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Abstract. We prove that a point in the Euclidean space R5 cannot be surrounded by a
finite number of acute simplices. This fact implies that there does not exist a face-to-face
partition of R5 into acute simplices. The existence of an acute simplicial partition of Rd for
d > 5 is excluded by induction, but for d = 4 this is an open problem.

1. Introduction

There are many algorithms for generating partitions into acute triangles in R2 (for in-
stance, each acute triangle is a plane-filler). Until 2004, Eppstein et al. [2] showed that
there exists a partition of R3 into acute tetrahedra. Note that acute simplicial partitions
(defined in Section 2 below) are very useful in numerical analysis, since they yield
irreducible and diagonally dominant stiffness matrices, when solving the equation

−�u + bu = f

by standard linear conforming finite elements in a bounded polytopic domain in Rd with
some boundary conditions and b ≥ 0 small enough. In this case the discrete maximum
principle takes place, see [4] (and also [5] for nonlinear problems). The necessity of
solving partial differential equations for dimensions d > 3 arises in statistical physics,
financial mathematics, general relativity, particle physics, etc. Therefore, it would be
useful to have an algorithm that produces acute partitions in higher-dimensional spaces.
However, in this paper we prove that a point in the Euclidean space Rd cannot be
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surrounded by a finite number of acute simplices for d ≥ 5, i.e., even locally there are
no acute partitions (see Theorem 6.2).

In two-dimensional acute partitions each vertex is obviously surrounded by at least
five triangles. In Section 3 we prove that each vertex in acute partitions of R3 has to
be surrounded by at least 20 tetrahedra (and this number is attainable, since the regular
icosahedron can be partitioned into 20 acute tetrahedra). In Section 4 we show that a
point in R4 can be surrounded by 600 acute simplices, but it is an open problem whether
there exists an acute simplicial partition of R4. In Section 5 we prove that there is no
partition of R5 into acute simplices. Section 6 is devoted to extensions for d ≥ 6.

2. Basic Definitions

The convex hull of d + 1 points in Rd for d ∈ {1, 2, 3, . . .}, which are not contained in
a hyperplane (of dimension d − 1), is called a simplex or more precisely a d-simplex. Its
(d − 1)-dimensional faces are called facets. For d > 1 the inner angle α between two
facets is defined by means of the scalar product of their unit outward normals n1 and n2,

cosα = −n1 · n2, (2.1)

and it is called a dihedral angle. A d-simplex is said to be acute if all its dihedral angles
are less than π/2. Their number is

(d+1
2

)
.

Definition 2.1. Let 
 = Rd be a closed domain (i.e., the closure of a domain). If
the boundry ∂
 is contained only in a finite number of hyperplanes, we say that 
 is
polytopic. Moreover, if 
 is bounded, it is called a polytope.

Definition 2.2. A set of d-simplices is said to be a partition of a closed polytopic
domain 
 into simplices, if

(i) the union of all these simplices is 
,
(ii) the interiors of these simplices are mutually disjoint,

(iii) any facet of any simplex in the partition is either a facet of another simplex in
the partition, or a subset of the boundary ∂
,

(iv) the set of vertices of all simplices from the partition has no accumulation points
in Rd .

Remark 2.3. The partition from the above definition is sometimes also called a face-
to-face partition, due to condition (iii). Condition (iv) guarantees that each partition of a
polytope is formed only by a finite number of simplices.

Definition 2.4. A partition is said to be acute if all its simplices are acute.

Definition 2.5. We say that simplices S1, . . . , Sk surround a point A if A is a vertex of
each Si , A lies in the interior of 
 =⋃

i Si , and S1, . . . , Sk form a partition of 
.
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3. Preliminary Considerations

First we recall an elementary result for a tetrahedron (i.e., 3-simplex) which will be used
in Section 5.

Lemma 3.1. The sum of all dihedral angles in a tetrahedron is greater than 2π .

Proof. Let ABC D be a tetrahedron. Denote byα1,α2, andα3 its dihedral angles at edges
passing through the vertex A and let α4, α5, and α6 be dihedral angles at corresponding
opposite edges (see Fig. 1). Consider four spherical triangles that arise by intersecting the
tetrahedron ABC D by four sufficiently small spheres centred at the vertices A, B, C ,
and D. Then from the Riemannian geometry we get

α1 + α2 + α3 > π,

α2 + α4 + α6 > π,

α3 + α4 + α5 > π,

α1 + α5 + α6 > π.

Summing these inequalities, we obtain the desired result.

Remark 3.2. The lower bound 2π in Lemma 3.1 cannot be enlarged for acute tetra-
hedra, since the sum of all dihedral angles of the acute tetrahedron with vertices A =
(−1, 0,−ε), B = (−1, 0, ε), C = (1,−ε, 0), and D = (1, ε, 0) tends to 2π for ε→ 0.

Now let d ≥ 3 and let F1, F2, and F3 be arbitrary facets of a d-simplex S. Since F1

is a (d − 1)-simplex, its inner angle ϕ between its (d − 2)-dimensional faces F1 ∩ F2

and F1 ∩ F3 is defined similarly to (2.1), but in the hyperplane containing F1. The angle
ϕ is called a solid angle.

The intersection I = F1∩ F2∩ F3 has dimension d−3. Let L be a three-dimensional
space orthogonal to I (for d = 3, let L = R3). Then S ∩ L is a tetrahedron. Applying
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the Cosine theorem from spherical trigonometry to a sufficiently small sphere centred at
one of its vertices contained in I , we get (see p. 465 of [3] for details)

cosα1 = − cosα2 cosα3 + sinα2 sinα3 cosϕ,

where α1 = ∠F2 F3, α2 = ∠F1 F3, and α3 = ∠F1 F2 (see Fig. 1 for d = 3). In Lemma
3.3 below we prove that the solid angle ϕ of an acute simplex is always less than the
associated dihedral angle α1.

Lemma 3.3. Let d ≥ 3. If a d-simplex is acute, then under the above notation we have

ϕ < α1.

Proof. Since all dihedral angles αi are less than π/2, we find by the above Cosine
theorem that

cosϕ = cosα1 + cosα2 cosα3

sinα2 sinα3
> cosα1 + cosα2 cosα3 > cosα1.

By induction we get a well-known characteristic property of all acute simplices (see,
e.g., Satz 4 of [3]):

Corollary 3.4. If a d-simplex is acute, then each of its m-dimensional faces is also an
acute simplex for m ∈ {2, . . . , d − 1}.

Remark 3.5. The converse implication is not true. For instance, all faces of the tetra-
hedron with vertices A = (−1, 0, 0), B = (1, 0, 0), C = (0,−1, ε), and D = (0, 1, ε)
for an ε ∈ (0, 1) are acute, whereas its dihedral angles at the edges AB and C D are
obtuse.

Remark 3.6. The regular tetrahedron is not a space-filler, since each of its dihedral
angles has the value

α = arccos 1
3 ≈ 71◦.

To a given face of the regular tetrahedron we may adjoin another regular tetrahedron of
the same size in a unique manner. In this way, a given edge can be shared by five regular
tetrahedra, but a small gap appears (see Fig. 2).

In [2] Eppstein et al. give a constructive proof of the following assertion:

Theorem 3.7. There is an acute partition of R3 into tetrahedra.

The main idea of the proof is to distribute congruent regular icosahedra in R3 so that
each two neighbours have one common edge. Each icosahedron is then partitioned into
20 acute tetrahedra and the remaining gaps are partitioned into four different kinds of
acute tetrahedra.
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Fig. 2

Theorem 3.8. Each vertex in an acute partition of R3 is surrounded by at least 20
tetrahedra.

Proof. Let S1, . . . , St be all tetrahedra that surround an arbitrary vertex A in an acute
partition of R3. Then P =⋃t

i=1 Si is a convex polyhedron with t triangles on its boundary
∂P . By the classical Euler formula

v + t = e + 2, (3.1)

where v is the number of vertices and e is the number of edges on ∂P . Clearly,

2e = 3t. (3.2)

Since Si are acute, each interior edge containing the point A is shared by at least five
tetrahedra. This means that any vertex on ∂P is the intersection of at least five edges
from ∂P . Since each edge has two vertices, we obtain

5v ≤ 2e. (3.3)

From (3.2), (3.3), and (3.1) we find that

t = 4e − 5t ≥ 10v + 10t − 10e = 20.

4. Two Conjectures in R4

It is not clear whether the constructive proof of Theorem 3.7 (see [2]) can be generalized
to the four-dimensional space. By [7] (see also [1]) there exists a regular polytope in R4,
called the 600-cell, whose three-dimensional surface is formed by 600 regular tetrahedra.
It has 120 vertices (since its dual is another regular polytope called the 120-cell). In this
case the famous Euler–Poincaré formula [6] has the form

v + t = e + c, (4.1)

where v, e, t , and c, respectively, are the number of vertices, edges, triangles, and tetra-
hedra on the surface. Since each triangular face is shared by two tetrahedra and each
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tetrahedron has four triangular faces, we get

2t = 4c (4.2)

(see the table below, where we intentionally do not reduce by two to indicate that two
simplices always share a common (d−2)-dimensional face). This means that the regular
600-cell has 1200 triangular faces and from (4.1) we find that it has 720 edges. Since
each tetrahedron has six dihedral angles of value α, the total sum of all dihedral angles
is 600 · 6α. Therefore, the sum � of all dihedral angles of regular tetrahedra sharing a
given edge is

� = 3600α/720 = 5α ≈ 1.959π < 2π.

The fact that � is less than 2π is a consequence of Lemma 3.3. Each edge is shared by
exactly five tetrahedra and the small gap from Fig. 2 does not appear for the 600-cell,
since each tetrahedral cell is in a different hyperplane.

From the above we observe that in four-dimensional space a point can be surrounded
by 600 acute 4-simplices. Each of them can be defined as the convex hull of the centre
of gravity of the 600-cell and a particular regular tetrahedron from its boundary.

Conjecture 4.1. A vertex in R4 cannot be surrounded by less than 600 acute simplices.

Conjecture 4.2. There is no acute partition of R4 into simplices.

Equalities (4.1) and (4.2) hold for more general clusters of 4-simplices, in particular,
for any convex polytope in R4 whose three-dimensional surface is formed by tetrahedra.
Moreover, for an acute partition of such a polytope we get the acuteness inequality

5e ≤ 3t, (4.3)

since each edge has to be shared by at least five triangular faces (each having three
edges).

The following table surveys relations similar to (4.1), (4.2), and (4.3) for d = 2, 3, 4, 5:

d Euler–Poincaré formula Simplicial equality Acuteness inequality

2 v = e 2v = 2e 5 ≤ v
3 v + t = e + 2 2e = 3t 5v ≤ 2e
4 v + t = e + c 2t = 4c 5e ≤ 3t
5 v + t + f = e + c + 2 2c = 5 f 5t ≤ 4c

5. The Nonexistence of Acute Partitions in R5

In this section we prove that Theorem 3.7 cannot be generalized to R5. The key idea of
the proof is based on the fact that a point in R5 cannot be surrounded by a finite number
of acute simplices.

Theorem 5.1. There is no acute partition of R5 into 5-simplices.
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Proof. Assume, to the contrary, that such an acute partition exists and choose an arbi-
trary vertex A ∈ R5 of simplices. Set

P =
f⋃

i=1

Si ,

where S1, . . . , Sf are all 5-simplices containing the given vertex A. We see that P is a
convex polytope, since it can be represented as the intersection

P =
f⋂

i=1

Hi ,

where Hi are closed half-spaces such that Si ⊂ Hi and ∂Hi contains that facet of Si

which is opposite to A. Hence, for the polytope P we may apply the Euler–Poincaré
formula [6]

v + t + f = e + c + 2, (5.1)

where v, e, t, c, and f , respectively, are the number of vertices, edges, triangles, tetrahe-
dra, and facets on the boundary ∂P . Since each facet is a 4-simplex, it has five tetrahedral
faces, and since each tetrahedral face belongs to exactly two adjacent facets, we get the
equality

2c = 5 f. (5.2)

Thus, the Euler–Poincaré formula (5.1) can be reduced to the form

5v + 5t = 5e + 3c + 10, (5.1′)

which contains only the numbers of “lower-dimensional” simplices.
Since each Si is acute, all its tetrahedral faces are also acute due to Corollary 3.4.

Hence, each triangular face from ∂P has to be shared by at least five tetrahedra from ∂P
(each having four triangular faces), i.e.,

5t ≤ 4c. (5.3)

Denote byαT
1 , . . . , α

T
6 all dihedral angles of a given tetrahedron T . Then by Lemma 3.1,

2π <
6∑

i=1

αT
i .

Moreover, the sum of all dihedral anglesαE
1 , . . . , α

E
nE

of tetrahedra around a given edge E
from ∂P cannot be greater than 2π (it is, in fact, less than 2π by Lemma 3.3). Therefore,

2πc <
∑

T

6∑

i=1

αT
i =

∑

E

nE∑

j=1

αE
j ≤ 2πe,

where the sums
∑

T and
∑

E are taken over all tetrahedral faces T and edges E from
∂P , respectively. Consequently,

c < e. (5.4)
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Since each tetrahedron has four vertices and each vertex is shared by at least five
tetrahedra from ∂P , we have (see Remark 5.2 below)

5v ≤ 4c. (5.5)

Gathering (5.4), (5.1′), (5.3), and (5.5) together, we find that

8c < 5e + 3c + 10 = 5v + 5t ≤ 8c,

which is a contradiction.

Remark 5.2. Estimate (5.5) is, in fact, very pessimistic. For d = 5 it is easy to find
that for partitions into nonobtuse 5-simplices, whose dihedral angles are all less than of
equal to π/2, each vertex B ∈ ∂P is shared by at least 16 = 2d−1 facets. Each facet
has five tetrahedral faces (one of them is opposite to B, the other four contain B). Thus,
there are at least 64/2 = 32 tetrahedral faces containing B. Since each tetrahedron has
four vertices, we have 8v ≤ c (see (5.5)). This estimate can still be improved for acute
partitions.

6. Extension to Higher Dimensions

Definition 6.1. Let A be a vertex of a d-simplex S for d > 1. Dihedral angles between
any two facets of S which both contain A are called adjacent to A.

The acuteness assumption on simplices from Theorem 5.1 can be weakened as follows.

Theorem 6.2. For d ≥ 5 there are no d-simplices surrounding a point A ∈ Rd whose
dihedral angles adjacent to A are all acute.

Proof. We proceed by induction. Let d = 5 and let A ∈ R5. Assume, to the contrary,
that there exist d-simplices S1, . . . , Sf surrounding A whose dihedral angles all adjacent
to A are acute. Let A1, . . . , An all be vertices of all Si different from A. Consider a
sphere S centred at A with radius smaller than minj |AAj |. Let P be a convex hull of
the points S ∩ AAj for j = 1, . . . , n. By (2.1) it is easy to verify that P ∩ Si are acute
simplices that partition P for i = 1, . . . , f . Obviously they surround the point A, which
by Theorem 5.1 is impossible.

Further, let d > 5 be given, let A ∈ Rd , and let Theorem 6.2 be valid for d − 1.
Suppose again that there exist d-simplices S1, . . . , Sk surrounding A whose dihedral
angles all adjacent to A are acute. Set

P =
k⋃

i=1

Si ,

and let B be an arbitrary vertex on the boundary ∂P . We may assume that S1, . . . , Sm

(m < k) are those simplices that share the edge AB. Since their dihedral angles adjacent
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to A are acute, the set

m⋃

i=1

Si\{A}

lies in the open half-space whose boundary is orthogonal to AB and passes through A.
Hence, there exists a hyperplane H orthogonal to AB that separates A from the other
vertices of S1, . . . , Sm (see Fig. 3 for d = 3).

Then Ti = Si ∩ H are (d − 1)-simplices which surround the point AB ∩ H in the
hyperplane H . Since H is orthogonal to AB, the acute dihedral angle of Si at the edge
AB is the same as the associated angle at the vertex AB ∩ H of Ti , and therefore, it is
also acute. However, by the induction hypothesis this is impossible.

Corollary 6.3. For d ≥ 5 there is no acute partition of Rd into d-simplices.
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390 M. Křı́žek
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