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There are no Goldstone Bosons
in Two Dimensions*
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Abstract. In four dimensions, it is possible for a scalar field to have a vacuum expecta-
tion value that would be forbidden if the vacuum were invariant under some continuous
transformation group, even though this group is a symmetry group in the sense that the
associated local currents are conserved. This is the Goldstone phenomenon, and Gold-
stone's theorem states that this phenomenon is always accompanied by the appearance of
massless scalar bosons. The purpose of this note is to show that in two dimensions the
Goldstone phenomenon can not occur; Goldstone's theorem does not end with two
alternatives (either manifest symmetry or Goldstone bosons) but with only one (manifest
symmetry).

Introduction and Conclusions

One of the oldest versions of Goldstone's theorem [1] is this: Let
φ be a local scalar field, and let j μ be a local conserved vector [2] current,

ί μ i , = o. (l)

Define the scalar field δφ by

$3 (2)

(Because of locality - the statement that the fields and currents commute
at space-like separations — the integrand always vanishes for sufficiently
large x; thus the integral always converges. Also, as a consequence of
Eq. (1), this object is independent of x0 and defines a scalar field [3].)
Then, assuming the usual axioms of field theory [4], either (1) the vacuum
expectation value of δφ vanishes, or (2) the theory contains a massless
scalar meson (the Goldstone boson).

(Formally, δφ is the commutator of φ with the global conserved
charge associated with the local conserved current, and the non-
vanishing of its vacuum expectation value implies that the charge does
not annihilate the vacuum, or (formally equivalently) that the vacuum
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is not invariant under the unitary transformation obtained by expo-
nentiating the charge. This situation is what is usually called spon-
taneous symmetry breakdown.)

The aim of this note is to demonstrate, that, in a space-time of two
dimensions, the corresponding assumptions lead to a strikingly different
result: The second alternative is impossible; the vacuum expectation
value of δφ always vanishes.

Several comments should be made:
(1) The proof of the result depends critically on certain very special

properties of two-dimensional kinematics. There is no reason to believe
it casts any doubt upon the occurence of spontaneous symmetry break-
down and the appearance of Goldstone bosons in four-dimensional
field theories.

(2) The appearance of vacuum expectation values for scalar fields
is a special case of spontaneous symmetry breakdown. There exists a
(at least apparently) much more general definition of spontaneous
symmetry breakdown - the existence of automorphisms of the algebra
of local observables that are not unitarily implementable [5]. I believe
it should be possible to generalize the result to this case, but I have not
done so.

(3) The result is for continuous symmetries only; it says nothing
about the spontaneous breakdown of discrete symmetries, which, even in
four dimensions, is not associated with the appearance of Goldstone
bosons. This has an analogy in statistical mechanics: the two-dimensional
Ising model displays spontaneous magnetization, but the two-dimen-
sional isotropic Heisenberg model does not [6].

(4) Likewise, the result says nothing about the Goldstone-Higgs [7]
phenomenon, in which gauge fields prevent the appearance of Goldstone
bosons. (The Goldstone theorem is avoided because it is impossible to
quantize the gauge fields in a gauge in which all of the axioms are obeyed
simultaneously.) Goldstone-Higgs spontaneous symmetry breakdown
may well occur even in two dimensions [8].

(5) This work was stimulated by the work of Baumel [9]. Using the
methods of constructive field theory, Baumel was able to show that,
in the Euclidean lattice approximation, symmetry breakdown did not
occur for certain two-dimensional field theories for which semi-classical
reasoning would indicate its occurence. This work is an attempt to
understand and extend the results of Baumel; the reader should not be
misled by accidents of priority of publication into thinking otherwise.

The Central Idea of the Proof

It is easy to see that there is something special about two dimensions
by considering the simplest example of the Goldstone phenomenon, a free
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massless scalar field. The field equation is

Π2Φ = O. (3)

The conserved current is

jμ = dμφ, (4)
and

δφ=l. (5)
Unfortunately, this example breaks down in two dimensions, for in

two dimensions there is no free massless scalar field theory [10]. The
easiest way to see this is to study the two-point function,

(0\φ(x)φ(0)\0)= $^eikxδ(k2)θ(k0). (6)

Alas, the right hand side of this equation is ill-defined; if we perform the
k0 integration, we obtain

Ah

^ 1 ) e - l ' " ' - , (7)

which is divergent at the origin.
Thus, for scalar fields, a delta-function singularity on the light-cone

in momentum space is forbidden in two dimensions. This will be the
central idea of the proof; we will find that, for δ φ to have a non-zero
vacuum expectation value, such a forbidden singularity must be present
in the two-point function for φ.

A Lemma

A preliminary result is needed to put the remarks of the last paragraph
in usable form. Let us define a peaked test function (of a single variable, x),
as a test function, f(x), with compact support such that

/(x)g/(y) if x/y^ί. (8)

In other words, a peaked function is a positive function that is monotone
decreasing as one moves away from the origin in either direction [11].
Let us also define, in two-dimensional momentum space, the variables

k±=k0±k1. (9)

Under a Lorentz transformation of rapidity α,

fc±->e±βfc±. (10)

Lemma. Let F(k + ,k_) be a positive Lorentz-invariant distribution,
and let /(fc_) be a peaked test function. Then

lim ί dk_ f{λkJ) F(k + , kJ) = cδ{k+),
λ-» oo
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with c some positive number. (Note that if δ(k2) were a distribution in
two-dimensional space, it would be a counterexample to this lemma.)

Proof. For any λ, the object inside the limit is a positive distribution;
by Eq. (8), it is a monotone decreasing function of A; thus the limit exists
and is a positive linear functional. By applying a Lorentz transformation,
Eq. (10), we see that the limit functional assigns the same value to g(eak+)
as to g(k+), where g is any test function. By choosing g to be a peaked
function, we easily find that the support of the limit functional is
restricted to the origin.

The Proof

Let us define

F(k)=μ2xeίk χ(0\φ(x)φ(0)\0), (lla)

Fμ(k)= \d2 x eίk \0\jμ(x) φ(0)\0} , (lib)

and
Fμv(k) = μ2xeik-χ(0\jμ(x)jv(0)\V>. (He)

Current conservation, Eq. (1), implies that

fc"Fμ(fc) = 0, (12)
whence,

Fμ(k) = σkμ δ(k2) θ{k0) + εμvk
vρ(k2) θ(k0). (13)

where σ is a number and ρ a scalar distribution. [The first term is a well-
defined distribution despite our previous observations; the extra factor
of k kills the singularity in Eq. (7).] A simple computation shows that

= iσ/4π.

The second (parity-violating) term in Eq. (13) does not contribute to the
integral; it is odd in xlm

For any test function /ι(x), and for any two numbers a and b, the state

must have positive norm. This implies that F o o and F are positive
distributions, and also that

[ j d2k F(k) |Λ(fc)|2] [ j d2k F00(k) |/z(/c)|2]

^|[j^ 2/cF 0(/c)|M/c)| 2] | 2, (

where h is the Fourier transform of h.
Now let us choose

h{k) =f(λk_) g(k+) + f(λk+) g(k_), (16)
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where / is a peaked test function and g is a test function whose support
does not include the origin. Since h is parity even, the parity-violating
second term in Eq. (13) does not contribute to

f d2k F0(k) \h(k)\2 = σ|/(0)|2 I dk+ \g(k+)\2 . (17)

Note that this is independent of λ.
On the other hand, for sufficiently large A, the two terms in Eq. (16)

have no common support; thus, each of the integrals on the left-hand
side of the inequality (15) breaks up into the sum of two terms. By the
lemma and the assumed support properties of g, the first integral vanishes
as λ goes to infinity. Because JF00 is a positive distribution, the second
integral is monotone decreasing. Thus,

σ = 0 (18)

and the vacuum expectation value of δφ vanishes. This completes the
proof.
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This statement should not be taken to mean that there are no zero mass scalar particles
in two dimensions. Indeed, if one defines "particle" in the usual way, as a normalizable
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eigenstate of Pμ P
μ, the usual two-dimensional theory of massless Dirac fields contains

massless scalar particles these are states of one fermion and one antifermion, both in
normalizable states moving to the left. It is a peculiarity of massless two-dimensional
kinematics that, despite the fact that this is a normalizable two-particle state in Fock
space, it is still an eigenstate of PμP

μ. Consistent with the remarks above, though, the
field :ψψ:, whose two-point function one might expect to possess a delta-function
singularity because of the existence of these states, has in fact zero amplitude for
creating these states from the vacuum.

11. In this paragraph, and in the sequel, "positive" means non-negative, not positive-
definite. Also, "distribution" means tempered distribution, "test function" means
an infinitely differentiable function of fast decrease, and a "positive distribution"
means one which assigns positive values to positive test functions.
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