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Abstract—Immersive analytics turns the very space surrounding the user into a canvas for data analysis, supporting human cognitive
abilities in myriad ways. We present the results of a design study, contextual inquiry, and longitudinal evaluation involving professional
economists using a Virtual Reality (VR) system for multidimensional visualization to explore actual economic data. Results from our
preregistered evaluation highlight the varied use of space depending on context (exploration vs. presentation), the organization of
space to support work, and the impact of immersion on navigation and orientation in the 3D analysis space.

Index Terms—Design study, evaluation, economic analysis, immersive analytics.

1 INTRODUCTION

T
HE ECONOMIST pivots on the balls of her feet and
reaches out, her heart thumping like a war drum
in her chest as she deftly grabs the missing data

dimension,1 a precious jewel glimmering in the austere ana-
lytics environment. “Gotcha,” she murmurs to herself. She’s
almost solved it now! She wipes the sweat trickling down
her brow from under the headset with the back of her other
hand while she idly twirls the glowing 3D axis she’s hold-
ing and scans the galaxy of data displays arrayed in front
of her. Now where is that net exports scatterplot... there!
With a sense of satisfaction, she slides the erring axis into
place next to the plot, instantly turning it into a scatterplot
matrix.2 Then she steps back and admires her handiwork.3

All has been revealed.

Actions: 1axis control; 2scatterplot matrix; 3physical navigation.
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u U

In this paper, we report on a design study on the use of Immersive
Analytics (IA) [28] in Virtual Reality (VR) for professional economic
analysis in a U.S. federal agency. Inspired by Sedlmair’s design study
methodology [38], this overall study consisted of multiple phases:

1. A design stage where we collected requirements using contextual
inquiry methodology [6] and improved an existing immersive
VR system for multidimensional data analysis—ImAxes [11]—
to support macroeconomics data;

2. A formative “in-the-wild” deployment of the prototype applica-
tion in a communal space, which lead to multiple incremental
insights and improvements of the prototype; and

3. An in-depth mixed methods study (preregistered) involving pro-
fessional economic analysts exploring their own datasets in our
immersive economics environment, and then presenting their
findings to the experiment administrator.

The results from these studies include observations, video and au-
dio recordings, interaction logs, and subjective interview plus survey
feedback from the participants. In particular, we report on the use
and organization of space to support analysis and presentation, barri-
ers against effective use of immersive environments for data analysis,
and the impact of immersion on navigation and orientation in 3D.

We target the macroeconomics use case specifically because its an-
alyst population is typical of the professional analysts that many im-
mersive analytics applications purport to support. Economic analysis
is characterized by large-scale, high-dimensional, and abstract data—
often with a temporal component—that typically is visualized in many
separate views [5], which makes it particularly amenable to an immer-
sive setting. That is, we anticipate a future where headset devices make

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2019.2934803

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



screens obsolete and provide data analysts—such as economists—the
ability to arrange their work in the spaces around them in a way that
is impossible with desktop interaction. For now we use VR head-
sets, which currently offer the best immersive visualization capabili-
ties (field of view and resolution), but we expect that the findings in our
study about use of space will be transferable to future devices, such as
augmented reality, as discussed in Section 7.

In general, our results are consistent with prior art on the organi-
zation of space to simplify choice, perception, and computation [22],
as well as the spatial arrangement of digital artifacts to support recall,
cognition, and clustering [1]. We found that during initial data explo-
ration our participants would primarily arrange views in an egocentric
fashion around themselves during personal exploration, opportunisti-
cally placing new views in the closest free space. The arrangement was
more considered when participants presented their findings. Strategies
included careful curation of the exploration views and arranging views
into a chronological narrative for presentation to a third party. Further-
more, presentations would often involve more complex visualizations,
whereas the exploratory phase was characterized by the creation of
many transient visualizations that were quickly discarded. We were
surprised to find that many participants created more complex non-
traditional visualizations such as 3D scatterplots. We were also sur-
prised that well-known limitations of VR such as fatigue or text leg-
ibility were not of significant concern. Participants were overwhelm-
ingly positive about their experience, even those unfamiliar with VR.
They reported a higher level of engagement and presence in the VR
environment than in a traditional desktop environment, and they also
found that creating visualizations was faster and easier.

We claim the following contributions: (i) the first mixed meth-
ods study of the concept of embodied immersive analytics (Sec. 3),
as described in the original ImAxes paper [11]; (ii) improvements to
ImAxes making it suitable for macroeconomics, including several dis-
tinct new features designed for this particular application (Sec. 4.4);
(iii) formative feedback on a deployment of ImAxes “in the wild” at
a U.S. federal agency (Sec. 4); and (iv) performance, behaviorial, and
subjective results from an in-depth evaluation with professional eco-
nomic analysts from the same agency (Sec. 5 and 6).

u U

C
URIOUSITY piqued about the relationship between con-
sumer expenditure on recreational goods and spend-
ing on food services, the economist grabs the two vari-

ables off a rotating shelf,4 sticks them together,5 and imme-
diately sees the correlation between the two. But how does
it vary over time? She plucks a temporal axis that she’d pre-
viously tucked away, adds it to the plot with a flick of the

wrist,6 and spins it7 to get a quick impression of how the dy-
namic between the commodities has changed over the last
thirty years. There is no one to interrupt her; no nosy co-
worker poking his head over her cubicle wall to talk about
the latest sporting event, the animated conversation between
colleagues up the corridor invisible and all but inaudible to
her. Just her alone with her data.8 Bliss.

Actions: 4Lazy Susan axis selector; 52D scatterplot; 63D scatter-
plot; 7visualization manipulation; 8immersive economics.

2 RELATED WORK

Virtual (VR), Mixed (MR), and Augmented Reality (AR)—immersive
display and input technologies on the reality-virtuality contin-
uum [29]—have long been used for visualizing physically embedded
data [35, 24, 25, 49]. Recently, this has been extended to include more
abstract data using immersive analytics [9, 15, 28].

2.1 Immersive Analytics

According to Dwyer et al. [15], “Immersive Analytics is the use of
engaging, embodied analysis tools to support data understanding and

decision making.” IA applications tend to be based on immersive out-
put and input technologies—e.g., VR, AR, or MR—for the purpose of
evoking engaging and embodied analysis experiences. The implica-
tion is that these immersive technologies can now be effectively used
for any form of data, including abstract, non-spatial data, i.e., what
Bowman et al. call Information-Rich Virtual Environments [7].

Several IA applications are emerging that leverage the presence and
engagement of VR. Simpson et al. [44] proposed an IA tool to explore
climate economy models by leveraging spatial understanding from im-
mersion on 2D multidimensional representations. The open-source
ImAxes system [11], which we extend in this work, presents the con-
cept of an embodied axis to enable users to quickly build multidimen-
sional visualizations in VR using natural interactions. FiberClay [17]
uses an immersive approach for exploring large-scale spatial trajectory
data in 3D, and the system was informally evaluated with air traffic
controllers. However, none of these systems involved formal studies
on how experts use the available 3D space, or how they might use
immersive systems in day-to-day data analysis.

Butscher et al. [8] proposed the ART tool for collaborative AR
parallel-coordinate-plot viewing with tabletop touch-input. They per-
formed an informal group-based walkthrough evaluation of the sys-
tem with expert users exploring immersion, presence, spatial layout,
and engagement, whereas our study involved individual participants
in hands-on work with their own data. Thus, their findings—while
valuable and formative for our work—focused more on collaboration.

In summary, the premise of IA is that the immersive setting will
yield a richer and more embodied data analysis experience than tra-
ditional means. IA has been touted to decrease level of indirection,
allow more natural input mechanisms, and the free-form space of a
3D virtual environment, which enables intelligent space usage [1, 22].
However, we are aware of no empirical studies that test these factors
for IA, and thus we conducted the present study.

2.2 On the Use of Space in 2D and 3D

Managing and navigating space, virtual or physical alike, has always
been central to human cognition. As Norman holds, “it is things that
make us smart” [32], and according to distributed [18], embodied [39],
and extended [10] forms of cognition, this very much includes physical
space. In seminal work from cognitive psychology, Kirsh [22] demon-
strated that humans tend to offload cognitive tasks in physical space to
simplify choice, perception, and internal computation. But how many
of these ideas translate to digital space on a computer screen?

Kirsh and Maglio [23] showed that screen space can support in-
ternal computation in so-called epistemic actions—actions that serve
no other purpose than to facilitate thought—in the video game Tetris.
Similar effects have also been observed for recall through spatial mem-
ory: using the Data Mountain [36], where digital objects are arranged
on the face of a pseudo-3D “mountain,” participants were able to find
previously placed website icons significantly faster than when using
a conventional bookmark display. This harnessing of spatial memory
is also similar to users leveraging physical navigation [3] in large and
immersive displays with persistent locations of objects, thus allowing
muscle memory and proprioception to replace some of the mental ef-
fort involved in spatial navigation.

In particular, having access to large visual spaces has been shown
to be useful for analytical tasks. For example, screen space can be or-
ganized into complex structures such as lists, stacks, heaps, and com-
posites [42], thus reducing the need for mental models. Tan et al. [47]
compared analytical task performance between monitors and wall dis-
plays, and showed that a physically large display yields significant
improvements due to the increased immersion and presence, which
biased participants to adopt an egocentric view of the data. Reda et
al. [34] built on such findings to study the impact of physical size on
actual visual exploration of data, and found consistent effects where
more pixels yielded more discoveries and insights. Finally, Andrews
et al. [1] directly addressed strategies for spatial arrangement of docu-
ments on a large, tiled 2D display in a visual analytics task. Their ob-
servations unearthed several interesting phenomena, such as the sup-
port of external memory, the structuring of the space using grouping
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and layout, and the high degree of integration between process, repre-
sentation, and data that the large display space scaffolded.

2.3 Presence, Immersion, and Embodiment

Presence is the subjective psychological experience of being in a vir-
tual or remote space, and immersion is the objective characteristics of
the technology used to present the space [21]. The sense of embod-
iment refers to the sensations that accrue while being inside, having,
and controlling a body in VR. A common method of measuring pres-
ence is with questionnaires [4, 26, 37, 45, 50, 51]. These studies make
a distinction between immersion and presence, where immersion is
a necessary (but not sufficient) condition for the experience of pres-
ence in a VR interface [16, 45, 51]. Another necessary condition is
involvement (or attention): the internal processes and external condi-
tions influencing the user’s ability to focus on stimuli in the environ-
ment [51]. Clearly, while immersion is tied to the technology used to
deliver the virtual environment, presence is a more holistic property
that is harder to pin down. Witmer and Singer argue, backed by other
foundational research on the subject, that immersion and presence are
determined by factors influencing the user’s sense of control, realism,
sensory feedback/stimulation, and distraction [26, 40, 51].

2.4 Immersive Evaluation “in the Wild”

Our work deploys VR for data analysis in a field setting, where mea-
suring performance in addition to presence and immersion is of special
interest. Only a few recent studies exist that study VR “in the wild,”
and even fewer exist for multidimensional data visualization. For ex-
ample, Steed et al. [46] performed a study over the web with Samsung
Gear VR and Google Cardboard, and they found tangible evidence
of aspects of presence and immersion being measurable in this set-
ting. Mottelson and Hornbæk [30] conducted a similar field-deployed
evaluation with cardboard VR devices, comparing the results to a lab-
oratory study. Their findings are consistent with those of Steed et al.,
yet also indicate that performance is impacted by the quality of the VR
technology and the internal validity of the study.

While our work was deployed in the field, we retained an embed-
ded researcher, making our work closer to a MILCS (Multiple In-
depth Case Studies) study [43]. In contrast, most of the above “in
the wild” studies do rely on truly uncontrolled environments. Never-
theless, many of their findings are formative for our study design.

2.5 Cooperative and Contextual Inquiry for Visualization

Cooperative inquiry is a qualitative evaluation method based on an it-
erative cycle of three primary steps: contextual inquiry, participatory
design, and technology immersion [13]. Contextual inquiry is the data
collection process in which the researcher and participant form a part-
nership to reach a shared understanding of the user’s experience as part
of a broader design study [6, 52]. A recent study [5] employed contex-
tual inquiry to understand data scientist workflows and their relation-
ship to interactive visualization through in-depth interview sessions.

In participatory design, the user partners with the researcher to con-
tinuously develop new prototypes for the implementation. One method
that we particularly draw from participatory design is to embed a re-
searcher with both the users and designers of the system to act as a
values lever: A link between user and researcher team who is respon-
sible for translating user requests into technical specifications [41]. On
an operational level, this is similar to the pair analytics approach pro-
posed by Arias-Hernandez et al. [2], where a visual analytics expert
“drives” the system while a domain expert gives directions.

3 STUDY METHODS

Our study involved four main phases (Figure 2): a pilot study (P), a
formative “in-the-wild” phase (F), and two in-depth phases (S1+S2).

3.1 Setting and Participant Pool

All phases of the study were conducted at a U.S. federal agency where
one of the authors was embedded. The participant pool for all ex-
periments thus consisted of data scientists, economic analysts, and
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Fig. 2: Process, timeline, refinements, and observations for our study.
DR4 shown in grey, as it was replaced based on user feedback.

economists employed, interning, or contracting at this agency. Over-
all, the education level was high among our participant pool, with
all participants having advanced degrees in economics (collectively,
6 master’s degree and 3 Ph.D.s), statistics/mathematics (1 master’s,
2 Ph.D.s), public policy (2 master’s), political science (1 master’s, 1
Ph.D.) or similar domains. Participants in our individual in-depth ex-
periments were screened to be experts in data analysis; they routinely
used data management and analysis operations daily and had several
years of experience working in this duty.

3.2 Apparatus

All studies were conducted in a small office of approximately 10×10
feet (3 × 3 meters) dedicated to this study. The computing equip-
ment was a personal computer equipped with a Nvidia GeForce GTX
1060 (6GB) GPU, Intel Xeon E5-2620 v3 (2.40GHz) CPU, and 16GB
RAM, and running Microsoft Windows 10. The rig was equipped with
an HTC Vive VR system, including a head-mounted display (HMD),
two base stations, and a monitor that enabled the experimenter to ob-
serve the viewpoint of the HMD. The ImAxes application was built
using Unity 5.6.5f1. Additional evaluation of video and telemetry data
was conducted using a PC equipped with an EVGA GeForce GTX
1080 SC (8 GB) GPU, Intel Core i7-7700 CPU (3.60GHz, 4 cores),
and 24 GB RAM, also running Windows 10.

3.3 Data Collection

Here we review the data collection methods employed across all stud-
ies. We use the identifiers P (pilot), F (formative), S1, and S2 (sum-
mative 1 and 2) to match collection methods to specific phases:
] Demographics Survey (P, S1, S2): We began our sessions by in-
troducing the study and gathering demographics information. Specif-
ically, we used a written survey to inquire about their past use of VR,
their past use of visualizations, gaming experience, and their profes-
sional and academic experience.
] Telemetry Recordings (P, F, S1, S2): The software was instru-
mented to record controller and headset tracking data over time. The
system also recorded specific interactions, such as grabbing and ma-
nipulating axes, creating visualizations, and selecting data.
] Video Recordings (P, F, S1, S2): Two Raspberry Pi Zeros with
8MP Pi cameras and with MotionEyeOS served as webcams set up to
capture the interaction space whenever the software was active. One
Raspberry Pi was positioned at chest height directly in front of the
user’s starting position, and the second was positioned in a top corner
of the room, a location it shared with one of the Vive’s base stations.
] Screen Recordings (S2): Screen activities were captured using the
Windows built-in screen recorder from the game bar. These showed
the virtual environment from the participant’s viewpoint.
] Audio Recordings (S1, S2): We recorded participant think-aloud
utterances during in-depth sessions using a mobile device.
] Exit Interview (S1, S2): We ended sessions with a survey and an
open-ended interview; answers were recorded and transcribed.
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3.4 Common Procedure

Users signed in to use the device. Users were only permitted to access
the system if they were formal participants of the study who had signed
the consent form. Participants were verbally informed that their activ-
ities would be recorded even if the researcher was not present during
their use of the implementation. At the end of the study, participants
were asked to complete an exit interview and a survey. The procedure
for S1 and S2 in particular is given in detail in the study preregistra-
tion: https://osf.io/53e7n/

3.5 Data Analysis

Our collected data was analyzed with several common methods across
the different phases. Here we describe these methods in detail.

3.5.1 Visualization of Spatial Activity

The tracked 3D telemetry data over time provides important insights
in how participants move around (physical navigation), interact with
3D objects (axes and visualizations), and arrange their space. To best
analyze and present this data, we aggregate movement data over time
into a projected 2D grid of the space. We use a top-down view to study
physical navigation as well as spatial arrangements of views and axes
(heatmap), and a side view to explore interaction heights (histogram).

3.5.2 Replaying Participant Sessions

By combining telemetry data and interaction logs, we are able to re-
play individual participant sessions. This allows us to understand the
participant’s view of the analytical space at any point in time. This
ability to replay sessions is useful for understanding dynamic behav-
ior and to recreate the arrangement of the space at different times.

Fig. 3: Tooltip providing details-on-demand for data items.

Fig. 4: Lazy Susan menu implemented for the study. Participants spin
the menu by rotating their thumb on the controller touchpad.

4 FORMATIVE: PILOT AND “IN THE WILD” STUDIES

Deploying a novel technical intervention in a new environment typi-
cally requires careful customization [38]. Prior to actually evaluating
the utility of IA for economic analysis, we thus conducted a month-
long formative study that included a pilot study (2 weeks) and an “in-
the-wild” deployment (3 weeks). We opted to use the ImAxes plat-
form [11] for immersive multidimensional visualization as our starting
point; see the next section for details.

An added benefit of this formative approach is that it allowed us
to continuously iterate on the design based on results from the user
sessions as they occurred throughout the duration of the study. Partici-
pants were updated on notable changes to the system as they occurred
and were asked to engage in additional tutorial, challenge, exploration,
and interview activities following each major change to the system.

4.1 The ImAxes System

ImAxes [12] is an IA system based on the concept of embodied axes
to let users build data views in a 3D virtual environment. Each axis
corresponds to a dimension in a multivariate dataset. Users define
visualizations by positioning axes in the 3D space, a spatial grammar
producing specific visualizations based on their layout.

The basic operations consist of combining two or three orthogonal
axes, which produces 2D or 3D scatterplots, respectively. Axes ar-
ranged in parallel to each other yield a parallel coordinates plot [19].
More advanced operations consist of stacking axes at the extremities
of the axes of an existing scatterplot, which extends 2D and 3D scatter-
plots to scatterplot matrices. ImAxes also uses the proximity between
visualizations to create linked 2D and 3D scatterplots.

4.2 Pilot Study

During the initial pilot study, we invited 6 participants to use the
ImAxes platform for hour-long individual sessions with ImAxes left
unmodified from its previous incarnation apart from the inclusion of
an embedded tutorial. The dataset used during the pilot was the classic
cars dataset [14]. The purpose of the pilot study was to: 1) identify the
new features to add to ImAxes, 2) calibrate our data collection mech-
anisms, and 3) determine the datasets participants wanted to view.

4.3 “In-the-Wild” Study

After having established a working baseline system, we launched an
“in-the-wild” formative study where the equipment stood available for
a full three weeks for anyone to use at their own discretion. The author
embedded at the agency advertised the study via the agency intranet,
encouraging interested volunteers to bring their own datasets to ex-
plore. The room was kept unlocked, basic documentation was made
available in the room, and the software configured to allow new par-
ticipants to sign in and load their own data. However, while no experi-
menter was present during these sessions, IRB regulations required us
to collect signatures of informed consent from volunteer participants.
This allowed us to record video and telemetry whenever the equipment
was in use. Similar to the pilot, the purpose of this study was to collect
data for how to customize the system for an economist audience.

A total of six participants were engaged in this formative study (all
provided signatures of informed consent; no unauthorized person used
the tool). They logged a total of 3.8 hours of use in ImAxes during
this phase. Figure 2 outlines the significant findings from our review
of the logged data: this includes several observations that lead to re-
finements, as well as direct feature requests by the participants.

Throughout the three weeks of the formative study, we rolled out
new features as soon as they were implemented, essentially using the
field deployment as a “living laboratory.”

4.4 Improvements to ImAxes

The original ImAxes system lacked many features necessary for an
economics setting, including some that aid users regardless of domain
background. We thus extended the system with additional features to
support general use improvements to visual exploration and analysis
of data based on feedback from economists. Below we list the main
features added (labels refer to Figure 2).
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Fig. 5: Examples of using ImAxes to create different visualizations.

] DR1: Tooltip (Details-on-demand). We implemented details-on-
demand as a tooltip for 2D and 3D visualizations using a pointer
metaphor (Figure 3). By pressing a button on the controller and point-
ing in the direction of a 2D visualization, the data values of the nearest
point are shown in a 2.5D box with a leader attached to the point. To
obtain details-on-demand in a 3D scatterplot, a small pointer sphere is
attached to the VR controller that can probe the nearest values.

] DR2: Time-series data. The original ImAxes supported only scat-
terplots and parallel coordinates plots. Since many of our users wanted
to explore time-series data, we added line graphs as well.

] DR3: Visualization design menu. We added a simple menu control
panel attached to the VR controller. This allows users to remap data
dimensions to axes, create and bind a gradient colour to a continuous
variable, and map the size of the points or lines to a data attribute.

] DR5: Add mountain range backdrop. Participants disliked the
space’s flat, sharp horizon and featureless terrain, causing us to add a
mountainous landscape in the distance.

] DR6: Axis selection. Vanilla ImAxes used a shelf metaphor for
selecting axes, where data axes were arranged in rows like books on
a bookshelf.1 While this metaphor is easy to understand, it does not
scale with the number of axes and requires a large amount of locomo-
tion (walking or teleporting). Our first solution, a “Rolodex” (DR4),
was poorly received. Instead we implemented a rotational menu based
on a “Lazy Susan” metaphor. The menu can be rotated like a Lazy
Susan via the controller touchpad. An axis is selected by pulling it out
of the Lazy Susan menu. Thus, in the end, there was no shelf.

] DR7: Grouped selection. Based on user feedback, we implemented
a group selection mechanism that allows the user to move a linked
group of visualizations instead of a single one. This enables the user
to arrange visualizations around them without breaking links.

5 SUMMATIVE: CASE STUDIES IN ECONOMICS

To understand the utility of IA for professional analysts and data scien-
tists, we conducted a contextual inquiry using our ImAxes tool in case
studies involving participants from one of several bureaus of the U.S.
federal government. This part of the study was split into two phases:
Summative 1 (S1) and Summative 2 (S2). participants during S1 used
a version of ImAxes that was slightly different in S2 (Figure 2). We
report on both below, highlighting differences when needed. Unfortu-
nately, a software error precluded collection of axis position data from
S1. Other data was collected from both groups.

5.1 Participants

We recruited twelve participants (six in each phase) with expertise in
economics, statistics, and data science. The participants were all em-
ployees at a U.S. federal agency with job descriptions that include data
analysis, all with 2–12 years of experience (M = 6.21,SD = 3.93) and
graduate degrees in economics or related fields (Table 1). They had
significant experience in using data analysis tools in their daily work
(Table 2). While outside the scope of this study, the typical workflow

1We need axes, lots of axes. (https://youtu.be/5oZi-wYarDs)

Table 1: Phases and datasets for summative participants.

# Job Title Yrs Education Phase* Dataset†

exp

1 Economist 12 M.A., Economics S1 D1+D2
2 Economist 2 M.A., Economics S1 D3+D4
3 Economist 9 Ph.D., Economics S1 D1+D5
4 Economist 6 M.A., Economics S1 D2
5 Economist 4 M.A., Economics S1 D6
6 Econ spec. 8 M.A., Int. Business S1 D6
7 Economist 2 M.A., Econ/Public Policy F, S2 D7
8 Economist 5 M.A., Public Policy S2 D8
9 Statistician 3 M.S., Statistics/Math P, S2 D7

10 Economist 9 Ph.D., Economics S2 D8
11 Economist 13 M.A., Economics S2 D8
12 Economist 3 Ph.D., Economics S2 D8

* P = pilot, F = formative (“in the wild”), S1/2 = summative 1/2
†Dataset labels in Table 3.

in government and industry data analysis is described by Batch and
Elmqvist [5] and Kandel et al. [20]. Six participants had used VR pre-
viously, and five participants routinely played video games (1+ hr/wk).

Table 2: Count and context of participant use of specific tools.

Environment/Language Ever Work

Graphic analytical env. (e.g., Tableau, Excel) 12 11
Statistical lang. (e.g., Stata, R, SAS, Julia) 11 10
DBMS (e.g., SQL, PostGres, dBase) 8 6
Econometric DBMS (e.g., FAME, Aremos) 5 5
Markdown/doc-creation (e.g., HTML, LATEX) 6 4
Object-oriented lang. (e.g., Python, JS) 7 3
Imperative lang. (e.g., FORTRAN, Pascal) 1 1

5.2 Procedure

Our study consisted of several stages: preparation, tutorial, explo-
ration, presentation, and post-session interview.

] Preparation: Before participants even appeared at the study session,
we asked them to send suitable datasets (Table 3) that we could inte-
grate into ImAxes prior to the study. Some of these datasets caused us
to make changes to the tool itself, such as the axis selection metaphor,
as described in Section 4.4:DR6, which we implemented to accommo-
date a larger number of variables than practical in the shelf layout.

Table 3: Datasets used by summative participants.

# Dataset Name

D1 Compensation by State and Industry
D2 Nominal PCE by State and Industry
D3 International Trade: Services
D4 U.S. Military Spending
D5 BLS Consumer Price Index
D6 National PCE Price Indexes
D7 Blended Health Care Satellite Accnt/Capita Exp. Index
D8 Nominal PCE by State

] Instructional Tutorial (10 mins): We began by familiarizing the
users with ImAxes via a tutorial embedded in the system. Pre-recorded
interactions were played, and the user was prompted to follow along
to learn how to use the tool. During this stage, the affordances of a
single axis were exhaustively demonstrated before moving on to two
axes, then three, and finally SPLOMs and parallel coordinate plots.
After each feature was demonstrated, we asked participants to use that
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feature in a sample dataset. Before finishing the training, participants
were encouraged to freely explore the sample dataset while verbalizing
their thought process using a think-aloud protocol.
] Exploration (30 mins): Now participants were set free to explore
their own dataset on their own. Exploration was structured as a se-
quence of iterations, each no less than five minutes, and started with
giving the participant the option of introducing a new dataset if de-
sired. For each iteration, the researcher prompted the participant to
maintain the think-aloud protocol, and would gently inquire about
their motivations throughout the duration. The goal of each iteration
was to generate at least one insight and corresponding visualization.
Participants were told that they would be expected to present their
findings, and were regularly updated on remaining time.
] Presentation (30 mins): Finally, the participant was asked narrate
their findings as if they were presenting their analysis to an external
party (the experimenter). The participant was reminded that the exper-
imenter could see what they saw on a monitor, and was asked to create
at least one distinct visualization for each point in their narrative. They
could use speech, gestures, and ImAxes itself to tell their story.
] Post-Session Interview: Immediately after the exploration activity,
the researcher and participant engaged in a brief, semi-structured in-
terview and survey to (a) validate the researcher’s understanding of the
user’s motivations for their actions during the exploration activity, and
(b) Evaluate the user’s sentiment regarding the existing iteration of the
implementation, including features that they felt were lacking.

5.3 Predictions

In this preregistered study,2 we made several predictions on results
prior to conducting the study. We organize these predictions into the
stage they refer to: exploration (E), presentation (P), and all (A).

E1 Participants will arrange the views egocentrically around them-
selves. Motivation: For individual work, it is more efficient to
use local space around yourself.

E1.1 Participants will tend to arrange their views at chest level. Mo-
tivation: Participants have no specific VR training, and will
thus likely not utilize the 3D environment to the fullest.

E1.2 Participants will arrange their views within easy reach of the
center of the space. Motivation: The small space that the study
is conducted in will not permit significant physical navigation.

E2 Participants will build many ephemeral visualizations that they
quickly discard. Motivation: ImAxes supports exploration by
creating transient and new visualizations through brushing.

P1 Participants will arrange the views in an exocentric way. Mo-
tivation: During presentation, it makes sense to more carefully
arrange the views, e.g., in a gallery or sequence.

P1.1 Participants will arrange the views in a chronological order
w.r.t. to their presentation. Motivation: The intelligent use of
physical space can help streamline a narrative.

P2 Participants will build more complex visualizations in the pre-
sentation stage than the explore stage. Motivation: Presentation
involves creating a linear, coherent, and comprehensive narra-
tive. Care can thus be spent on crafting complex visualizations.
Note: This prediction was not part of our preregistration.

A1 Participants will prefer basic visual representations (scatterplots,
linegraphs, maps), and avoid more complex ones (parallel coor-
dinates, scatterplot matrices). Motivation: These more complex
representations are not commonplace in real-world data analysis.

A1.1 Participants will avoid using 3D representations (such as 3D
scatterplots or surfaces). Motivation: Our participants have no
VR training and are accustomed to 2D displays in their work.

A2 Participants will utilize the physical space to structure their work.
Motivation: Physical space can be used to support specific tasks,
e.g., to simplify choice, perception, and computation [22].

2Immersive Economics on OSF: https://osf.io/v2x9u/. Note that

this preregistration was not in place for S1, only S2.

A2.1 Participants will group views in space based on their logical
relationships. Motivation: Views that belong together should
be grouped in physical proximity.

A2.2 Participants prefer interacting with objects at a near distance
than those at a far distance. Motivation: Near objects require
no physical navigation to access, and ImAxes does not support
a reliable distance interaction technique.

A3 Participants will report typical perceptual and cognitive effects
of VR on their performance and perception. Motivation: Even if
ImAxes depicts an abstract data analysis setting, it is subject to
the same strengths and weaknesses as other VR applications.

A3.1 Participants will report a high level of engagement. Motiva-
tion: VR is commonly associated with high engagement be-
cause of realism and low indirection.

A3.2 Participants will report a high level of presence. Motivation:
VR is commonly associated with high presence because of
the low indirection, natural interaction, proprioception, and
the perception of physical space.

A3.3 Participants will report fatigue from physical navigation and
interaction. Motivation: The use of gross body motor con-
trols to navigate the virtual environment and interact with its
objects will require significant effort by the participants.

A3.4 Participants will suffer from reduced legibility of text in the
3D environment. Motivation: HMDs have a significantly
lower resolution than typical monitors, and labels in ImAxes
are 3D and thus subject to distance and orientation concerns.

A3.5 Participants will suffer from the challenge of using VR wands
to interact with virtual 3D objects. Motivation: While more
direct than using a mouse and keyboard, the HTC Vive con-
trollers still do not allow for hand and finger interaction.

A4 Participants will encounter significant navigation and interaction
hurdles due to a lack of VR expertise. Motivation: Our partici-
pant pool has no specific VR training, and will thus be challenged
by 3D navigation and interaction concerns.

A4.1 Participants with 3D computer gaming experience will be less
hindered by lack of VR training. Motivation: 3D gaming ex-
perience will help people interact more efficiently.

6 CASE STUDY RESULTS

Table 1 reviews the participants and their datasets. Below we discuss a
representative use case derived from the experiment. We then present
the performance and subjective results.

6.1 Representative Use Case

The following scenario is a pastiche based on our observations of par-
ticipants as they explored and presented insights from their macroeco-
nomic data. It is not a description of a single user session; rather, it is
a collection of real observations from multiple sessions organized into
a representative, narrative summary. In other words, unlike the sce-
nario in the introduction, it is not fictional; these events all happened.
The scenario begins with our economist “Sasha” loading their regional
personal consumer expenditures dataset into ImAxes. Sasha has just
found this dataset from a public source and wants to explore the 2007–
2009 Great Recession’s effect on trends in consumer expenditures.

u U

S
ASHA dons their VR headset, launches ImAxes, and
grabs three axes from the Lazy Susan. They build a 3D
scatterplot of TimePeriod × Goods × GeoFips (states)

by first holding TimePeriod and Goods orthogonal to each
other, then placing GeoFips orthogonal to the scatterplot’s
origin. They orient the visualization so that they are looking
down the temporal axis, leveraging the depth perception af-
forded by VR to provide a view of the states where the goods
have trended higher over time. Using this view, they activate
the details on demand using the controllers for these states
to obtain numeric values of points along the axes.
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Sasha then flips the view so that they are looking at TimePe-
riod from the side, and points out the general upward trend
in total consumer spending for all commodities over all time
periods except the Great Recession around 2009. They cre-
ate a 2D scatterplot of gasoline expenditures over time, not-
ing that the trend is less stationary (i.e., has greater variance
over time) in that particular commodity than in others.

Sasha creates a 3D scatterplot of Food Services × TimePe-
riod × Off Premises Food and Drink. Grabbing another Time
Period axis, they switch from a 3D scatterplot to two sepa-
rate 2D scatterplots, which they stack on top of each other.
They observe that there is a switch from spending on restau-
rants (Food Services) toward spending more on groceries
(Off Premises Food and Drink) during the Great Recession.

Once they have constructed all of charts they intend to dis-
cuss with their colleagues, they arrange them in the space
in a linear order from left to right roughly corresponding to
the narrative order they plan on following, a little like a mu-
seum or gallery of artifacts. As they discuss each point, start-
ing with the most aggregate commodity bundles and drilling
down into more detailed commodities, they dynamically in-
teract with the visualization with one or both hands, shifting
it for a different viewing angle with one hand and calling the
tooltip with the other hand to give their expert audience the
detail they would otherwise demand. When they are done
discussing the points related to one visualization, they walk
to the right to begin their next talking point, until they have
run through all of the economic trends they wish to discuss.

u U

6.2 Explore Stage

Participants spent between 4 and 10 minutes (M =4:33,SD =1:50) in
the explore stage. All participants would begin the stage by facing the
Lazy Susan within arm’s reach, and would rotate it until they found an
axis they recognized from which they could start exploring the data.
Participants would then often rotate their body away from the Lazy
Susan to create a work space by building basic 2D and 3D scatterplots.
Figure 6 shows that most participants stayed in one place and arranged
views egocentrically (E1). However, none utilized the full 360◦ space.

This behavior of recycling the views and axes in their workspace
instead of physically moving to a new workspace also supports predic-
tion E1.2 (participants would arrange their views within easy reach).

Fig. 6: Heatmaps of axis interaction in S2 (top-down). Participant
position and view direction is represented by a direction arrow.

To examine prediction E1.1—that participants would arrange views
at roughly chest level—we studied interaction patterns w.r.t. height.
Since our tracking data only includes headset position, we estimate
chest height to be approximately 30 cm below this position. Figure 7
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Fig. 7: Histogram showing the vertical distance of participant inter-
actions with axes relative to their eye level. Eye level is at 0, and the
approximate chest level is represented by the red line.

shows a histogram of these relative interactions. Interaction above
eye level often occurred when building scatterplot matrices, highlight-
ing a physical limitation of the ImAxes systems (that a user must be
able to reach the ends of a scatterplot matrix). While this limitation
is somewhat mitigated by design refinement DR7 (grouping mecha-
nism), these observations suggest that the issue is still present.

Participants would often discard axes and visualizations while ex-
ploring the data, maintaining only one to two visualizations at a time
(supporting E2). Essentially, participants were recycling their views
and continuously cleaning their space. Furthermore, we observed that
certain types of visualization would be more transient than others. No-
tably, linked visualizations, whether between two axis or between an
axis and a scatterplot, were created and used more than any other type
of visualization, but the majority existed for less than five seconds.

6.3 Presentation Stage

Participants spent between 7 and 11 minutes each (M =6:30,
SD =2:30) during the presentation stage. Most participants chose to
organize their views in either a linear or semi-circular layout. For ex-
ample, Participants 4 and 5 placed a series of visualizations in a left to
right “narrative order” (Figure 6). This somewhat supports prediction
P1 (participants will arrange the views in an exocentric way). How-
ever, as can be seen in the “present” columns of Figure 6, these ar-
rangements were not strictly exocentric, but remained egocentric (un-
dermining P1). We belatedly realized that since the experimenter—the
intended audience of the presentation—viewed the 3D space through
the eyes of the participant, there was no incentive for the participant to
organize the space in an exocentric fashion. However, we did find sup-
port for views being arranged in chronological order (P1.1); Figure 1
shows snapshots of several final view layouts.

We predicted (P2) that participants would build more complex vi-
sualizations during the presentation stage as they would spend time to
carefully craft a meaningful visualization. This is also supported by
our data; Table 4 indicates that most scatterplot matrices were used in
the presentation stage. All participants except Participant 1 created a
scatterplot matrices while preparing for presentation stage; however,
only Participant 3 actually used a scatterplot matrix when presenting
their data. Five of the six participants explored the data using parallel
coordinate plots. However, it is worth noting that during the presenta-
tion stage, only Participant 3 used a parallel coordinate plot.

6.4 All Stages

We captured view creation events for 2D and 3D scatterplots,
SPLOMs, and linked views. These events are summarized in Table 4.
Contrary to prediction A1 (that participants would avoid complex vi-
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Table 4: Count of view creations per participant, split into exploration
(E) and presentation (P) stages.

2D Scatterplot 3D Scatterplot SPLOM Link

Participant E P E P E P E P

1 8 17 10 2 29 - 111 113

2 9 33 - 12 5 5 116 201

3 27 74 6 16 - 26 103 4136

4 7 43 1 11 8 18 123 516

5 5 58 2 15 6 22 31 195

6 3 49 - 23 2 35 527 2866

sualizations), all participants (except P3) experimented with creating
scatterplot matrices during exploration. The majority of these scatter-
plot matrices involved adding a third axis to an existing 2D scatterplot
in order to see the relationship between two variables and on a com-
mon axis (such as a time-series axis).

All participants except P2 and P6 created 3D scatterplots during
the explore stage. However, all participants used 3D scatterplots dur-
ing their presentation stage. Notably, P2 and P6 used 3D scatterplots
exclusively during the presentation stage, and P5 used three 3D scat-
terplots and a 2D scatterplot during the presentation stage. This result
ran counter to prediction A1.1 (participants would avoid creating 3D
visualizations). One participant commented that they felt they may
as well use 3D scatterplots and other kinds of visualizations as they
were exploring data in VR, saying “I wanted to create more graphs of
different types, [especially for] my presentation.”

We found only weak support for A2; during the explore stage, par-
ticipants would merely choose the nearest open space for creating new
views, i.e., not using an organizing principle. Only in the explore stage
were they more conscious of structuring the space; more specifically,
as noted in our observations supporting P1.1, chronology was a com-
mon such organizing principle (also partially supporting A2.1). We
also noted that many undertook a “curation” stage where they would
select views that should be included in the presentation, and move
them to a designated area.

Exploration Presentation
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When considering A2.2, we ex-
pected participants to minimize their
walking, relying instead on rotating
their viewpoint. We found that par-
ticipants walked less during the ex-
plore stage compared to the presen-
tation stage. We ran a paired sample
t-test to compare the movement per
minute of the explore and present
stages. The present stage (M = 8.10m, SD = 2.18m) had significantly
more movement than the explore stage (M = 5.41m, SD = 1.8m);
t(5) =−3.456, p = 0.018 (see chart). One participant commented that
“When I start thinking of myself as a visual focal point rather than
thinking of myself as being surrounded by [vertical] boards, view-
ing the environment became easier and I felt comfortable using more
of the space.” We did not find a significant difference in head ro-
tations per minute between the present stage (M = 6671.86,SD =
5397.94) and the explore stage (M = 2571.38,SD = 1321.33); t(5) =
−2.277, p = 0.072.

6.5 Self-reported Perceptual and Cognitive Effects

Even if ImAxes depicts an abstract data analysis setting, it is subject to
the same strengths and weaknesses as a general virtual environment;
Figure 8 shows self-reported perceptual and cognitive effects similar
to typical such environments (A3). According to the figure, partic-
ipants reported high scores for perceived engagement (A3.1), rating
the experience as enjoyable and engaging the senses.

We expected participants to report a high level of presence (A3.2)
using the system. Supporting this prediction, the survey responses

[IMMERS] Able to block out awareness of real−world events
[IMMERS] Lost sense of real−world position and orientation
[ENGAGE] Experiencing the environment was enjoyable
[ENGAGE] The environment engaged the senses
[ENGAGE] The session was intense
[ENGAGE] User lost track of time while in the environment
[DISCRD] Environment was free of delays
[DISCRD] Environment was responsive to user−initiated actions
[DISCRD] Information from various senses was consistent
[DISCRD] No disorientation after exiting
[ADJUST] Adjusted quickly to environment
[ADJUST] Environment responded predictably to user actions
[ADJUST] Felt proficient using environment post−session
[CNTRLR] Control mechanisms were not distracting
[CNTRLR] Display and control devices were inobtrusive
[CNTRLR] Virtual filtering controls were easy to use
[CNTRLR] Virtual objects were easy to manipulate

−100 −75 −50 −25 0 25 50 75 100

Percent No Not Really Kind of Yes

Fig. 8: Subjective ratings from exit survey. Subfactors include: con-
troller ease of use [CNTRLR], adjustment to environment [ADJUST],
perceived immersion [IMMERS], user engagement [ENGAGE], and
avoidance of sensory discord [DISCRD].

(Figure 8) show that participants felt that they were interacting in a
natural environment (100% described the environment as being realis-
tic and generally feeling natural, 83% felt moving around was natural).
One user described the experience as being somewhat like “being in
the Mojave Desert.” Several reported that they lost track of time while
in the environment. However, full presence may not always be ideal;
two thirds of participants reported that their exploration of the data
was not intense, and several users pointed out that the sound of the re-
searcher’s voice improved their sense of orientation in the real room.

As for increased fatigue level (A3.3), we were not able to find sup-
port for this prediction. In fact, as our discussion for A2.2 shows, phys-
ical navigation actually increased for the presentation stage (which
followed exploration), suggesting that fatigue was not a factor. Fur-
thermore, the nausea level was low, which is another indication that
participants were not fatigued by the end of the study. We made sev-
eral predictions related to the challenges that an immersive VR system
could potentially introduce. We predicted that participants would suf-
fer from reduced text legibility (A3.4). However, the reported Likert
scores for the ability to examine closely and obtain details from ob-
jects in the environment was high (Figure 8), which undermines this
prediction. We also expected that participants would suffer from the
impreciseness of the VR wand controllers (A3.5). Again to the con-
trary, the Likert scores indicate that actually participants were able to
effectively interact with the 3D virtual objects in ImAxes. By and
large, one of the things the participants stated liking most about the
environment was that visualizations were very fast and easy (or intu-
itive) to create relative to their traditional 2D working environment.
However, there was a more even split in the participants in regards
to wearing the physical VR headset, with one participant reporting “I
don’t really like wearing a headset. It’s cool to look at things in 3D,
but it doesn’t really add enough value. However, I also don’t usually
create visualizations in general during my analyses.”

Finally, we made two predictions in regards to VR experience; that
participants with a lack of VR experience would encounter significant
navigation issues (A4), and that gaming experience would mitigate
a lack of VR experience (A4.1). Based on differences in survey re-
sponses for users with VR experience versus those without, we find
support for the first of these predictions, but not for the second. In
fact, participants without VR experience who regularly play computer
games for more than an hour in a week reported having more difficulty
with the controls and had a more difficult time examining objects in
the environment than those who were not regular gamers.

6.6 Qualitative Feedback

Beyond interaction and visualization requests, participants provided
several insightful comments. Whiteboard analogies were common-
place: “It feels like I’m surrounded by whiteboards,” said one user;
another, after arranging axes around himself in a semi-cylinder shape,
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described it as feeling like a “wraparound whiteboard.”

When asked how ImAxes compared to their traditional desktop dis-
play, participants had a range of responses; 58.3% reported feeling
more engaged in the problem while in ImAxes than while in their tradi-
tional environment (A3.2). The most common draw participants felt to
the environment was that creating visualizations was easier and faster
in ImAxes than in their typical environments. In general, participants
said they might be able to use ImAxes for preparing presentations,
reports, and video communications, or for exploratory analysis data
validation. One participant responded that they could use it to detect
errors during the monthly multi-stage process of reviewing economic
indicator estimates prior to publication. Another said that their in-
dicator estimation process involves multilateral aggregation for price
indices, and ImAxes could be useful for exploratory analysis during
that process. One user noted that export for 2D display presentation
would be particularly helpful for the purpose of creating reports.

Several participants said that a major barrier to wanting to use
ImAxes on the job is that VR is inconvenient for the purpose of the
type of work they perform, which typically involves programming and
switching between multiple environments. Said one participant, “VR
seems more oriented toward real-time demonstrations, which is great,
but that’s not useful for [the participant’s] analytical process, which
involves long periods of exploration and evaluation switching between
tabular views, charts, modeling, and programming.”

While we were able to implement some changes between our for-
mative phase and our summative phase, there were some changes that
were not practical to implement during the span of this study; some
of these might be considered applicable for general use, while others
are more economics domain-specific. One participant, who was not
interested in using ImAxes on the job, said “it would be sick [sic] if
I could click something and see the full hierarchy of categories in the
data.” The absence of this feature wound up being the primary reason
for their recalcitrance. Other features this particular participant wanted
to see included the ability to run regressions, a group-by mechanism,
extra-grammatical filtering mechanisms for building views, and simple
computational tasks. Like this participant, several other participants
during the summative and earlier phases of the study suggested the
inclusion of matrix and column-wise algebraic operations. A number
of participants also requested linear modeling operations and views
of multicollinearity, which they noted as being particularly relevant
for hedonic modeling. Another common request was that we extend
ImAxes as a tool specializing in outlier detection. Economists typi-
cally evaluate time series; while our addition of a line mark connecting
scatterplot points was one change we did implement to accommodate
this activity, participants regularly reused time period axes, and the op-
tion of having a convenient “favorite axes” quick-access area was re-
quested by multiple users. Finally, one participant strongly suggested
the addition of a Markov Chain Monte Carlo simulation, stating that it
is “what everyone is doing now” in econometric modeling.

7 CONCLUSION AND DISCUSSION

We have presented a design study on the use of immersive analytics
for economics analysis. The entirety of the work was conducted in the
field. Our multi-phase design process involved an initial requirements
analysis and pilot study on the use of the ImAxes immersive analytics
toolkit for economics, a field deployment during which the tool design
was iteratively refined, and several in-depth case studies with profes-
sional analysts. Our findings illuminate several unexpected insights
about the nature of immersive analytics for experts.

We use VR headsets for our evaluation as opposed to Augmented
Reality (AR) devices such as Magic Leap or HoloLens since current
commercially available VR devices offer vastly superior field of view
and resolution compared to their AR counterparts. AR headsets have
advantages for collaborative analysis by permitting a clear view of col-
leagues, or for situated analytics [48] where data can be overlaid on
objects in the world, but these are not the focus of this paper; hence
VR is the best fit for this purpose. As AR technology improves there
is a real possibility that at some point immersive headset technologies
will make screens obsolete, such as when headsets can render a 2D

display at foveal resolution completely covering the wearer’s field of
view anywhere in the space around them. Regardless, AR and VR
alike both require knowing how to make the most of immersive spaces
for data visualization in real-world applications such as economics.

We were surprised that many of our predictions found no support
in the collected data. For example, we noticed few effects of fatigue
(A3.3), legibility was not a clear concern (A3.4), and even participants
with little gaming and/or VR experience were able to use our tool effi-
ciently (A3.5). Some of these findings can be easily explained—e.g.,
that the lack of an exocentric layout likely happens because presen-
ters actually view the environment through the eyes of the participant
(P1)—but others are more unexpected. Most of the time, while aptly
highlighting our lack of knowledge, these contrary results are actu-
ally in favor of IA; for example, participants did actually use advanced
visualizations (A1), not merely sticking to scatterplots.

On the surface, this finding disappointingly does not extend to
the intelligent use of space (A2), as participants in the explore stage
merely picked the closest free space to put new visualizations. How-
ever, when viewed through the sensemaking loop [33], this makes
more sense as one of its early phases involves placing potentially rel-
evant information in a so-called “shoebox.” When foraging for infor-
mation, analysts typically do not have time to worry about structure,
similar to how the purpose of sketching for artists is to generate new
ideas rather than fixate on existing ones. Only in a secondary curation
step in our study would participants evaluate these views and organize
them into a designated area in the environment (the “evidence file” in
the sensemaking loop). Incidentally, Andrews [1] noted similar obser-
vations, referring to them as ”evidence marshalling,” often having the
same chronological organizing principle (A2.1) as our findings.

Still, it is clear that participants did not use the full available 3D
space of the analysis environment to its full potential. Telemetry data
and video recordings showed participants mostly stayed in place and
merely used the space directly in front of them. We did see participants
making better use of the space in the presentation stage. Reasons for
this may include the cramped confines of our experimental space, the
interactions needed to move visualizations, and no automatic layout
control. This points to the need for system support, such as constraints
and organization frameworks, to help users organize their spaces as
has previously been done for 2D GUI tools [27, 31].

That many of our—in retrospect pessimistic—predictions about the
drawbacks of the virtual environment were not supported is worth un-
packing. One reason may be the high presence and engagement levels
reported, leaving participants willing to simply overlook minor usabil-
ity concerns. The novelty factor may also be working in our favor
and produce goodwill towards the tool.3 Finally, perhaps the natural
interaction metaphors in ImAxes simply aided participants in quickly
learning the system and exploring their data. In fact, we were sur-
prised by the level of interest in using ImAxes in the workplace. There
were a number of domain-specific tasks and requests which we were
unable to fully accommodate in the scope of this study—MCMC sim-
ulation, linear modeling and views of multicollinearity for hedonics, a
suite of features for outlier detection—as well as the more generally-
applicable requests for matrix algebraic operations, quick-access-axes
for “favorite” axes (like time series period indices), and integration
with hierarchical views of the data. While these changes were not
practical to implement in this study, we view them as low-hanging
fruit for future work extending immersive implementations either for
general analytical tasks or more specialized economic analysis ones.
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