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There is no Universal Source Code 
for an Infinite Source Alphabet 

LQszl6 Gyorh, Member, IEEE, Istv6n Pali, and 
Edward C. van der Meulen, Fellow, IEEE 

Abstract- We show that a discrete infinite distribution with finite 
entropy cannot be estimated consistently in information divergence. As 
a corollary we get that there is no universal source code for an infinite 
source alphabet over the class of all discrete memoryless sources with 
finite entropy. 

Index Terms-Universal source coding, discrete infinite alphabet, dis- 
tribution estimation, consistency in information divergence. 

I. INTRODUCTION 

The vast majority of results in information theory pertain to 

situations where the actual probability law is known. Applying 
information theory in real life problems there is an obvious question 

of whether the probability law can be learned from data as far 

as information theory is concerned. In noiseless source coding, 
for example, if the source alphabet is finite, then the answer to 
this question is yes, since there are good universal source coding 

procedures (see, e.g., [1], [2]). This paper is on discrete infinite source 

alphabets showing that there is no universal source code over the class 
of discrete memoryless sources with finite entropy. 

Let X be a random variable taking values in X = (1, 2, 3,. . *} 

with probability distribution p and entropy H(,u) < cc. For a sample 
Xl,... , X, from this distribution an estimate of ,U is denoted by /&, . 

For a discrete memoryless source let fn be a variable 

length uniquely decodable code with source block length n. 

Let Zn(zi, ZZ,..., z~) denote the length of the codeword 

fn(x1, X2,“‘, x,) and let the average codeword length of fn be 

denoted by &, . The redundancy per letter of fn is given by 

R, = $(i- -H(X1,...,X,)). 

For a uniquely decodable fn we have by the noiseless source coding 

theorem (which is also valid for a source with countably infinite 
source alphabet and finite entropy, see [3, Problem 3.7, p. 5141 and 

[4]) that R, 2 0. 
For two probability distributions P = {p;} and & = {q; } over X 

the information divergence is defined as 

I(P, Q) = $A log ;. 
i=l I 

There is a well-known duality between universal coding and 

distribution estimation consistent in information divergence: there 

is a universal source code over a subset of the set of all discrete 
memoryless sources with finite entropy if and only if there is a 
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distribution estimate consistent in expected information divergence 

for all sources within this subset. Concerning the aim of this paper 
the important direction of this equivalence is as follows: 

Theorem I: Given a discrete memoryless source with source al- 

phabet X = { 1, 2, 3, . . .} and source distribution CL, we can construct 
for any uniquely decodable code fn a distribution estimate fin of p 

such that its redundancy satisfies 

Rn 2 E{I(P, Pn)). (1) 

Proof: Let 

A, = c 2-‘“@). 
XEX” 

Then, since a uniquely decodable code for an infinite source alphabet 

satisfies the Kraft inequality (see [5, Corollary to Theorem 5.5.1, p. 
92]), we have 0 < A, 5 1. For z = (zi, ZZ,...,Z~) let 

px,n Xl, x2,..., ( x,) = T)n,n(x) = 7. 

n 

Then nn, m is a probability distribution on X”. For i = n - 1, 

n - 2, . . . ,2, 1 define recursively 

qn,i(a,...,G) = Crln,i+1(51,...,2*,2), 

z 

so that qn, i is a probability distribution on Xi. Define 

sn,o(x) = Bn, l(T) 

and for 1 < i < n - 1 let 

gn,&; 21, m,...,zi)= 
%I,i+1(21, =2,"',zi, z) 

Vn,i(Zl, XZ,..',Xi) . 

We have 
n-l 

&n,k(xk+l; ~1,~2,~~~rxk)=~n,n(x1,x2,..‘,x~). 
k=O 

For 0 5 i 5 n - 1 and z E X define 

fir&,%((X)) = gn,z(X; Xl, X2, 

and also define 

fin({X>) = &/h, k-1( {, 
k=l 

..,Xi), 

xl). 

Then fin, z and fin are random distributiom on X. The redundancy 
of fn is bounded below by 

R, = + c $(z)ln(~)+; c Pn(~)l%PLn(~) 
XEX" XEX" 

=-- ' C +&W+log&) 
n 

XEXfi 

+ ; c P"(X)l%P"(X) 
ZEX" 
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p”(X1, X2,‘..,Xn) 

%&,n(Xl,Xz,*..,Xn) 

fi P(xk) 
k,lgn,k-l(Xk; xl,"',xk-1) 

= :p{log ( fin;?$&))) 

. x&k) 1% 
dxk) 

lk 
gn,k-l(Xk; 21,"',2&1) 

= :${I(/& fin, k-l)} 

k=l 

=&/&&k-l) 
kc1 

where the last inequality follows from the convexity of I in the pair 
(p, fin, k-1) (cf. [5, Theorem 2.7.2, p. 301). 0 

Remark I: It follows from Theorem 1 that, if there is a universal 

uniquely decodable source code over a subset of the set of all discrete 
memoryless sources with finite entropy, then there is a distribution 

estimate consistent in expected information divergence for all sources 
in this subset. Namely, given the source probability distribution p and 

a uniquely decodable code fn, let fin be as constructed in Theorem 

1. Since R, -+ 0 for a weakly universal code for all sources in this 

subset (cf. (19) below), it follows from Theorem 1 that 

for all p in this class. 

II. ONE CANNOT ESTIMATE A DISCRETE INFINITE 

DISTRIBUTION CONSISTENTLY IN INFORMATION DIVERGENCE 

Theorem 2: If, for a discrete memoryless source with source 

alphabet X = (1, 2, 3,. . .}, {in} is an arbitrary sequence of 
estimates of the unknown source distribution p, then there is a p 

with H(n) < cc such that for all n 2 1 we have 

I(p, fin) = co a.s. (2) 

Proof: The proof consists of three major parts. First we describe 

a fairly small parametric family of distributions within which one can 
get (2) (Step 1). Next we investigate the properties of an arbitrary 

estimator for a certain member of this family (Step 2). The proof is 
completed by a randomization of the underlying parameter (Step 3). 

Step I) The parametric class C = {pc: c E P} of discrete 

distributions is defined as follows. Put 

Dk = {m E x: 2k 5 m < 2k+1}, k = 1, 2,... 

Then the parameter set P is the set of all sequences c such that the 

k - th element ck of c belongs to Dk, i.e., 

P= {c:c= cl, C2,“‘;Ck E Dk,k= 1, 2,...}. 

Now choose the fixed and known probability distribution {qk}, given 

by 

qk = 

C*@ ifk=2,3,,.. 

l/2 ifk=l, 

where 

c*= l 
ax:, 9 

Then 

-c 4/c bqk < 00, 

k 

and 

Fkqk = CO. 
k=l 

(3) 

Let Y be a random variable such that 

Pr {Y = 2k} = qk 

and let, for c E P, X be defined by 

x = F(Y, c) = -&+2k) 

(4) 

where IA denotes the indicator random variable of an event A. Then, 
for c E P the distribution pe of X is as follows: 

ifj = Ck 

otherwise. 

Hence, for all PC 
00’ 

H(M) = -Eqk logqk < 03. 

k=l 

(But note that, under PC, 

(5) 

E{logX} 2 Fkqk = LX.) (6) 
kc1 

Step 2) For all c the sets {&{j})} and {qk} are identical, the 

only unknowns are the locations ck of positive mass qk within Dk 
(k = 1, 2,. . .). Now let Yr, . . . , Y, be i.i.d. according to (4) and let 

Xl,... ,X, be defined by 

x; = F(y,, c), 

c E P, c fixed. If there is at least one X, from Xl, . . . , X, falling 

into Dk then we know the location ck. We assume without loss of 
generality that for fin applied to Xi,. . . , X, 

/h(Dk) = qk = Pc(Dk), n = 1, 2,. . . ) and k = 1, 2,.... 

(7) 
Otherwise if there is a k with j& (Dk) = 0 then I(,u, fin) = co and 

any other estimator can be considered as an improvement of Pn; and 
if for all k we have bn (Dk) > 0 then we make a partial normalization 

ih({.i}) = fin({.i})& if j E Dk 
71 

and would get by Lemma 1 (see Appendix) the improvement 

GL, fin) 2 G4 fin). 

Moreover, if p% denotes the standard empirical measure based on 
Xl,... , X,, then, if pLn(Dk) > 0 (which means that there is an X, 
falling into ok), we have 

h({i>) = /k({z’}) = qkl{i=c,.} if i E Dk. (8) 

Next, if we introduce 

x,(m) = m if m E Dk, 
qk 

then for k 2 k, we have p,(Dk) = 0. Assumption (7) implies that 

An(&) = 1, (10) 
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i.e., X, is a discrete probability measure on DL. From (8) and (9) 

it follows that 

I(PC, Pn) = 
k:pL,(Dk)=O mEDk 

k:pn(Dk)=O mED, 

2 2 c m({m))log & k G,(c, An, kn) 

k=k,mEDk 

(11) 

where in the last step we used that because of (10) 

C cle({m>)log & 2 0. 
mEDk 

Step 3) In order to prove (2) we shall show that there is a c such 
that 

Gn(c, An, kn) = 0~) for alln a.s. (12) 

For this purpose we use a randomization: let C be uniformly 

distributed on P, or equivalently, let Cl, CZ,. . . be independent 
random variables such that CI, is uniformly distributed on Dk. Also 

let Yi, Yz,... be i.i.d. according to (4), independent of C, and put 

r7-,=F(yz,C) i=l,2,.... 

Note that the conditional distribution of 2; given C = c is PC. Let 

Fk denote the u-algebra generated by Cl, . . . , Ck, Yi , Yz, . . . . The 

following facts can be easily verified. 
i) For m E Dk, p&(m)) iS a fUnCtiOU Of Ck. 

ii) On the event {k, = I<}, X,(m) is measurable on .?=K for 

m E Dk and k 2 h’. 
iii) The random variables {l{(k_=I()}, pc({m}); m E Dk}, k = 

K, K+l,... are conditionally independent given FK. Moreover 

c &?({m})log & = c Qk~{rn=C,} 1% & 

mEDk 77lCDk 

1 
= dOgX,ICk). (13) 

In order to prove (12) we shall show that for all n 

G,(C, A,, k,) = cc a.s. 

or, equivalently, that for all tr and all K 2 1, 

Gn(C, A,, K) = cc a.s. 

Let 

M -n, k = 
C 

m: m E Dk and x,(m) < 2; 
> 

, 

then we have by (10) 

1 Mn, k I> zk-‘, 

and since {k, = K} is Fk-measurable for all k, we have for any 

value of I< that 

Pr {kn = Ic, ck E Mn, k 1 FK} 2 ;I{b,=K) for k 2 K. 

(14) 
From (11) and (13) we have 

= cz(n, k, K)kqk - 1 
k=K 

where 

z(n, k, Ii’) = ~{k,=K}~{C@f,, k}. 

By iii), for fixed n and on the event {k, = K}, the random variables 
Z(n, k, K), k = K, K + 1,. . . are conditionally independent given 

FK. By (14) 

1 
Pr{Z(n, k, I~) = 1 1 Frc> 2 ZI{k,=K} for k 2 K. (16) 

Let 
m 

2 = cz(n, k, K)k,,. 
k=K 

We will prove that on the event {kn = K}, 2 = 00 as. given 

FK, which with (15) will complete the proof. This will be #done by 

proving that on the event {k, = K} we have E{Z 1 FK} = ~0 and 
also I 2 - E{Z 1 FK} I< CO a.s. given FK. By (16) we have 

E{Z. I{k,=K} 1 FK} 2 I{kn=K} 2 %. 

k=K 

Hence, by (3), on the event {k, = K} 

E{Z I TIC> = co. (17) 

Let wk = (Z(n, k, I() - E{Z(n, 5, K) 1 FIc})kqk, k 2. K. Then 

by iii) the wk’s, k = Ii’, I~ $ 1,. . . , are conditionally independent 

given FK and we have 

E{wk 1 FK} = 0 for k 2 K 

and by the definition of Z(n, k, K) 

fl: E{W; 1 -TK} 5 I{k,=K} ‘&‘u: < 03. (18) 
k=K k=K 

NOW, since the sequence {Wk; k 2 Ii} forms a martingale differ- 
ence sequence given Fr<, Corollary 2.8.5 of 16, p. 551 together with 
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(18) implies that on the event {k, = K} 

a.s. given FK. 

This with (17) proves that, given FI<, 2 = 00 a.s. on the event 

{k, = K}. Since 

Gn(C, An, kn) = .&k,,;b)Gn(C; A,, k) 
k=l 

we have thus shown that G,(C, X,, k,) = 00 as. for all n. Hence, 

by (11) there exists a c such that I(pc, j&) 2 G,(c, X,, kn) = 00 
for any given n. Together with (5) this shows the existence of a p 

with finite entropy such that (2) holds for all n 2 1. 0 

III. THEREISNO UNIVERSAL SOURCE CODEFOR 

AN INFINITELY DISCRETE SOURCE ALPHABET 

As in Davisson [7], a sequence of uniquely decodable codes fi, 

fz,... is called weakly universal for a class of sources if 

lim R, = 0 (19) n-03 

for all sources in this class. The following theorem implies that there 

is no universal code for the class of all discrete memoryless sources 
with infinite source alphabet and finite entropy. 

Theorem.3: For any sequence of source codes {fn} for an in- 

finitely discrete source alphabet there is a memoryless source with 
finite entropy such that 

R,=i,=m for all n. 

Proof: For a fixed n construct fin as in Theorem 1. Theorem 
2 shows, that for the sequence {&} there is a n with finite entropy 

such that I& b,) = 03 a.s. for all 12, hence E{I(p, fin)} = co 
for all 7 2 1. (1) implies that R, = co for all n, and, because 
H(p) < 03, we have i, = cc for all n. q 

Remark 2: In a private communication, J. C. Kieffer suggested 

(Condition 1 implies Condition 2 since denoting N = {vi, ~2, . . .} 

and defining v = Czi 2-‘v1 one can prove that I(y, V) < 03 for 
all k in M. The other direction of the equivalence is trivial.) 

Remark 3: For all distributions n of X from the class C defined 

in the proof of Theorem 2 we have (cf. (6)) 

E{logX} = CO. 

We recall (see [9]) that in the case of a countably discrete random 
variable 

E{logX} < 03 =G- H(p) < 03, 

so that it may happen that H(p) < CXJ and E{logX} = 03. Davisson 

[7, Theorem 81 has shown that if the source alphabet is infinitely 

discrete, then there is a universal code over a subset of the set of all, 
stationary and ergodic sources with finite entropy and with marginal 

distribution n if H(p) < 00 and I(n, V) < cc for some probability 
distribution u, i.e., he proved the sufficiency of Condition 2. 

In [lo] we generalized this result to show that there exists a weakly 

universal code over the class of all infinitely discrete memoryless 
sources with respect to which the expected codeword length of a 

given uniquely decodable code is finite. This latter condition implies 
that H(y) < 03 and the existence of a v such that I(n, V) < co. 

In [lo], it is shown how to construct a v with I(p, V) < CXJ if 
E{logX} < 03, so that in this case there is no negative result as far 
as universal source coding is concerned. 

Here we have given an example of a class of source distributions 
for which H ( II) < 03 but for which there is no universal source code. 

Since for a source distribution we typically have E{logX} < 03, 

our counterexample is mainly of theoretical interest. 

APPENDIX 

that the nonexistence at a weakly universal code over the class 
mentioned in Theorem 3 was known due to results in [8]. There he and 
proved that a necessary and sufficient condition for the existence of a 

weakly universal code for a subset M of the set of all stationary and 
ergodic sources over a certain countable alphabet is the following: 

Condition 1: There exists a countable set N of distributions on Then 

the source alphabet such that for all sources from M with marginal 

distribution n there is a uP E N such that 

Lemmal: Let{pik;iEDk,k=1,2,“‘}and{qik;iEDk,k= 
1,2,. . .} be probability distributions, and introduce the notations 

Bk = c Pjk > 0, 
jED,k 

qk = c Qjk > 0, 
jEDk 

fjk 
4ik = qikI&. 

He showed that Condition 1 doesn’t hold for the family of all 

stationary and ergodic sources over a countably infinite alphabet 
with finite entropy. His proof can be carried out also for the class 

of discrete memoryless sources with countably infinite alphabet and 
finite entropy. We stated a bit more in two respects. We constructed a 

smaller set of sources (the set of i.i.d. sources with marginals in C) for 

which a weakly universal code doesn’t exist and we proved not only 
the nonexistence but the stronger property, that there is a member of 

this set with R, = 03 for all n and for any code sequence. 
We point out that Condition 1 is equivalent to the following: 
Condition 2: There exists a distribution v such that for all sources 

from M with marginal distribution /I 

= T&log (2) + c c Pjklog (e) 
k jCD, 

1 I(P, 3. 0 
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On the Equivalence of McEliece’s and 
Niederreiter’s Public-Key Cryptosystems 

Yuan Xing Li, Member, IEEE, Robert H. Deng, 
and Xin Mei Wang, Member, IEEE 

Abstract-It is shown that McEliece’s and Niederreiter’s public-key 
cryptosystems are equivalent when set up for corresponding choices 
of parameters. A security analysis for the two systems, based on this 
equivalence observation, is presented. 

Index Terms-Cryptosystems, McEliece’s cryptosystem, Niederreiter’s 
cryptosystem, security, algebraic codes. 

I. INTRODUCTION 

Since the concept of public-key cryptosystems appeared in the 

fundamental paper of Diffie and Hellman [l] in 1977, the field of 

cryptology has undergone a dramatic development. The last decade 
has seen explosive growth in unclassified research in all aspects of 

cryptology. Public-key cryptosystem and cryptanalysis have been 
two of the most active areas. So far many kinds of public-key 
cryptosystems have been proposed, and many of them that had been 

thought to be secure have been broken. 

A special class of public-key cryptosystems were constructed 

based on algebraic error-correcting codes. In the present paper, 
we focus on two such systems, McEliece’s [2] and Niederreiter’s 

[3] cryptosystems, examine the relationship between the two, and 

derive the interesting result that the two systems are equivalent and 
have the same security when set up for corresponding choices of 

parameters. This result allows us to clarify the security evaluations 
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of Niederreiter’s cryptosystem, by Niederreiter [3] and by Brickell 

and Odlyzko [4]. Furthermore, we employ the best known attack, the 
Lee-Brickell attack [5], to cryptanalyze the two systems. Some new 

optimal parameter values and work factors are obtained. 
We briefly review McEliece’s and Niederreiter’s cryptosystems in 

Section II. The equivalence of the two systems is derived in Section 

III. Finally, we cryptanalyze the two systems and comment on the 

selection of optimal system-parameters in Section IV. 

II. MCELIECE'SAND NIEDERREITER'S CRYPTOSYSTEMS 

In this section, brief descriptions of McEliece’s and Niederreiter’s 

cryptosystems are presented in order to facilitate discussions in later 

sections. Both cvptosystems are algebraic-coded two-key systems. 
The basic idea behind them was to construct a linear error-correcting 
code for which a fast decoding algorithm is known, and then to 

disguise it as a general linear code whose decoding problem is 

NP-complete. 

A. McEliece’s Cryptosystem [2] 

This system uses a binary (n, k, 2t + 1) Goppa code C where n is 
the code length, k is the code dimension, and t is the error-correcting 
capability of C. C is constructed by randomly selecting an irreducible 

polynomial of degree t over GF(2’) as the Goppa polynomial (note 
that n = 2’). Let G be a k x n generator matrix of C [6], S any 
k x k nonsingular matrix, and P any n x n permutation matrix. 

l Private Key: G, S, P. 
l Public Key: G’ = SGP and t. 

l Messages: k bit vectors m over GF(2). 
l Encryption: e = mG’ + e. e, an n bit error vector with 

(Hamming) weight t. c, the n bit ciphertext. 
l Decryption: Since c = mSGP + e, cP-’ = (mS)G + eP-‘: 

Use a fast decoding algorithm for C to correct the error “eP-‘, 

find mS and thus m. 

McEliece investigated several attacks against his system. One of 
those was to factor the public key to obtain the private key, but 

this approach was thought to be hopeless. Another attack, considered 
as the most promising, was to pick k “error-free” elements of the 

ciphertext c, and then to solve a set of k linear equations to recpver the 
message m. Using this attack, McEliece suggested using n = 1024 
and t = 50, i.e., (1024, 524, 101) Goppa code in his system. The 

corresponding work factor of the system is approximately 280.7 [7]. 

B. Nederreiter’s Cryptosystem [3] 

This is a knapsack-type cryptosystem which employs an 
(n, k, 2t + 1) linear code C over GF(Q). Let a be an (n - k) x n 

parity check matrix of C, M any (n - k) x (n - k) nonsingular 
matrix, and P any n x n permutation matrix, all over GF(q). 

l Private Key: a, 1M, and P. 
l Public Key: H’ = MHP and t. 

l Messages: n dimensional vectors y over GF(q) with weight t. 

l Encryption: z = yE IT . z, the ciphertext of dimension 7~ - k. 

l Decryption: Since z = Y(MHP)~,z(M~)-’ = (yPT)HT. 

Use a fast decoding algorithm for C to find yPT and thus y. 

Niederreiter [3] cryptanalyzed his system and mentioned two 

example systems, one using a binary concatenated (104, 24, 31) code 
and the other using a (30, 12, 19) Reed-Solomon code over GF(31). 
The examples were later verified as insecure by Brickell and Odlyzko 
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