
LLNL-CONF-635776

There Goes the Neighborhood:
Performance Degradation due to
Nearby Jobs

A. Bhatele, K. Mohror, S. H. Langer, K. E. Isaacs

April 26, 2013

International Conference for High Performance Computing,
Networking, Storage and Analysis
Denver, CO, United States
November 17, 2013 through November 22, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

There Goes the Neighborhood: Performance Degradation
due to Nearby Jobs

Abhinav Bhatele†, Kathryn Mohror†, Steven H. Langer†, Katherine E. Isaacs⋆

†Lawrence Livermore National Laboratory, Livermore, California 94551 USA
⋆Department of Computer Science, University of California, Davis, California 95616 USA

†{bhatele, kathryn, langer1}@llnl.gov, ⋆keisaacs@ucdavis.edu

 0

 20

 40

 60

 80

 100

 120

 140

Mar 16 Mar 23 Mar 30 Apr 06 Apr 13 Apr 20 Apr 27

A
ve

ra
ge

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Mira
Hopper
Intrepid

Figure 1: Average messaging rates for batch jobs running a laser-plasma interaction code on three
architectures - IBM Blue Gene/Q (Mira), Cray XE6 (Hopper), and IBM Blue Gene/P (Intrepid).

The slowest job on Hopper is nearly two times slower than the fastest.

ABSTRACT

Predictable performance is important for understanding and
alleviating application performance issues; quantifying the
effects of source code, compiler, or system software changes;
estimating the time required for batch jobs; and determin-
ing the allocation requests for proposals. Our experiments
show that on a Cray XE system, the execution time of a
communication-heavy parallel application ranges from 28%
faster to 41% slower than the average observed performance.
Blue Gene systems, on the other hand, demonstrate no no-
ticeable run-to-run variability. In this paper, we focus on
Cray machines and investigate potential causes for perfor-
mance variability such as OS jitter, shape of the allocated
partition, and interference from other jobs sharing the same
network links. Reducing such variability could improve over-
all throughput at a computer center and save energy costs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13, November 17-21, 2013, Denver, Colorado, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503247

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network topology; C.4 [Performance
of Systems]: Measurement techniques, Performance at-
tributes

General Terms

Management, Performance

Keywords

resource management, torus networks, interference, system
noise, communication performance

1. MOTIVATION
Application developers work tirelessly to tune their codes

for optimum performance on supercomputing platforms. Even
so, an increasing body of evidence shows that external fac-
tors can make the performance of an application variable
within and across batch jobs [4, 5, 6, 7, 8, 10, 11, 13,
17]. These factors include noise from operating system (OS)
daemons, communication variability arising from the shape
of the allocated partition, and interference from other jobs
sharing the same network links. This performance variabil-
ity can result in individual jobs running slower, which in turn
can lead to a longer wait for the science results, increase in
the queue waiting time for other jobs and inefficient use of
the time allocation. Resource contention can also lead to

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2503210.2503247

No. of nodes CPU Type Peak Tflop/s Memory/ Network Link b/w Injection
(cores/node) (Clock Speed, GHz) (Gflop/s/core) core (GB) Topology (GB/s) b/w (GB/s)

Cielo (LANL, 2011) 8,944 (16) Opteron 6136 (2.4) 1,374 (9.6) 2.0 3D torus 9.400 20.80

Dawn (LLNL, 2009) 38,864 (04) PowerPC 450 (0.85) 500 (3.4) 1.0 3D torus 0.425 2.55

Hopper (LBNL, 2010) 6,384 (24) Opteron 6172 (2.1) 1,280 (8.4) 1.33/2.66 3D torus 9.400 20.80

Intrepid (ANL, 2007) 40,960 (04) PowerPC 450 (0.85) 557 (3.4) 0.5 3D torus 0.425 2.55

Mira (ANL, 2012) 49,152 (16) PowerPC A2 (1.6) 10,066 (12.8) 1.0 5D torus 2.000 20.00

Table 1: Architectural details of the parallel machines used for experiments in this study. pF3D simulations
discussed in this paper use single precision (floats). The peak single precision performance for Cielo and
Hopper cores is twice the double precision number quoted above because the SIMD unit can operate on
float operands. The SIMD units on Dawn, Intrepid and Mira have the same peak for float and double. The
simulation runs on Mira used one hardware thread per core. The peak performance when operating in that
mode is half the number given above.

lower overall throughput on a machine and higher energy
costs [3].

Performance variability also impacts the development cy-
cle for high-performance computing (HPC) applications. It
can complicate tasks such as:

• debugging performance issues in an application code,
• quantifying the effects of code changes on performance,
• measuring the effects of compiler or system software

changes,
• requesting time for a batch job, and
• writing proposals that request time on HPC systems.

HPC application developers spend a significant amount of
time on getting their codes to run faster on HPC platforms.
A typical development cycle involves measuring and visualiz-
ing application performance to identify issues, making code
changes based on the performance data, and re-running the
application to quantify the improvements. Programmers are
often looking to glean performance gains as small as 5-10%.
If the performance variability is greater than the expected
gains, then statistical analysis of multiple application runs
is required to determine the impact of changes made to the
code. If the performance variability is significantly higher,
a developer may be unable to quantify the improvements.

System software and compilers are frequently upgraded on
supercomputers. Application developers typically quantify
and document any differences in application performance
due to such changes. Once again, run-to-run variability can
force developers to resort to running the application sev-
eral times and using a statistical approach to determine the
performance impact of the changes.

Application users need to estimate how long their jobs
will run when submitting to a batch system. If the appli-
cation runs slower than expected, the final results will not
be saved before the job runs out of time. If performance is
unpredictable, the user must plan for the worst case which
means scheduling less work during a batch time slot or over-
estimating the time required for the job to run. Unfortu-
nately, while ensuring that final results will be saved before
allocation termination, overestimating the time for the run
can cause the job scheduler to be less efficient.

The problems described above encouraged us to investi-
gate the issues that can lead to run-to-run performance vari-
ability on HPC systems. There can be several reasons for
unpredictable performance. OS daemons may temporarily
force an application off of a core, leading to load imbalance.
This is often referred to as OS noise or jitter. On some

systems, applications contend for access to the same inter-
connect links and introduce variability in message passing
rates. Placement of processes by the resource manager on
an Infiniband fat tree or a toroidal interconnect may vary
from job to job. Increase in hop counts (distance traveled by
messages on the network) for a “poor” placement can reduce
message passing performance. Contention for access to the
parallel file system can increase file I/O times. These effects
and many others can introduce performance variability large
enough to have an impact on application development and
tuning tasks and execution.

In this paper, we use pF3D [12], a highly scalable, commu-
nication-heavy, parallel application to quantify performance
reproducibility on three different parallel architectures: IBM
Blue Gene/P, IBM Blue Gene/Q and Cray XE6. We con-
duct experiments on five machine installations at four U.S.
Department of Energy (DOE) laboratories: Los Alamos,
Lawrence Livermore, Lawrence Berkeley and Argonne. The
experiments were conducted during normal batch process-
ing periods so we could not control the activities of other
applications on the system. We observe that the execution
time on Cray XE systems can range from 28% faster to 41%
slower than the average observed performance (also see Fig-
ure 1 showing the message passing rates for pF3D on differ-
ent platforms over a period of 45 days). Blue Gene systems,
on the other hand, have no noticeable run-to-run variability.
These systems have negligible OS jitter and a private con-
tiguous torus partition dedicated to each job. In this paper,
we focus on Cray machines and perform experiments with
the goal of attributing performance variability to OS jit-
ter, irregular shapes of the partition allocated to each batch
job, and inter-job interference from sharing the same net-
work links. Reducing such variability could improve overall
throughput at a computer center and save energy costs.

2. EXPERIMENTAL SETUP
In this section, we give a brief description of the machines

used in this study, introduce the pF3D application, and pro-
vide details of our experimental design.

2.1 Machines used
We performed our experiments on an IBM Blue Gene/Q

(BG/Q) and two installations each of IBM Blue Gene/P
(BG/P) and Cray XE6 systems. Table 1 presents several
key characteristics of these machines. There are significant
differences in the processors of the IBM and Cray systems.

Run No. of No. of No. of Period Process Domain (x,y) FFT Adv.
Machine No. nodes cores jobs From To Topology nx × ny × nz msg. (kB) msg. (kB)

Cielo CR1 2,048 32,768 46 Mar, 2011 Apr, 2011 16× 16× 128 640× 192× 34 0, 61 2949
CR2 2,048 32,768 133 Nov, 2011 Apr, 2012 16× 16× 128 640× 192× 56 0, 61 2949
CR3 4,096 65,536 29 Jun, 2012 Sep, 2012 16× 32× 128 1280× 160× 34 0, 51 4915

Dawn DR1 24,576 98,304 10 Sep, 2012 Nov, 2012 16× 32× 192 1280× 144× 22 46, 46 4424
DR2 24,576 98,304 14 Jul, 2012 Aug, 2012 16× 32× 192 1280× 144× 22 46, 46 4424

Hopper 512 8,192 153 Mar, 2013 Apr, 2013 32× 16× 16 128× 128× 8 4, 8 384
Intrepid 512 2,048 102 Mar, 2013 Apr, 2013 32× 16× 4 128× 128× 8 4, 8 384
Mira 512 8,192 116 Mar, 2013 Apr, 2013 32× 16× 16 128× 128× 8 4, 8 384

Table 2: Batch job configurations on different machines. The FFT message size is for messages sent off-node.
If it is zero, all messages were passed via shared memory on node. Cielo and Dawn runs have a configuration
name to simplify the discussion of the jobs.

The peak Gflop/s numbers in the table are for double pre-
cision performance, but pF3D is usually run using single
precision (floats). The peak float performance per core is
19.2 Gflop/s for Cielo, 16.8 for Hopper, 6.4 Gflop/s for Mira
(when run as in this paper), and 3.4 Gflop/s for Intrepid
and Dawn.

The interconnect structure for the systems is similar in
the overall topology but significantly different in the de-
tails. The BG/P and the XE6 both have a custom three-
dimensional (3D) torus interconnect. The BG/P torus has a
dedicated network router/switch for each compute node and
two X, Y, and Z links per router. On the XE6, two compute
nodes are connected to each Gemini router chip through Hy-
perTransport links. There are four X and Z links and two Y
links per Gemini router. BG/Q has a custom 5D torus with
10 communication links (A, B, C, D, E) per router/node.
The Cray systems have a much higher link bandwidth than
the Blue Gene systems. The injection bandwidth on an XE6
(20.8 GB/s) is lower than the total capacity of the 10 outgo-
ing links (94.0 GB/s). This throttling of bandwidth at the
source of injection reduces the impact of contention. The in-
jection bandwidth is the metric to consider when assessing
best case interconnect performance.

There are significant differences in the node allocation
policies for the machines. The resource manager on Blue
Gene systems assigns a private torus to each job that is
larger than a midplane (512 nodes), while smaller jobs get
a mesh in some dimensions. This implies that other jobs
running on the system have no impact on the given job. In
contrast, the resource manager on Cray XE6 systems as-
signs an arbitrary set of nodes to each job, spread across
the global machine topology. Nodes in use by other jobs
and service nodes of various types may cause gaps in the set
of nodes allocated to a particular job (See Figure 7). If a
job has communicating nodes in two disjoint sections of the
torus, it may contend for links with jobs on the intervening
nodes. Contention for links and shape variation may both
cause variability in network performance.

The hardware on Cielo and Hopper is very similar, but
they are configured differently to handle their different mis-
sions. Cielo’s mission is to run large jobs (typically 64k pro-
cesses). Cielo is usually rebooted once per week. Hopper’s
mission is to run a wide variety of jobs with small to medium
sizes. Hopper is rarely rebooted. The practical consequence
of these differences is that the nodes allocated to a job tend
to be significantly more fragmented on Hopper than they
are on Cielo. The more fragmented allocations increase the

probability that messages sent by one job will pass through
interconnect links that are used by another job. This sug-
gests that there will be greater message rate variability and
more interference between jobs on Hopper than on Cielo.

2.2 Application description
pF3D [1, 9, 12] is a multi-physics code that simulates the

interaction between a laser beam and a plasma for experi-
ments conducted at the National Ignition Facility (NIF). It
solves wave equations for the laser light and two kinds of
backscattered light. The light waves are coupled together
through interactions with electron plasma waves and ion
acoustic waves. Figure 2 shows the laser beam from a pF3D
simulation.

Figure 2: The figure shows a NIF laser beam (blue)
propagating through a hohlraum. The hohlraum
(gold) and capsule (dark blue) are shown to provide
context, but are not part of the pF3D simulation.
The capsule (lower left) is imploded by the x-rays
generated at the hohlraum wall.

pF3D is a good choice for this sort of a study because it has
excellent computational and communication load balance in
an ideal scenario. Hence, any imbalance or performance
variability is easy to measure and solely attributable to ex-
ternal factors. pF3D places heavy demands on the intercon-
nect and the parallel file system, so inter-job interference in
those areas has a measurable impact.

pF3D uses a regular 3D Cartesian grid for domain de-
composition into blocks in all three directions. Blocks are
assigned x, y, and z coordinates within the decomposition
(process topology in Table 2). Each MPI process “owns”one
block. Each block is further divided into zones in the x, y,
and z directions (Domain in Table 2). The laser beam trav-

 0
 10
 20
 30
 40
 50
 60
 70

T
im

e
 (

s)
Time spent in communication and computation in pF3D

Communication

 0

 50

 100

 150

 200

 250

Hopper Intrepid Mira

T
im

e
 (

s)

Computation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Hopper Intrepid Mira

T
im

e
 (

s)

Time spent in MPI calls on 512 nodes

Alltoall
Barrier

Send
Recv

Probe

Figure 3: Average, minimum and maximum time spent in computation and communication during one time
loop of pF3D on various platforms (left). The computation time is shortest on Hopper and the message
passing time is shortest on Mira. Breakdown of communication time by MPI routines (right).

els in the z-direction. The wave equations are solved in the
paraxial approximation, which assumes all light waves are
traveling at small angles relative to the z-direction.

The wave propagation and coupling are solved using fast
Fourier transforms (FFTs) in xy-planes. The 2D FFTs re-
quire message passing across the full extent of an xy-plane.
These messages are sent using an MPI_Alltoall. MPI pro-
cesses in an xy-slab form sub-communicators with other pro-
cesses with the same x coordinate (x-communicators) and
also with those with the same y coordinate (y-communica-
tors). The all-to-all messages are passed on x-communicators
when assembling rows and y-communicators when assem-
bling columns.

The light propagation calculation requires passing planes
of information in the z-direction using MPI_Send and MPI_-

Recv. pF3D uses a 6th order accurate advection scheme
which requires passing three xy-planes between the MPI
process domains that are adjacent in z. This communica-
tion traffic is referred to as “advection messages”. Messages
are also passed in several other phases, including hydrody-
namic flow and I/O, but the total traffic is low enough that
it is ignored in this study.

2.3 Experiment Configuration Details
We show the parameters for the pF3D simulations used in

this study in Table 2. Simulations run on Dawn and Intrepid
use 4 MPI processes per node. Simulations on Mira, Hop-
per, and Cielo use 16 MPI processes per node. This choice
maximizes similarity in the message passing characteristics
of these three systems, but means that 8 cores are left idle
on each node of Hopper and only one hardware thread per
core is active on Mira. In our tests on Mira, we found that
the node throughput for pF3D nearly doubles when using
two hardware threads per core but we do not use that setup
in this paper. The runs on Dawn and Cielo were production
simulations between March, 2011 and September, 2012 and
have high node-counts. The data on Hopper, Intrepid and
Mira was collected specifically for this study by doing short
low node-count runs over a period of 45 days from March
13, 2013 to April 26, 2013.

We performed our detailed studies on Hopper, Mira and
Intrepid. For the runs on these machines, we collected infor-
mation for pF3D as well as for other jobs running on the sys-
tem concurrently. For pF3D, we gathered the performance

timing output from both the application itself and the mpiP
performance tool [14]. The pF3D output contains summary
information about the run, including the times in different
phases of the computation, and the total time per time step.
It also gives the average bandwidth over all message passing
operations, or message rate, as well as the average message
rate for FFT operations and advection messages. pF3D also
records the execution times for a few representative all-to-
alls for all sub-communicators. The light-weight mpiP tool
collects summary information about MPI operations, e.g.,
total time spent in MPI by each rank and the aggregate
time spent in the MPI operations that took the most time.
For each job, before and after the process launch, we also
recorded the output of the XE6 script xtnodestat to dis-
cover the node placement of pF3D as well as other jobs on
the system. We used the script xtdb2proc to get a map of
the system, including x, y, and z coordinates of each node,
and the location of down and service nodes on the system.
We also collected the queue status before and after pF3D
ran with the showq command.

3. PF3D CHARACTERIZATION
The computational and communication behavior of pF3D

on different platforms varies because of the differences in
processor and network speeds. Figure 3 (left) shows the av-
erage computation and communication time for pF3D sim-
ulation runs on Hopper, Intrepid and Mira. Hopper has the
fastest absolute computational rate of the three systems.
The “efficiency” of a core can be defined as the ratio of the
zones processed per second per core to the peak performance
per core. If we use peak performance numbers adjusted as
indicated in the caption for Table 1 and normalize so that
the efficiency for Hopper cores is 1.0, the efficiency for In-
trepid cores is roughly 0.48 and the efficiency for Mira cores
is roughly 0.52.

Mira has the highest message passing rate (smallest com-
munication time) per process even with links that have less
than one-fourth the bandwidth of Cray links. Intrepid and
Mira do not show any noticeable job-to-job variations in ei-
ther computation or communication. However, on Hopper,
the communication time time varies from 36% faster to 69%
slower when compared to the average. The computation
time is fairly constant. Changing the system configuration

so that pF3D normally runs closer to the best performance
would greatly reduce the time required to run a job. We
focus on studying variations in message passing rates in this
paper.

Figure 3 (right) shows a breakdown of the communication
time by MPI routines. All-to-all messages sent as part of
2D FFTs consume more than half of the message passing
time on all three systems. The other significant communi-
cation is the sends and receives for the advection messages.
FFT message passing is performed for all planes in a do-
main while advection messages are only sent from the first
and last xy-plane in the domain. The all-to-all (FFT) mes-
sages transfer 3.6× more bytes than the advection messages
for the Hopper test run and 9.9× more bytes for job DR2 on
Dawn. Advection messages have a lower messaging rate, but
the amount of traffic is small enough that the FFT message
time is greater than that for advection in the Hopper runs.

In the rest of the paper, we use the average messaging rate
for one time loop of pF3D as the metric for evaluating per-
formance. Figure 4 shows that a high messaging rate leads
to low execution time and vice-versa. As seen in Figure 3
(right), most of the messaging time is spent in the FFTs.
This is also evident from Figure 5 which also shows that
the overall average messaging rate closely follows that for
the FFT phase. As we try to make sense of some of the
performance variability, we will pay closer attention to the
mapping of the x and y FFT communicators on the torus
and the corresponding messaging rates.

 50

 60

 70

 80

 90

 100

 30 40 50 60 70 80 90

T
im

e
 p

e
r

st
e
p
 (

s)

Average messaging rate (MB/s)

Time versus messaging rate on Hopper

Figure 4: The execution time for one time loop of
pF3D is inversely proportional to the average mes-
saging rates.

The rest of the paper is organized as follows: We first dis-
cuss the variability of production runs on Cielo in Section 4.
We then discuss detailed studies based on the experiments
done on Hopper in Section 5. In Section 5.1, we discuss the
impact of OS noise/jitter on performance. In Section 5.2,
we discuss the effect of the shape of the allocated job par-
tition on the performance variability and in Section 5.3, we
analyze the impact of network interference from other jobs
on performance.

4. STUDIES ON CIELO
Our first encounter with significant performance variabil-

ity (up to 3× in message rates!) was during production
pF3D runs that simulated specific NIF experiments. Fig-
ure 6 shows the average messaging rate for individual batch

 0

 20

 40

 60

 80

 100

 120

 140

Mar 16 Mar 23 Mar 30 Apr 06 Apr 13 Apr 20 Apr 27

A
ve

ra
ge

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Overall, FFT and advection messaging rates for pF3D on Hopper

Total msg. rate
FFT msg. rate

Advection msg. rate

Figure 5: Average messaging rates for one time loop
and two sub-phases within a time loop: FFT and
light advection

jobs in the course of production runs over a period of several
months on Dawn and Cielo. There is hardly any variation in
the rates on Dawn - less than 1% over all batch jobs in a sim-
ulation. These batch jobs used 96k processes on 24k nodes.
The very low variability is due to all batch jobs running on
a partition of exactly the same size and shape.

 0

 20

 40

 60

 80

 100

 120

 140

 160

Mar
2011

May
2011

Jul
2011

Sep
2011

Nov
2011

Jan
2012

Mar
2012

May
2012

Jul
2012

Sep
2012

Nov
2012

Jan
2013

Mar
2013

A
ve

ra
ge

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Messaging rates for pF3D on Cielo and Dawn

CR1 (doub 3d05g)
CR2 (doub 3d08)
CR3 (trip 3d07a)
DR1 (trip 3d06)

DR2 (doub 3d06)

Figure 6: Average messaging rates for different
pF3D jobs running over the course of several months
on a Cray XE6 (Cielo) and an IBM Blue Gene/P
(Dawn).

We noticed a much higher variability in the Cielo runs.
Three different input configurations were simulated during
the course of these runs. CR1 and CR2 used 32k processes,
while CR3 used 64k (See Table 2). The x-communicators
had 16 processes and were confined to a single node in these
runs. The performance for FFTs in the x-direction was high
because messages were passed through shared memory. All
communication on the y-communicators (of size 16 or 32)
went off-node.

The Cray resource manager allocates blocks of compute
nodes along the z-direction of the torus. It allocates con-
tiguous nodes as long as it can, then skips forward when
it encounters a node that is in use. The allocation mode
controls the extent of an allocation block in the x and y di-
rections of the torus. Mode zero (used on Hopper) allocates
1 × 1 node blocks (single compute nodes). Mode one was
used when Cielo first came online and allocates 1 × 2 node

blocks. Mode two was adopted on Cielo in September 2011
and allocates 2× 2 node blocks.

Job CR1 used mode one, so most y-communicators were
1×2×8 nodes. CR2 used mode two so most y-communicators
were 2 × 2 × 4 nodes. CR3 also used mode two so most
y-communicators were 2 × 2 × 8 nodes (32 processes re-
quired longer communicators). The messaging rate for CR2
was higher than for the other two runs, suggesting that a
smaller extent, in this case by a factor of two, for the y-
communicators in the z-direction of the torus has a strong
impact on performance.

The variability in message rates between batch time slots
was high for the Cielo simulations and was nearly a factor
of three for CR3. pF3D is a bulk synchronous code, so
the performance of the slowest communicator controls the
performance of the job. Some of the communicators have
a larger extent on the torus due to intervening nodes that
were in use at job launch. Those “stretched” communicators
are slower than typical communicators.

Figure 7 shows the location of I/O, login, and visualiza-
tion nodes on Cielo. The visualization nodes form a compact
brick along one edge of the torus and have little impact on
the compactness of nodes allocated to pF3D. Service nodes
are scattered throughout the torus and will be located be-
tween compute nodes allocated to pF3D in any large run.
The “breaks” in pF3D’s node allocation due to service nodes
are much smaller than the breaks due to other jobs on Hop-
per (see Section 5).

Figure 7: Location of service and visualization nodes
on Cielo.

We do not have data on nodes that were in use by other
jobs during our Cielo runs. The difference between the aver-
age message rates for the runs shown in Figure 6 are some-
what larger than the variability within a run. From this we
infer that the shape of communicators has at least as big an
impact on message rate variability as contention with other
jobs on Cielo.

The rest of the paper describes more extensive tests on
Hopper where we gathered performance data for each run
to verify some of our hypotheses based on the Cielo runs.

5. STUDIES ON HOPPER
In this section, we investigate several potential sources of

the performance variability we observed for pF3D on Hop-
per. We look at the impact of noise from OS daemons,

coordinates of the allocated nodes on the torus, and con-
tention from other jobs running concurrently with pF3D.
These simulations use fewer nodes than the production sim-
ulations on Cielo, which might somewhat change the relative
importance of different sources of variability.

5.1 Impact of OS jitter
OS jitter or noise [13, 11] has been the culprit for variabil-

ity and the subject of numerous studies in the past. Thus,
investigating the impact of jitter was a natural starting place
for us to look for the cause of the performance variabil-
ity within a pF3D job. We used the output from mpiP to
calculate the average computation time over all 8,192 pro-
cesses in each job on Hopper in Figure 8 (top). The error
bar shows the minimum and maximum times. The average
computation time is nearly constant at ˜26 seconds and the
maximum and minimum times vary no more than 6% and
16% respectively. From this plot and also Figure 3 (left),
we can conclude that there is little across job variability in
computation time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Mar 16 Mar 23 Mar 30 Apr 06 Apr 13 Apr 20 Apr 27

T
im

e
 (

s)

Variation in computation time within a job on Hopper

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Apr 20 Apr 21 Apr 22 Apr 23 Apr 24 Apr 25 Apr 26 Apr 27

P
e
rc

e
n
ta

ge
 d

iff
e
re

n
ce

Percentage improvement when not using core 0

Figure 8: Average, minimum, and maximum com-
putation times within each pF3D job shown for dif-
ferent runs (top). Performance differences when us-
ing different cores on the Opteron sockets of Hopper
(bottom).

Because we are running on 16 of the 24 cores on each Hop-
per node, we have flexibility in deciding which physical cores
to use. Since some kernel activities, e.g. interrupt handling,
are typically handled by core 0, we wanted to make sure our
process-to-core mapping didn’t cause any unnecessary per-
formance variability. In order to study this effect, we tried
two configurations. In the first configuration, we used cores
0-3, 6-9, 12-15 and 18-21; in the second configuration, we

used 1-4, 7-10, 13-16 and 19-22. We ran both configurations
within the same job allocation and found that the perfor-
mance difference between them was insignificant, varying at
most by approximately 0.3%. (Figure 8 (bottom)).

Previous works have found that even small amounts of
perturbation due to OS noise can be greatly amplified by
collective communication operations [6, 10]. We don’t be-
lieve this happens in our pF3D runs on Hopper. Amplifica-
tion of noise should be small because we are communicating
in chunks of 16 or 32 processes, not performing global col-
lectives. We have evidence of this from our runs on Cielo,
where interference from other jobs is much less likely than on
Hopper. We observed very little variability in the message
passing rate within a single Cielo batch job when using all 16
cores, meaning that there was very little OS jitter. Because
Cielo and Hopper use the same OS, we have a strong case
for concluding that the contribution to overall performance
variability from OS jitter is small in our Hopper runs. The
much larger overall differences in execution time we observed
must be due to some other cause.

5.2 Impact of allocation shape
In this section, we investigate the impact of job shape,

or the coordinates of the nodes assigned to a job on the
interconnect, on the performance variability of pF3D. We
begin by considering the degree of fragmentation of pF3D
jobs when scheduled from the normal batch queue. Figure 9
shows the contiguity of node allocations of pF3D. We defined
the contiguity metric as a measure of the job compactness.
Contiguity is the number of nodes allocated for a job divided
by the total number of nodes in the three-dimensional mesh
formed by the farthest corners of the nodes in the job. If
the contiguity is close to one, the allocation is very compact.
If it is close to zero, the nodes are widely spread across the
torus. The contiguity for most jobs is between 0.1 and 0.2,
which is poor. There is little correlation between the average
messaging rate and the contiguity.

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Contiguity Metric

Performance dependency on the allocation shape on Hopper

Figure 9: Degree of fragmentation of pF3D jobs
when run in the normal batch queue. Contiguity
is defined as the number of nodes allocated for a job
divided by the total number of nodes in the three-
dimensional mesh formed by the farthest corners of
the nodes in the job. If the contiguity is close to
one, the allocation is very compact.

As mentioned in Section 3, most message passing time
in pF3D is spent in all-to-all messages that are part of 2D

FFTs. The x-communicators (of size 32) are generally lo-
cated on a single Gemini node and pass half of their data
using shared memory. Messages on y-communicators hop
across more links and have greater variability than x-com-
municators. Thus, we focus on y-communicators.

In the 8,192-process jobs run on Hopper, there are 512
sub-communicators of size 16 in the y-direction of the MPI
process grid. The individual messages in an all-to-all are
small for the jobs run on Hopper (see Table 2). Message
passing rates should correlate with latency for these small
messages in the absence of link contention. We calculate
the average hops for each y-communicator by averaging the
Manhattan distances between every pair of processes in the
communicator.

Figure 10 shows the relationship between the FFT mes-
saging rate and the average hops for all y-communicators.
The correlation between average hop counts and message
passing rates is weak, meaning hop count is not the major
factor in the performance variability.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7 8 9

FF
T

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Number of hops

FFT messaging rate versus average y-hops

Figure 10: Variation of the FFT messaging rate with
the average spread of y-communicators on Hopper.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e
 (

s)

Number of hops

Time versus avg. hops within y-communicator

Figure 11: Time spent per y-communicator in ten
all-to-alls plotted against the communicator’s aver-
age hop count. There is a great deal of variability at
each path length, indicating that any latency effects
are dominated by some other factor.

pF3D records the timings for the first ten all-to-alls per-
formed by the x and y-communicators. In Figure 11, we
examine the correlation between the time for individual all-
to-alls and the number of hops for their y-communicators.

Figure 12: The placement of pF3D (blue) and conflicting jobs on Hopper for two separate short runs. The
April 11 job (left) yielded a messaging rate nearly 25% below that of the April 16 job (right). The two jobs
had the same node placement, but the slower April 11 job was surrounded by nodes of several other jobs,
including a large communication-heavy job (green).

The results from several runs are shown in a single scatter
plot. The correlation between all-to-all time and the number
of hops is weak (Pearson, r = 0.23).

We also looked at the individual y-communicator shapes
for a few jobs. We chose the jobs with the best and the worst
FFT messaging rates and one that was run in a dedicated
contiguous partition. Figure 13 shows the correlation of the
hops for the y-communicators and their timings. There is
a positive correlation between hop count and message pass-
ing time for the worst performing run. The spread in times
is small for the contiguous run. Message passing times for
the best performing run are all small, even for communica-
tors with large hop counts. Thus, there doesn’t seem to be
a consistent correlation between hop counts and messaging
performance.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 2 4 6 8 10 12

T
im

e
 (

s)

Average Hops

Dependence of FFT time on number of hops

Worst
Best

Contiguous

Figure 13: Time spent in each y-communicator plot-
ted against the average hop count for that commu-
nicator. There is a positive correlation between hop
count and message time for the worst performing
run. The message passing time is only weakly cor-
related with hop count for the best performing run.

In summary, the correlation between hop count and mes-
sage passing rates is weak in most cases. This strongly sug-
gests that some other cause is responsible for most of the
variability in message passing rates on Hopper.

5.3 Contention from other jobs
In the previous two sub-sections, we demonstrated that

message passing variability on Hopper is, at best, weakly
correlated with OS jitter and the shape of y-communicators.
In this section we demonstrate that the character and loca-
tion of other jobs running along side of pF3D has a strong
influence on the messaging rates. We use the term “conflict-
ing” to refer to the simultaneously running jobs which might
utilize the same links as pF3D.

 0

 5

 10

 15

 20

 25

35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90

N
um

be
r

o
f
ru

ns

Bin sizes (Total messaging rate)

Comparing pF3D runs w/ and w/o MILC

w/ MILC
w/o MILC

Figure 14: Distributions of messaging rates observed
for runs coinciding with a MILC job (red, patterned)
and runs with no coinciding MILC job (green, solid).
The means of these groups are significantly different
(ANOVA, p = 1.76× 10−7).

MILC [2] is a communication-heavy application present
during many of our pF3D runs which may have contended
for links, thereby decreasing our observed messaging rates.
We divided the pF3D messaging rates into two groups: the
pF3D runs which had a conflicting MILC job (w/ MILC)
and those that did not (w/o MILC). A histogram of the
messaging rates of the two groups is shown in Figure 14.
The w/ MILC group had a mean messaging rate of 58.0
MB/s with a standard deviation of 9.12 MB/s. The w/o
MILC group had a mean messaging rate of 66.0 MB/s with
a standard deviation of 8.69 MB/s. Our tests preserved
our assumptions of normality (Shapiro-Wilk, pw/MILC =
0.145, pw/oMILC = 0.536) and equal variance (Bartlett, p =
0.662). We then showed the means of the groups were indeed
different using a one-way ANOVA (p = 1.76× 10−7).

Figures 12, 15, and 16 show the placement of pF3D (blue)

Figure 15: The placement of pF3D (blue) and conflicting jobs on Hopper for a low messaging rate run (left)
and a high messaging rate run (right). The top image highlights pF3D and the bottom highlights both pF3D
and the largest conflicting jobs. In the slower run, pF3D is interspersed with the green job. The red and
yellow jobs have clusters of nodes that would need to utilize the same links as pF3D for communication. In the
faster run, pF3D is largely confined to a contiguous slab. The large red and yellow jobs are mostly separated,
requiring few links pF3D uses. The green job shows more interference but the majority of the paths among
its nodes would not share links with pF3D. The minimal conflict from other jobs and the compactness of the
layout led to a message rate 2.29 times that of the slower run.

and all conflicting jobs. Each box represents a pair of nodes
connected by a Gemini router. The light gray boxes are
either unused or occupied by jobs which would not contend
with pF3D. The largest conflicting jobs are listed in a legend
alongside each depiction.

In Figure 12, pF3D occupies the same contiguous 4×8×8
block in both runs. There were many more nodes vying for
pF3D’s links in the April 11 job than the April 16 job, in-
cluding a communication heavy MILC job that“surrounded”
the pF3D nodes and was present throughout the run. The
April 11 job had a messaging rate almost 25% below that
of the April 16 job. The only apparent cause is increased
interference from other jobs. Figure 16 shows a case where
the pF3D placement and conflicting jobs present are nearly
the same and the two jobs reported similar messaging rates.

Figure 15 shows the job placements for the highest and
lowest message rates we observed during short runs. The
large non-pF3D jobs during the high rate run conflicted only
minimally in contrast to the low rate run which suffered from
three large jobs surrounding it, two of which were commu-
nication heavy MILC runs. This difference resulted in the
high rate run reporting a messaging rate 2.29 times that of
the low rate run.

Figure 17 shows the variation in messaging rate with the
number of Gemini node pairs allocated amongst all the con-
flicting jobs. We refer to this as “conflicting routers” in the
figure. The more routers that might contribute messages
that contend with pF3D for the links, the more likely some

Figure 16: The placement of pF3D (blue) and con-
flicting jobs on Hopper for two separate short runs.
Emphasis has been placed on pF3D. The nodes used
in the two runs are 98.7% identical and the con-
flicting jobs are 92.8% identical. The left job has a
messaging rate only 3% below the right job.

will have a negative impact on the messaging rate. The ob-
served impact depends on the character of the other jobs.
For example, Figure 18 shows the April 11 job compared to
another job (April 16b) of the same shape. Both pF3D allo-
cations are surrounded by a large job. The large conflicting
job on April 11 was communication heavy. The conflicting
job for April 16b was LSMS [16], which spends most of its
time in computation and performs I/O at larger intervals
than the duration of these pF3D runs. These factors al-
lowed the April 16b run to deliver a messaging rate 27.8%
faster than the April 11 run.

Figure 19 shows the number of Gemini routers that were
allocated to a pF3D job. This number is significantly higher

Figure 18: The placement of pF3D (blue) and conflicting jobs on Hopper for two separate short runs. Though
both runs were surrounded by nodes from other applications, the right job had a messaging rate 27.8% above
the job on the left. The large green job on the left is communication heavy while the large red job on the
right is not.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Number of conflicting routers

Impact of conflicting routers on messaging rates on Hopper

Figure 17: Performance dependence on number of
Gemini routers allocated to jobs that might use the
same links at pF3D. In general, the more nodes that
could contend, the more likely pF3D would report
slower messaging. The spread represents the depen-
dence on the dominant communication character of
the applications involved.

than 256 for most of the jobs which suggests that the two
nodes on tens to hundreds of Gemini routers were shared by
pF3D and another job. For large jobs, the ideal situation
would be to allocate both nodes on a Gemini router to the
same job. However, if the number of one-node jobs running
on the machine is high, then this might not be the best
policy.

Over longer running jobs, we observed variability in mes-
sage rates. Figure 20 shows the message passing rate for four
such pF3D jobs on Hopper. The message passing rate for
the March 31 job increased almost 20% shortly before step
200. The most likely explanation is that another job that
shared links with pF3D terminated at that time and the job
which replaced it had a lower utilization of the interconnect.

The variability is more complex in the pF3D jobs run on
April 10 and April 16. There are short periods during the
April 10 run where pF3D achieves higher message rates be-
tween steps 100 and 250. This may be related to a large job
switching between communication heavy and computation
or I/O heavy phases. In contrast, the April 21 pF3D job ex-
perienced less variability. The jobs that started and ended

 0

 50

 100

 150

 200

 250

 300

 350

 400

Mar 16 Mar 23 Mar 30 Apr 06 Apr 13 Apr 20

N
u
m

b
e
r

o
f
as

si
gn

e
d
 G

e
m

in
i
ro

u
te

rs

Number of Gemini routers for each pF3D job on Hopper

Figure 19: The number of Gemini routers on which
one or both nodes are allocated to a pF3D job. For
large jobs, the ideal situation would be to allocate
both nodes on a Gemini router to the same job.
However, if the number of one-node jobs running
on the machine is high, then this might not be the
best policy.

during this run required fewer nodes than the April 10 and
April 16 runs.

6. RELATED WORK
Several researchers have investigated the effects of OS

noise on performance variability [7, 13, 11]. Hoefler et al.
used simulation to study the effect of OS noise on commu-
nication operations and found that it most strongly affects
collective operations [6]. Petrini et al. investigated poor
application performance and found that OS noise was pre-
venting the application from scaling as expected [10]. These
results contrast with ours in that we found OS jitter to be
less detrimental than network contention, given the char-
acteristics of pF3D and the configuration we used for our
runs.

Other works have investigated job placement on clusters
and its effect on performance variability. Evans et al. looked
at variability on Beowulf clusters and noted that tightly-
placed jobs had better performance than widely-spaced ones
[4]. Kramer et al. noted variability due to job placement and
mitigated it by periodically migrating processes to create

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 m
e
ss

ag
in

g
ra

te
 (

M
B

/s
)

Time Step

Performance versus time steps on Hopper

2013-03-31
2013-04-10
2013-04-16
2013-04-21

Figure 20: Performance variation within long running pF3D jobs on Hopper.

larger contiguous chunks [8]. Wang et al. looked at the
variability of MILC on Hopper finding the correlation of job
placement and run time to be weak [15], supporting our
findings for pF3D.

Several researchers have focused on the effects of con-
tention for shared resources due to other concurrently run-
ning jobs on performance. Hensley et al. noted high vari-
ability in performance due to contention for resources as pro-
cesses accessed non-local memory regions on an SGI Origin
3800 [5]. Skinner et al. noted a 2-3× increase in MPI_-

Allreduce due to network contention from other jobs [11].
Wright et al. found up to 2× variability in performance,
nearly always due to network contention [17]. Their results
support the findings from our study and conclude that mes-
sage passing or I/O bound applications suffer the largest
interference from other concurrent jobs.

Our work differs from prior research in that we use infor-
mation about the node placement and communication be-
havior of other jobs on the system to make conclusions about
the relative performance of different runs of pF3D.

7. CONCLUSION
Our goal in this work was to investigate the sources of per-

formance variability in parallel applications running on HPC
platforms. We used pF3D, a highly scalable, communication-
heavy, parallel application that is well-suited for such a study
because of its inherent computational and communication
load balance. We performed our experiments on three dif-
ferent parallel architectures: IBM Blue Gene/P (Dawn and
Intrepid), IBM Blue Gene/Q (Mira), and Cray XE6 (Cielo
and Hopper).

When comparing variability on the different architectures,
we found that there is hardly any performance variability on
the Blue Gene systems, and that there is a significant vari-
ability on the Cray systems. We discovered differences be-
tween the XE6 machines due to their node allocation policies
and usage models. Since Hopper is designed to serve small
to medium sized jobs, the nodes allocated to a job tend to be
more fragmented than on Cielo, which mostly serves large
jobs. This fragmentation on Hopper resulted in higher vari-
ability for pF3D, where the communication time varied from
36% faster to 69% slower when compared to the average. We
focused our efforts in this paper on investigating the source
of the variability on Hopper.

We investigated the impact of OS noise, shape of the allo-
cated partition, and interference from other jobs on Hopper
and concluded that the primary reason for higher variabil-
ity is contention for shared network resources from other
jobs. Our results showed that OS noise has negligible im-
pact on pF3D due to its communication strategy and the
configuration of our runs. We found that variations in the
way a job is spread across compute nodes only has a weak
correlation with performance, suggesting job interference as
the dominant reason for the high variability. From queue
logs collected during the pF3D runs, we plotted the posi-
tion of the concurrent jobs relative to pF3D and examined
the performance. We found multiple cases where there was
strong evidence that the differences in performance are due
to communication activities of competing jobs, with message
passing rates of pF3D up to 27.8% slower when surrounded
by a communication-heavy application.

We plan to extend our investigations on performance vari-
ation by developing a light-weight monitoring framework to
collect information about job performance and archive it for
data mining experiments. Our goal is to collect information
from all jobs on a system so that we can reach more general
conclusions about sources of variability on HPC systems.

Acknowledgments

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. This work
was funded by the Laboratory Directed Research and De-
velopment Program at LLNL under project tracking codes
13-ERD-055 and 13-FS-002 (LLNL-CONF-635776).

This research used computer time on Livermore Comput-
ing’s high performance computing resources at Lawrence
Livermore National Laboratory. This research used resources
of the National Energy Research Scientific Computing Cen-
ter, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.
This research also used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

The authors thank Todd Gamblin (LLNL) and Patrick
Worley (ORNL) for providing scripts that were used for min-
ing data in the paper. We also thank David Bailey, Leonid

Oliker, Woo-Sun Yang and Zhengji Zhao from LBNL for
making the runs on Hopper possible through allocation time,
prioritizing the jobs and special reservations.

In the process of writing this paper, we contacted sev-
eral users of Hopper to obtain details on their jobs and we
thank them for responding to our requests – Alexei Baza-
vov (BNL), Xingyuan Chen (PNNL), Frederico R. Fiuza
(LLNL), Glenn Hammond (PNNL), Seung-Hoe Ku (PPPL),
Michael Lang (LANL), Marcus Petschiles, Andrew Pochin-
sky, G. Malcolm Stocks (ORNL), Doug Toussaint (Arizona),
Evan Um, Siddhartha Verma (Caltech), Yang Wang (PSC),
Michael Wehner (LBNL), E. S. Yoon and Ming Zeng.

8. REFERENCES
[1] R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B.

Kaiser, B. B. Afeyan, B. I. Cohen, C. H. Still, and
E. A. Williams. Influence of spatial and temporal laser
beam smoothing on stimulated brillouin scattering in
filamentary laser light. Phys. Rev. Lett.,
75(6):1078–1081, Aug 1995.

[2] C. Bernard, T. Burch, T. A. DeGrand, C. DeTar,
S. Gottlieb, U. M. Heller, J. E. Hetrick, K. Orginos,
B. Sugar, and D. Toussaint. Scaling tests of the
improved Kogut-Susskind quark action. Physical
Review D, (61), 2000.

[3] A. D. Breslow, L. Porter, A. Tiwari, M. Laurenzano,
L. Carrington, D. M. Tullsen, and A. E. Snavely. The
Case For Colocation of HPC Workloads. Concurrency
and Computation: Practice and Experience Preprint,
2012.

[4] J. J. Evans, C. S. Hood, and W. D. Gropp. Exploring
the Relationship Between Parallel Application
Run-Time Variability and Network Performance in
Clusters. In Proceedings of the 28th Annual IEEE
International Conference on Local Computer
Networks, LCN ’03, 2003.

[5] J. Hensley, R. Alter, D. Duffy, M. Fahey, L. Higbie,
T. Oppe, W. Ward, M. Bullock, and J. Becklehimer.
Minimizing Runtime Performance Variation with
Cpusets on the SGI Origin 3800. ERDC MSRC PET
Preprint.

[6] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the Influence of System Noise on
Large-Scale Applications by Simulation. In
International Conference for High Performance
Computing, Networking, Storage and Analysis
(SC’10), Nov. 2010.

[7] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner,
J. Fier, R. Blackmore, P. Caffrey, B. Maskell,
P. Tomlinson, and M. Roberts. Improving the
Scalability of Parallel Jobs by Adding Parallel

Awareness to the Operating System. In Proceedings of
the 2003 ACM/IEEE conference on Supercomputing
(SC’03), 2003.

[8] W. T. C. Kramer and C. Ryan. Performance
Variability of Highly Parallel Architectures. In
Proceedings of the 2003 international conference on
Computational science: PartIII, ICCS’03, 2003.

[9] S. Langer, B. Still, T. Bremer, D. Hinkel, B. Langdon,
and E. A. Williams. Cielo full-system simulations of
multi-beam laser-plasma interaction in nif
experiments. CUG 2011 proceedings, 2011.

[10] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of
the Missing Supercomputer Performance: Achieving
Optimal Performance on the 8,192 Processors of ASCI
Q. In Proceedings of the 2003 ACM/IEEE conference
on Supercomputing (SC’03), 2003.

[11] D. Skinner and W. Kramer. Understanding the Causes
of Performance Variability in HPC Workloads. In
Proceedings of the IEEE International Workload
Characterization Symposium, 2005, pages 137–149,
2005.

[12] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel,
L. J. Suter, and E. A. Williams. Filamentation and
forward brillouin scatter of entire smoothed and
aberrated laser beams. Physics of Plasmas, 7(5):2023,
2000.

[13] T. B. Tabe, J. Hardwick, and Q. F. Stout. Statistical
Analysis of Communication Time on the IBM SP2.
Computing Science and Statistics, 27:347–351, 1995.

[14] J. S. Vetter and M. O. McCracken. Statistical
Scalability Analysis of Communication Operations in
Distributed Applications. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 123–132, 2001.

[15] D. Wang and K. Antypas. “Application Performance
Variability On Hopper”, 2012. http:
//www.nersc.gov/users/computational-systems/

hopper/performance-and-optimization/

application-performance-variability-on-hopper/.

[16] Y. Wang, G. M. Stocks, W. A. Shelton, D. M. C.
Nicholson, Z. Szotek, and W. M. Temmerman.
Order-N Multiple Scattering Approach to Electronic
Structure Calculations. Physical Review Letters,
75(15):2867 – 2870, Oct. 1995.

[17] N. Wright, S. Smallen, C. Olschanowsky, J. Hayes,
and A. Snavely. Measuring and Understanding
Variation in Benchmark Performance. In DoD High
Performance Computing Modernization Program
Users Group Conference (HPCMP-UGC), 2009, pages
438–443, 2009.

http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper/
http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper/
http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper/
http://www.nersc.gov/users/computational-systems/hopper/performance-and-optimization/application-performance-variability-on-hopper/

