cerebral volume of infarction and
neurological dysfunction in mice subjected to MCAO [74].

	erefore, exogenous administration or overexpression
of pivotal factors may be strong candidates for the treatment
of ischemic stroke.

5. Conclusion

We have summarized recent evidence suggesting that
microglia have critical functions during ischemic stroke.
In
ammation associated with microglia plays an important
role in the pathogenesis of ischemic stroke. Although several
trials for anti-in
ammatory treatment have proven to be
e�ective for treating acute stroke in animal models, they have
unfortunately been ine�ective in clinical trials. Increasing
evidence suggests that in
ammatory response is a double-
edged sword, as it not only exacerbates secondary brain injury
in the acute stage of stroke but also contributes bene�cially
to brain recovery a
er stroke (Figure 2). Microglia could
serve as powerful cellular targets in ischemic stroke. Suc-
cessful microglial replacement therapy is encouraging since
manipulation of microglia may be e�ective for treating other
neurological conditions. However, there is still much to be
done in order to translate promising preclinical �ndings into
clinical practice. Further studies should consider the pro- and
anti-in
ammatory responses by microglia, not separately but
as a whole. Improving our understanding of the dynamic

balance between pro- and anti-in
ammatory responses and
identifying the discrepancies between preclinical studies and
clinical trials may lead to the design of more e�ective
therapies.
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