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Abstract

We show that there exist binary circular 5/2+ power free words of every length.
Keywords: Combinatorics on words, Dejean’s conjecture, Thue-Morse word

1 Introduction

The word alfalfa consists of the segment alfa overlapped with itself. Alternatively, we
may view alfalfa as alf, taken 21

3
times; we write alfalfa = alf 7/3.

Let w be a word, w = w1w2 . . . wn where the wi are letters. We say that w is periodic
if for some integer p ≤ n we have wi = wi+p, i = 1, 2, . . . , n− p. We call p a period of w.
Thus by convention, length n of w is always a period. Let k be a rational number. If p is
a period of w, and |w| = kp, then we say that w is a k power. For example, every word
is 1 power. A k+ power is a word which is an r power for some r > k. A word is k+

power free if none of its subwords is a k+ power. A 2 power is called a square, while a
2+ power is called an overlap.

Thue showed that there are infinite sequences over {a, b} not containing any overlaps,
and infinite sequences over {a, b, c} not containing any squares [7]. As well as studying
sequences, Thue studied necklaces or circular words.

Word v is a conjugate of word w if there are words x and y such that w = xy and
v = yx. Let w be a word. The circular word w is the set consisting of w and all of its
conjugates. We say that circular word w is k+ power free if all of its elements are k+
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Figure 1: A 2+ free circular word.

power free; that is, all the conjugates of the ‘ordinary word’ w are k+ power free. Thue
proved that overlap-free binary circular words of length n exist exactly when n is of the
form 2m or 3 × 2m.

Example 1 The set of conjugates of word 001101 is

{001101, 011010, 110100, 101001, 010011, 100110}.

Each of these is 2+ power free, so that 001101 is a circular 2+ power free word. (See
Figure 1.) On the other hand, 0101101 is 3+ power free, but its conjugate 1010101 is a
7/2 power. Thus 0101101 is not a circular 3+ power free word.

Dejean [3] generalized Thue’s work on repetitions to fractional exponents. Define the
repetitive threshold function by

RT (n) = sup{k : xk is unavoidable on n letters}.

Dejean conjectured that

RT (n) =




2, n = 2
7/4, n = 3
7/5, n = 4

n/(n − 1), n > 4

We see that both Thue and Dejean studied the question of whether infinite sequences
avoiding k powers exist over a given alphabet. In the case of ‘linear words’, i.e. sequences,
this question has several equivalent formulations:

• Over an n-letter alphabet, are there arbitrarily long k power free words?

• Over an n-letter alphabet, are there k power free words? of every length n > N0,
some N0?

• Over an n-letter alphabet, are there k power free words? of every length?
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These formulations are equivalent, since the linear k power free words are closed under
taking subwords. For circular words, these formulations become three distinct questions.
As mentioned above, Thue showed that there are arbitrarily long binary circular words
avoiding 2+ powers, but only for lengths of the form 2m or 3× 2m. It was recently shown
[1] that there are ternary square-free circular words of length n for n ≥ 18. (Such words
do not exist for for n = 5, for example.) On the other hand, there are binary cube-free
circular words of every length [2]; in fact, such words can be found in the Thue-Morse
sequence [5].

The three formulations give three possible generalizations of Dejean’s work. We con-
sider what seems to us the most natural of these

Let n be a positive integer, and k a rational number. Let L(n, k) be the set of positive
integers m such that no circular k power free word over n letters has length m. Every
non-empty word is a 1 power; therefore, L(n, 1) is always the set of positive integers. In
particular, L(n, 1) is non-empty. Define

CRT (n) = sup{k : L(n, k) is non-empty}.
We demonstrate that CRT (2) = 5/2. Thus, we prove the following:

Main Theorem: Let n be a natural number. There is a circular binary word of length
n simultaneously avoiding k powers for every rational k > 5/2.

One quickly checks that every circular binary word of length 5 contains either a cube
or a 5/2 power. Combining this observation with the theorem, one has CRT (2) = 5/2, as
claimed. We have found 5/2+ free circular words of lengths up to 200 in the Thue-Morse
word, leading us to make the following conjecture:

Conjecture 2 Let n be a natural number. The Thue-Morse sequence contains a subword
of length n which, as a circular word, simultaneously avoids xk for every rational k > 5/2.

2 A few properties of the Thue-Morse word

The Thue-Morse word t is defined to be t = hω(0) = limn→∞ hn(0), where h : {0, 1}∗ →
{0, 1}∗ is the substitution generated by h(0) = 01, h(1) = 10. Thus

t = 01101001100101101001011001101001 · · ·
The Thue-Morse word has been extensively studied. (See [4, 6, 7] for example.) We

use the following facts about it:

1. Word t is 2+ power free.

2. If w is a subword of t then so is w. (The set of subwords of t is closed under taking
binary complements.)

3. None of 00100, 01010, 10101 or 11011 is a subword of t.
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Lemma 3 Let k ≥ 2 be a positive integer. Then t contains subwords of length k of the
form 0v1 and of the form 0v0.

Proof: Suppose that t has no subword 0v1 of length k. Then any subword of t of length
k which begins with a 0 must end with a 0. Since t is closed under binary complements,
any subword of t of length k which begins with a 1 must end with a 1. This means
that t is periodic with period k − 1. This is absurd, since t is 2+ power free. A similar
contradiction arises if we assume that t has no subword 0v0 of length k; in this case t
would be periodic with period 2k − 2.2

Lemma 4 Let k ≥ 6 be a positive integer. Then t contains a subword of length k of the
form 01v01 and a subword of length k of the form 01v10.

Proof: If k is even, let k = 2r. We have r = k/2 ≥ 3, so that t contains a word u = 0v0
of length r by the last lemma. Word h(u) = 01h(v)01, a word of the required form of
length k.

If k is an odd integer, k ≥ 7, we can write k as 8r − 9, 8r − 7, 8r − 5 or 8r − 3 for
some r ≥ 2. Let u = 0v0 be a word of length r in t. The word

h3(u) = 01101001h3(u)01101001

contains words 01v01 of lengths 8r − 9 (including the first and second underlined 01’s)
and 8r − 3 (including the first and third underlined 01’s.)

Let z = 0v1 be a word of length r in t.The word

h3(z) = 01101001h3(u)10010110

contains words 01v01 of lengths 8r − 7 (including the first and second underlined 01’s)
and 8r − 5 (including the first and third underlined 01’s.)

The proof for 01v10 is analogous.2

Applying h2 to the words of the previous lemma gives the following corollary.

Corollary 5 Let k ≥ 6 be a positive integer. Then t contains subwords of length 4k of
the form = 01101001v01101001 and of the form 01101001v10010110.

3 Circular 5/2+ power free words

Consider the words

• f0 = 00100

• f1 = 01010

• f2 = 10101
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• f3 = 11011

None of the fi appears in the Thue-Morse word t. (The ‘f’ is for ‘forbidden’.) Note that
fi is the binary complement of f3−i, i = 0, 1. For certain i and j we introduce words bi,j

form ‘buffers’ between fi and fj. The words bi,j can be any subwords of the Thue-Morse
word t with |bi,j| ≥ 32, and of the following forms:

• b0,0 = 1101001v1001011

• b1,1 = 01101001v10010110

• b3,0 = 0010110v1001011

• b0,3 = 1101001v0110100

• b1,2 = 01101001v01101001

• b2,1 = 10010110v10010110.

Again, there is symmetry; interchanging subscripts i and 3 − i simply produces a binary
complement. The condition that these words lie in t implies that each v will have either
0110 or 1001 as a prefix. These words are obtained from the words of Corollary 5, possibly
taking the binary complement, and/or deleting the first and last letters. We see then that
words b0,0, b3,0, b0,3 exist for every length 4k − 2, k ≥ 9. (We use k ≥ 9 rather than k ≥ 6
because we want |bi,j| ≥ 32.) Words b1,1, b1,2, b1,2 exist for every length 4k − 4, k ≥ 9.

Let w be a circular word of one of the forms

b0,0f0

b1,1f1

b3,0f0f3

b1,2f2b2,1f1

(1)

By controlling the lengths of the bi,j , word w can be chosen to have length 4k1 + 3,
4k1 +1, 4(k1)+ 8 or 4(k1 + k2)− 8 +10 for any k1, k2 ≥ 9. In particular, word w can have
any length n ≥ 74. We claim that w avoids all xk with k > 5/2. The proof begins with
the following lemma:

Lemma 6 No word of the form abi,jc with |a|, |c| ≤ 4 is a k power for rational k > 5/2.

Proof: Suppose abi,jc is a k power for k > 5/2, where |a|, |c| ≤ 4. This means that
abi,jc is periodic with some period p, |abi,jc| > 5p/2. Its subword bi,j must also then
have period p. Since bi,j is a subword of t, this means that |bi,j | ≤ 2p. In total then,
8 ≥ |a| + |c| = |abi,jc| − |bi,j| > 5p/2 − 2p = p/2, so that 16 > p. However, then
32 ≤ |bi,j | ≤ 2p ≤ 2 × 15 = 30. This is a contradiction.2
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Lemma 7 Suppose that a word of the form sβ is a k power for rational k > 5/2, where,
for some i and j, word fi has suffix s, |s| ≤ 4 and bi,j has β as a prefix. Let sβ have
period p < 2|sβ|/5. Then p ≤ 7.

Proof: The word β has period p, but is a subword of t. Thus, |β| ≤ 2p. Now, 4 ≥ |s| =
|sβ| − |β| > 5p/2 − 2p = p/2. We conclude that 7 ≥ p.2

Lemma 8 Consider a word of the form sβ where, for some i and j, β is a prefix of bi,j,
s is a suffix of fi, |s| ≤ 4. Then for rational k > 5/2, sβ is not a k power.

Proof: By symmetry, it suffices to prove the result where i is 0 or 1.

Case 1: We suppose i = 0.

Word s will be a suffix of 0100. Let π1 = 1101001 0110 and let π2 = 1101001 1001.
(The spaces are for clarity; they highlight the two possible prefixes of v in bi,j .) By the
construction of b0,0 and b0,3, one of π1, π2 is a prefix of bi,j . It follows that either β is a
prefix of one of the πk, or one of the πk is a prefix of β.

Let sβ have period p, |sβ| > 5p/2. By Lemma 7, p ≤ 7. If πk is a prefix of β,
then sπk has period p. On the other hand, if β is a prefix of πk, then sπk has a prefix
sβ, |sβ| > 5p/2. Let q be the maximal prefix of sπk with period p. For each choice
p = 1, 2, . . . , 7, and for each possibility k = 1, 2, we show two things:

1. Word q is a proper prefix of sπk. This eliminates the case where πk is a prefix of β.

2. We have |q| ≤ 5p/2. This eliminates the case where β is a prefix of πk. We thus
obtain a contradiction.

As an example, suppose p = 6. In sπ1 = s1101001 0110, the letters in bold-face
differ. This means that prefix q of period 6 is a prefix of s1101001, which has length
|s| + 7 ≤ 11 ≤ 5p/2 = 5 × 6/2 = 15. Again, in sπ2 = s1101001 1001, the letters in
bold-face differ. Any prefix of sπ2 of period 6 is thus a prefix of s110100110, which has
length at most 14.

The following table bounds |q| in the various cases. The pairs of bold-face letters
certify the given values.

p s πi |q| |q|/p
1 (0)0 1101001v ≤ 2 ≤ 2

(0)100 1101001v ≤ 2 ≤ 2
2 (010)0 1101001v ≤ 5 ≤ 5/2
3 0 1101001v 5 5/3

(01)00 1101001v ≤ 5 ≤ 5/3
4 (010)0 1101001v ≤ 7 ≤ 7/4
5 (010)0 1101001v ≤ 9 ≤ 9/5
6 (010)0 1101001 0110 ≤ 11 ≤ 11/6

(010)0 1101001 1001 ≤ 14 ≤ 7/3
7 (010)0 1101001v ≤ 10 ≤ 10/7
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The parentheses abbreviate rows of the table. For example, cases s = 0 and s = 00 are
together in the first row of the table. The bold-faced pair will work whether s = 0 or
s = 00. We have q a prefix of s, whence |q| ≤ 2. Similarly, when p = 5, one pair works
for all values of s.

Case 2: We suppose i = 1.

Let ρ1 = 01101001 0110, ρ2 = 01101001 1001. In analogy to the previous case, the
following table completes the proof:

p s ρi |q| |q|/p
1 0 01101001v 2 2

10 01101001v 1 1
010 01101001v 1 1

1010 01101001v 1 1
2 0 01101001v 2 1

(10)10 01101001v ≤ 4 ≤ 2
3 (101)0 01101001v ≤ 6 ≤ 2
4 (1010) 01101001v ≤ 8 ≤ 2
5 (101)0 01101001v ≤ 8 ≤ 8/5
6 (101)0 01101001 0110 ≤ 12 ≤ 2

(101)0 01101001 1001 ≤ 14 ≤ 7/3
7 (101)0 01101001v ≤ 11 ≤ 11/7

Evidently, one could also verify this lemma via computer.2

Lemma 9 Consider a word of the form βr where, for some i and j, β is a suffix of bi,j,
r is a prefix of fj, |r| ≤ 4. Then for rational k > 5/2, βr is not a k power.

Proof: This assertion follows from the last by symmetry.2

Corollary 10 Let w be a word of form 1, and let w contain a k power z, some rational
k > 5/2. Then z contains some fi, i = 0, 1, 2 or 3.

Proof: Word z is an ordinary subword of some conjugate of w. The conjugates of w have
one of the forms b′′fib

′, f ′′bi,if
′, b′′fjbj,ifib

′, b′′f0f3b
′ or f ′′bi,jfjbj,if

′ where fi = f ′f ′′ and
bi,j = b′b′′, some i and j. We know that z cannot be a subword of any bi,j, since t is 2+

power free. If z does not contain any fi therefore, then z has one of the forms f ′′bi,jf
′,

f ′′b′ or b′′f ′, where |f ′|, |f ′′| ≤ 4. These possibilities are ruled out by Lemmas 6, 8 and 9
respectively.2

Lemma 11 Suppose z is a periodic word with period p and |z| > 5p/2. Let x be a subword
of z with |x| ≤ p/2. Then z contains a subword xyx for some y.
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Proof: Let ax be a prefix of z with a as short as possible. As z is periodic, |a| < p. This
implies that |ax| = |a| + |x| < p + p/2 = 3p/2. It follows that |ax| + p < 5p/2 < |z|, and
the result follows.2

Remark 12 The words fi, i = 0, . . . , 3 never appear in t. It follows that each of these
words appears at most once in any conjugate of w.

Lemma 13 Let w be a word of form 1, and let w contain a k power z, some rational
k > 5/2. Let z have period p. Then p ≤ 9.

Proof: By Remark 12, z contains each of the fi at most once. By Corollary 10, z contains
one of the fi exactly once. Thus z contains some word x exactly once, where |x| = 5. By
the contrapositive of Lemma 11, p < 2|x| = 10.2

Theorem 14 Let w be a word of form 1. Then word w is 5/2+ power free.

Proof: Suppose for the sake of getting a contradiction that a conjugate of w contains a k
power z, some k > 5/2. Let z have period p, |z| = kp. By the last lemma, p ≤ 9. Without
loss of generality, shortening z if necessary, suppose that |z| = d5p/2e. This implies that
|z| ≤ d45/2e = 23.

By Remark 12, z contains fi for some i. Since |z| ≤ 23, we have one of two cases:

Case A: We can write z = afic where c is a prefix of bi,j for some j, and bm,i has suffix a for
some m.

Case B: We can write z = af0f3c where c and a are prefix and suffix respectively of b3,0.

Proof in Case A: Using symmetry, we may assume that i = 0 or i = 1.

Case A1: We suppose i = 0.

As in the proof of Lemma 8, we take π1 = 1101001 0110, π2 = 1101001 1001. Also, let
ν1 = 0110 1001011 and let ν2 = 1001 1001011. One of the words πk must be a prefix of c,
or vice versa. Similarly, either a is a suffix of one of the νk, or one of the νk is a suffix of
a.

Word f0 does not have period 1 or 2. Therefore, p ≥ 3. In the case where p = 3, f0

sits in νkf0πm in the context 011 00100 110. As in the proof of Lemma 8, the bold-faced
pair limit the possible extent of z on the left. In addition, the underlined pair limit z on
the right. In total, |z| ≤ |1001001| = 7 ≤ 5/2 × 3. Thus p = 3 gives a contradiction.
Similar contradictions are obtained for p = 4 to 9, as set out in the following table:
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p νkf0πm |z| |z|/p
4 · · ·1 00100 1 · · · ≤ 5 ≤ 5/4
5 · · ·1 00100 1 · · · ≤ 5 ≤ 1
6 · · ·11 00100 11 · · · ≤ 7 ≤ 7/6
7 · · ·1011 00100 1101 · · · ≤ 11 ≤ 11/7
8 · · ·1011 00100 1101 · · · ≤ 11 ≤ 11/8
9 01101001011 00100 11010010110 ≤ 21 ≤ 7/3
9 01101001011 00100 11010011001 ≤ 20 ≤ 20/9
9 10011001011 00100 11010010110 ≤ 20 ≤ 20/9
9 10011001011 00100 11010011001 ≤ 19 ≤ 19/9

Case A2: We suppose i = 1.

This time we take ρ = 01101001. Let σ10010110. Word f1 does not have period 1 or 3,
so the proof is finished as set out in the following table:

p σf1ρ |z| |z|/p
2 · · ·0 01010 0 · · · ≤ 5 ≤ 5/2
4 · · ·0 01010 0 · · · ≤ 5 ≤ 5/4
5 · · ·110 01010 011 · · · ≤ 9 ≤ 9/5
6 · · ·10 01010 01 · · · ≤ 7 ≤ 7/6
7 · · ·110 01010 011 · · · ≤ 9 ≤ 9/7
8 10010110 01010 01101001 ≤ 17 ≤ 17/8
9 · · ·10110 01010 01101 · · · ≤ 13 ≤ 13/9

Proof in Case B: This case cannot occur, since f0f3 does not have period p ≤ 9, as
documented in the following table:

p f0f3

1 0010011011
2 0010011011
3 0010011011
4 0010011011
5 0010011011
6 0010011011
7 0010011011
8 0010011011
9 0010011011

Main Theorem: Let n be a natural number. There is a circular binary word of length
n simultaneously avoiding k powers for every rational k > 5/2.

Proof: One can find circular 5/2+ power free words up to length 73 in the Thue-Morse
word t. On the other hand, word w can be made to have any length 74 or greater.2
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