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ABSTRACT In this paper, one dimensional mathematical model of convective-conductive-radiative fins

is presented with thermal conductivity depending on temperature. The temperature field with insulated tip

is determined for a fin in convective, conductive and radiative environments. Moreover, an intelligent soft

computing paradigm named as the LeNN-WOA-NM algorithm is designed to analyze the mathematical

model for the temperature field of convective-conductive-radiative fins. The proposed algorithm uses

function approximating ability of Legendre polynomials based on artificial neural networks (ANN’s), global

search optimization ability of Whale optimization algorithm (WOA), and local search convergence of

Nelder-Mead algorithm. The proposed algorithm is applied to illustrate the effect of variations in coefficients

of convection, radiation heat losses, and dimensionless parameter of thermal conductivity on temperature

distribution of conductive-convective and radiative fins in convective and radiative environments. The

experimental data establishes the effectiveness of the design scheme when compared with techniques in the

latest literature. It can be observed that accuracy of approximate temperature increases with lower values

of Nc and Nr while decreases with increase in λ. The quality of solutions obtained by LeNN-WOA-NM

algorithm are validated through performance indicators including absolute errors, MAD, TIC, and ENSE.

INDEX TERMS Conductive-convective-radiative fin, Temperature-dependent thermal conductivity, Tem-

perature distribution, Weighted Legendre neural networks, Hybrid soft computing, Whale optimization

algorithm, Nelder Mead algorithm.

I. INTRODUCTION

H
EAT exchangers or fins are also known as extended sur-

faces which are commonly used as an element of heat

dissipation, that improves the performance and efficiency of

equipments [1]. Fins have various applications in air con-

ditioning, energy systems equipment, chemical processes,

heat exchanger, cooling systems for computer equipment and

refrigeration. Extended surfaces or fins are designed in differ-

ent shapes for a class of longitudinal fins with a cross section

much less than one dimensional (1D) extended surfaces

or length directional. In particular, temperature-dependent

behavior is revealed by thermal conductivity when dramatic

changes in temperature of the fins occurred. This results

in a nonlinear fin problem. Another source of nonlinearity

arises from radiation. For example, measurable results from

an experiment reveal that heat loss due to radiation is around
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15–20 percent of the total heat loss along a fin cooled by

natural convection and radiation [2]. As a result, radiation

heat transfer has a significant impact on heat exchanger

performance, particularly at high temperatures [3]. Thus,

similar to conduction and convection, radiation has a sub-

stantial influence on temperature distribution and is important

for increasing the thermal efficiency of fins, especially for

devices with a low convection heat transfer coefficient. Heat

transfer in fins is related to one dimensional nonlinear prob-

lem, where heat transfer coefficient and thermal conductivity

are temperature dependent. Effect of variations in thermal

conductivity and heat transfer of several nonlinear models

has been extensively studied in [4]–[10]. Various techniques

have been designed to study the approximate temperature

distribution of extended surfaces in convective-conductive

nonlinear fin problems. Chiu [11] and Arsalan [12] proposed

Adomain decomposition method to model analytical solution

in the form of power series. In addition, other numerical

methods that are used to find temperature distribution of

fins are homotopy perturbation method [13], [14], homotopy

analysis method [15], variational iteration method [16], [17],

differential transformation method [18], Galerkin’s method

[19] and the series method [20]. R.J. Moitsheki [21] applied

classical Lie symmetry techniques to find exact solutions

of the fin problem with a power-law temperature-dependent

thermal conductivity. Abbas [22] in 2017 calculate closed-

form solutions for heat transfer in a straight fin. In recent

times, Sheng-Wei Sun [23] studied the exact solution of

the nonlinear fin problem with exponentially temperature-

dependent thermal conductivity and heat transfer coefficient.

[24]–[30] recently focused on the study of optimization of

various nonlinear models representing physical phenomenon.

Radiation, in addition to convection, is another source of

heat loss. When heat loss through natural convection is

comparable to heat loss from an extended (fin) surface,

radiation heat loss cannot be neglected. Thus, for the devices

having a low convection heat transfer coefficient, convection

and radiation heat transfer coefficients play a vital role. Con-

vection and radiation heat transfer must be used to evaluate

high performances of convective, conductive, and radiative

extend surfaces (fins). Meanwhile, a strong nonlinear impact

on temperature is exhibited by radiation heat loss transfer.

Most of above listed methods have been designed to study

the thermal distribution and performance of conductive,

convective and radiative extend surfaces. DTM method is

developed by [31] to study convective and radiative fins with

thermal conductivity depending on temperature. [32] find

the series solution for convective radiative conduction equa-

tion of nonlinear fin with temperature-dependent thermal

conductivity. [33] studies a radial fin of uniform thickness

with convective heating at the base and convective–radiative

cooling at the tip. Generalized variational iteration method

is used by Miansari [34] to deal with nonlinear fin problem

with radiation heat loss. Atouei uses collocation method

[35], Runge-Kutta method [36] and least square method

[37] to analyze temperature distribution and performance

of radiative-convective semi-spherical extended surfaces.

Optimal linearization method (OLM) [38] was developed to

find approximate solutions for temperature field in convective

and radiative heat transfers. An integral equation method

is introduced by Y. Huang [39] to find an analytical and

approximate distribution of temperature and fin performance

for convective, conductive, and radiative fin. Multiple shape

fins along with longitudinal fins has been widely studied such

as T-shaped fins [40], [41], 2D orthotropic convection pin

fin [42], [43] and stepped fins [44], [45]. By considering,

Cattaneo-Christov heat flux model T. Hayat [28], [46] studied

the impact of variable thermal conductivity over a variable

thick surfaces. The classical lie point symmetry method

is applied by Mhlongo [47] to investigate the behavior of

temperature when subjected to heat flow jump and base tem-

perature jump. [48], [49] analyzed the mathematical model

of non-Fourier heat conduction on wet extended surfaces.

In recent times, the heat transfer performance of fin gained

the attention of researchers due to dramatic changes in the

behavior of fin with temperature variations. Thus, it becomes

necessary to design a method that can easily calculate the

distribution of temperature in a fin. Unlike approaches avail-

able in the literature, this paper focuses on strengthening

the concept of artificial neural networks (ANN’s). ANN

based meta heuristic algorithms are used to solve variety

of nonlinear problems arising in fluid dynamics [50]–[54],

civil engineering [55], [56], wire coating dynamics [57],

thermal engineering [58], [59], biomathematics [60]–[62],

financial marketing [63]–[65], fuzzy systems [66]–[68] and

petroleum engineering [69]. These potential application of

stochastic techniques encourage the authors to strengthen

computational ability of ANN’s based on Legendre neural

networks to study the temperature distribution of fins. The

innovative contribution of the given study are summarized as

follows:

• A mathematical model for temperature distribution of fin

with thermal conductivity in the conductive, convective and

radiative environment is presented.

• A novel computing paradigm is design by using function

approximating ability of orthogonal Legendre polynomials

with hybridization of the Whale optimization algorithm

(WOA) and the Nelder-Mead algorithm (NM). Proposed

methodology is named as LeNN-WOA-NM.

• Further, the design scheme is utilized to study the influence

of variations in coefficient of radiation and convection.

• The results obtained by design soft computing paradigm

are compared with integral method and exact solution which

shows the accuracy of design algorithm with minimum

absolute errors in the solutions.

• Verification and validation of the performance analysis

based on statistics in terms of standard deviations, mean

absolute deviations, absolute errors, Theil’s inequality co-

efficient, variance and error in Nash Sutcliffe efficiency for

design scheme have been evaluated by executing LeNN-

WOA-NM algorithm for 100 independent runs.
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FIGURE 1. Schematic of a conductive, convective and radiative fin.

II. PROBLEM FORMULATION

Consider a conductive-convective-radiative fin of length L

and cross-sectional A with a temperature-dependent thermal

conductivity shown in Figure 1. It is assumed that the fin is

made of isotropic solid material relatively long compared to

its cross-section. Moreover, the temperature at the base of

the fin in a convection environment is considered uniform.

By convection-radiation, heat is dissipated on the surface of

a fin, and heat transfer through the tip of the fin is neglected.

Stefan-Boltzmann’s law is obeyed by radiation when heat is

dissipated from the surface of fins. During the process, the

fin is at rest while heat flows in a steady state. Over the entire

surface of the fin, convection heat transfer coefficient Nc is

considered to be uniform while thermal conductivity k(T )
depends on temperature, which is defined as [70]

k(T ) = k [1 + λ′ (T − Ta)] , (1)

where ambient temperature is presented by Ta. When inner

temperature T of fins is equal to ambient temperature (T =
Ta) then k denotes thermal conductivity. Temperature change

is denoted by λ′ . At any cross section during flow of heat,

T is invariant and varies only with longitudinal directions.

Therefore, the phenomena presented in Figure 1 satisfies one

dimensional non-linear differential equation for heat transfer

which is given by Eq (2) [22].

d

dX

(
k(T )A

dT

dX

)
− Ph (T − Ta)− εσP

(
T 4 − T 4

s

)
= 0,

(2)

where 0 < X < L, ǫ is surface emissivity, h is convection

heat transfer coefficient, Stefan-Boltzmann constant is de-

noted by ρ and sink temperature for radiation is presented by

Ts. Now, introducing non-dimensional variables as follows

θ =
T − Ta

Tb − Ta
, x =

X

L
, l =

LP

A
, (3)

Nc = l2
hA

kP
, Nr = l2

εσAT 3
b

kP
, λ = λ′ (Tb − Ta) , (4)

temperature at base of fin is denoted by Tb and λ is dimen-

sionless parameter so, Eq (2) can be written as

d

dx

(
(1 + λθ)

dθ

dx

)
−Ncθ −Nrθ

4 = 0, 0 < x < 1, (5)

further, Eq (5) can be simplified to [71]

d2θ

dx2
+λθ

d2θ

dx2
+λ

(
dθ

dx

)2

−Ncθ−Nrθ
4 = 0, 0 < x < 1,

(6)

at fin tip (x = 0), loss of heat is negligible therefore, it

is assumed to be insulated. The boundary conditions for

conductive,convective and radiative fin with thermal conduc-

tivity can be defined as [11], [72]

dθ

dx
(0) = 0, θ(1) = 1. (7)

Despite exact solutions found by [21], [22], [39] for Eq (6)

with boundary conditions Eq (7), a novel soft computing

technique known as LeNN-WOA-NM algorithm is designed

to find analytical solution for conductive,convective and ra-

diative fin with thermal conductivity.

III. APPROXIMATE SOLUTION AND WEIGHTED

LEGENDRE NEURAL NETWORK (LENN) MODAL

The Legendre polynomials are denoted by Ln(x), where

n denotes order of Legendre polynomials. The set

L1, L2, L3, . . . , Ln constitutes the set of orthogonal polyno-

mials on [−1, 1]. First eleven Legendre polynomials are given

in Table 1 . Higher order Legendre polynomials are generated

TABLE 1. Legendre polynomials.

n Ln(x)

0 1

1 x

2 1

2

(

3x2 − 1
)

3 1

2

(

5x3 − 3x
)

4 1

8

(

35x4 − 30x2 + 3
)

5 1

8

(

63x5 − 70x3 + 15x
)

6 1

16

(

231x6 − 315x4 + 105x2 − 5
)

7 1

16

(

429x7 − 693x5 + 315x3 − 35x
)

8 1

128

(

6435x8 − 12012x6 + 6930x4 − 1260x2 + 35
)

9 1

128

(

12155x9 − 25740x7 + 18018x5 − 4620x3 + 315x
)

10 1

256

(

46189x10 − 109395x8 + 90090x6 − 30030x4 + 3465x2 − 63
)

by using a recursive relation given by Eq (8) [72].

Ln+1(x) =
1

n+ 1
[(2n+ 1)xLn(x)− nLn−1(x)] , (8)

We consider trial solution for Eq (6) presenting non-linear fin

problem with temperature dependent thermal conductivity as

θapprox(x) =
N∑

n=0

δnLn (ψnx+ ξn) , (9)

where δn, ψn and ξn are unknown neurons that would be

determined in course of solution. Figure 2 shows structure of

Legendre neural networks. As Eq (9) is continuous and dif-

ferentiable therefore θ′ and θ′′ can be calculated as following

θ′approx(x) =
N∑

n=1

δnL
′

n (ψnx+ ξn) , (10)
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FIGURE 2. Structure of Legendre Neural Network modal.

θ′′approx(x) =
N∑

n=4

δnL
′′

n (ψnx+ ξn) . (11)

Plugging, θ, θ′ and θ′′ in Eq (6) will model governing

differential equation of conductive, convective and radiative

fins. Mathematical model in terms of input, hidden and output

layers is shown in Figure 4.

A. THE WHALE OPTIMIZATION ALGORITHM

Whale optimization algorithm (WOA) is a nature-inspired

stochastic optimization technique developed by Mirjalili and

Lewis [73] which mimics the foraging of humpback whales.

It is a global search optimizer that utilizes population search

space to determine the global optimum solution for opti-

mization problems. Likewise, other population-based meta-

heuristic algorithms, WOA, start optimizing the given prob-

lem by generating random candidate solutions. It then im-

proves the set with each iteration until a satisfaction criterion

for an ending is achieved. WOA is inspired by the bubble net

hunting strategy of humpback whales as shown in Figure 3.

From Figure 3(b) it can be observed that hump back whales

encircles the prey by moving in spiral path and creating

bubbles along the way. The mathematical model for bubble

net mechanism is given by

~X(t+ 1) =

{
~X∗(t)− ~A ·D, if p < 0.5

D′ · ebl · cos(2πl) +
−→
X∗(t) if p ≥ 0.5,

(12)

where ”p” is a random value in [0,1], b is shape of logarith-

mic spiral and l is a random number in [-1,1]. X∗ represents

best solution obtained so far while D and D′ are defined by

following equations

D = | ~C ·
−−−→
Xrand − ~X|, (13)

D′ = |
−→
X∗(t)− ~X(t)|, (14)

~A and ~C are coefficient vectors and given as follows:

~A = 2~a · ~r − ~a, (15)

(a) Bubble-net behavior of humpback whales in nature

(b) The spiral movement of humpback whales

FIGURE 3. Bubble-net search mechanism implemented in WOA (a) shrinking

encircling mechanism and (b) spiral updating position.

~C = 2 · ~r. (16)

r is a random vector between [0,1] and a decreases linearly

from 2 to 0 with the course of iterations.

The first component of Eq (12) illustrates the encircling

mechanism, whereas the second mimics the bubble-net strat-

egy. The variable p switches between these two components

with an equal probability. Output X∗ depends on the value

of p. WOA starts the process with a set of random solutions.

At each iteration, update the position of search agents with
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respect to either a randomly chosen search agent or the best

solution obtained so far. Working procedure of the WOA

is shown through flow chart in Figure 5. Initial parameter

setting for WOA is given in Table 2.

B. NELDER-MEAD ALGORITHM

Nelder-Mead (NM) algorithm is a direct search method

known as the downhill simplex method developed by Nelder

and Mead in 1965 to solve different problems without any

information about the gradient [74]. NM is a single path

following a local search optimizer that can find good results if

initialized with a better initial solution. A simplex consisting

of n + 1 vertices is set up to minimize a function f with

n dimensions [75]. NM algorithm generates a sequence

of simplices by following four basic steps, named reflec-

tion, expansion, contraction, and shrink. Initially, the points(
x1, x2, . . . , xn+1

)
are generated and corresponding values

of objective function are evaluated.

Sorting: Objective values for corresponding vertices of

simplex are sorted to obtain centroid (x0), worst (xh), next

to worst (xnw) and best (xb) values in all points.

Reflection: In this step, reflection point xr is determined by

Eq (17).

xr = x0 + α
(
x0 − xh

)
, (17)

where α is reflection coefficient. If f
(
x1
)

≤ f (xr) <

f (xn+1) then iteration is terminated and ”xr” is accepted.

Expansion: The expansion point xe is computed by using the

equation given below

xe = x0 + γ
(
xr − x0

)
, (18)

If f (xe) ≤ f (xr) then xe would be accepted and iteration

will be stopped.

Contraction: If objective value at xr is strictly greater then

objective value at xnw then this steps contraction is applied.

a) If f (xr) < f(xh) then the outside contraction is applied

by using Eq. (19).

xoc = x0 + β
(
xr − x0

)
, (19)

β is an expansion coefficient b) If f (xr) > f(xh) then the

inside contraction is applied by using Eq. (20).

xic = x0 + β
(
xh − x0

)
, (20)

Shrinkage: It is a final step and the result is calculated by Eq.

(21).

xi = xi + γ
(
xb − xi

)
. (21)

where δ is shrink coefficient. The resulting simplex generated

by NM algorithm for succeeding iterations can be written as

X = xi, i = 1, 2, 3, . . . , n+ 1. Parameter setting for Nelder-

Mead algorithm are given in Table 2.

IV. LENN-WOA-NM ALGORITHM

The steps for the proposed hybridized algorithm are summa-

rized as:

Step 1: Initialization: Randomly generates an initial pop-

ulation using Eq (9), with number of parameters equal to

number of neurons in LeNN’s structure. Parameters setting

to initialize WOA is demonstrated in Table 2.

Step 2: Fitness evaluation: Calculate the fitness value for

each individual of candidate space by using Eq (22).

Step 3: Termination criteria: Terminate the process of

fitness evaluation, if any of the following termination criteria

is achieved.

• When maximum number of predefined iterations in

achieved.

• When fitness value ǫ ≤ 10−25.

Step 4: Ranking: Rank the individuals of the population on

the basis of values of the fitness function ǫ.

Step 5: Storage: Store the values of weights and fitness

function.

Step 6: Initialization of NM : Nelder-Mead algorithm is

used for further speedy fine tuning of the results, starting

with global best values of δn, ψn and ξn obtained by WOA.

Parameters setting for NM algorithm is shown in Table 2.

Step 7: Refinement: NM algorithm uses MATLAB built

in function "FMINSEARCH" to update the weights and

evaluate the fitness function using Eq (22). The execution

of the process stops when predefined stopping criteria is

attained.

Step 8: Storage: Store the refined best values of ζn, ψn and

θn along with fitness. The procedure in executed for 100

independent runs to obtain large set of statistical data.

LeNN-WOA-NM algorithm has a simple structure and

easy to implement. WOA updates the position of individ-

ual using global search ability and bubble net strategy of

humpback whales while NM algorithm further complements

its local convergence. Since, Legendre polynomials are or-

thogonal on [−1, 1] so the experimental analysis shows that

proposed algorithm converges to best solutions for number

of real-world problems by training the weights from the in-

terval [−1, 1]. It has been notices that convergence of design

scheme is slightly effected by increasing the domain.

V. CONSTRUCTION OF FITNESS FUNCTION

Fitness function ǫ is formulated on the basis of an unsuper-

vised error, which is defined as the sum of mean square errors

of Eq (6) and Eq (7) as

Minimize ǫ = ǫ̂1 + ǫ̂2, (22)

Minimize ǫ =
1

N

N∑

m=1

(
d2θm
dx2 + λθm

d2θm
dx2 + λ

(
dθm
dx

)2
−Ncθm −Nrθ

4
m

)2

+
1

2

((
dθ

dx
(0)

)2

+ (θ(1)− 1)2

)
,

(23)

where N = 1

h
and h is a step size.
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FIGURE 4. Structure of Legendre polynomials based neural networks for conductive-convective and radiative fins.

TABLE 2. Description of parameter settings for design algorithm.

Algorithm Parameters Settings Parameters Settings

LeNN-WOA Technique Metaheuristic Candidate selection Random search

Max. Iterations 5,000 Function tolerance 10−18

Bounds (Lb, Ub) [-1,1] Fitness Limit 10−20

Search agents 70 Other settings Default

NM Initialization Global best solution of WOA X-Tolerance ‘TolX’ 1.00E-20

Function evaluations 150,000 Max. iter 2,000

Fitness Limit 10−20 Other settings Default

VI. PERFORMANCE MEASURES

To examine the accuracy and convergence of design scheme

(LeNN-WOA-NM), in obtaining solutions for different prob-

lems of conductive-convective and radiative fins with thermal

conductivity, performance measures are defined in term of

fitness evaluation, mean absolute deviation (MAD), Theil’s

inequality coefficient (TIC) and error in Nash Sutcliffe effi-

ciency (ENSE). Mathematical formulation for these indices

are given below [69].

MAD =
1

n

n∑

m=1

|θ(x)− θapprox(x)| , (24)

TIC =

√
1

n

∑n

n=1
(θ(x)− θapprox(x))

2

(
√

1

n

∑n

n=1
(θ(x))2 +

√
1

n

∑n

n=1
(θapprox(x))2)

,

(25)

NSE =





1−

∑n

n=1
(θ(x)− θapprox(x))

2

∑n

n=1

(
(θ(x)− θ̂(x)

)
2

, θ̂(x) =
1

n

n∑

m=1

θ(x),

(26)

ENSE = 1−NSE. (27)

where, n denote a grid points.

VII. NUMERICAL EXPERIMENTATION

In this section, we have defined different problems to study

the influence of variations in coefficients of convective heat

loss Nc, coefficient of radiative heat lost Nr and dimension-

less parameter of thermal conductivity λ on temperature dis-

tribution of conductive-convective-radiative fins with thermal

conductivity. Problems along with different cases studied in
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Problem
Conductive, Convective and Radiative Fins with 
Temperature Dependent Thermal Conductivity

Proposed 
Technique 

LeNN-WOA-NM Algorithm

Hybrid Computing Framework of WOA-NM 
Algorithm

Optimization

Whale Optimization Algorithm Nelder Mead Algorithm

Initialize the whales population 
(Candidate space)

Calculate |A| for each search 
agent

Calculate the fitness of each 
search agent

Position of each search agent 
updated according to |A| 

Update X* if there is better 
solution

Maximum 
Number if 
iterations 
reached?

Population of n best solution is 
attained

A simplex is generated
using best solution obtain in

WOA

Fitness Evaluation

Significant Progress 

Shrink

Minimum Value 
attained

Display best result

Substitute one Point 

No

Yes

No Yes

Yes

No

Storage
Fitness Values,

Unknown 
parameters

Approximate 
solutions

Absolute Errors

FIGURE 5. Graphical overview of WOA-NM Algorithm
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Mathematical Model 
𝑑2𝜃𝑑𝑥2 + 𝜆𝜃 𝑑2𝜃𝑑𝑥2 + 𝜆 (𝑑𝜃𝑑𝑥)2 − 𝑁𝑐𝜃 − 𝑁𝑟𝜃4 = 0,     0 < 𝑥 < 1 

𝑑𝜃𝑑𝑥 (0) = 0,   𝜃(1) = 1 

Problem I Problem II Problem III Problem IV 

𝑁𝑟 = λ = 0 𝑁𝑟 = 𝑁𝑐 = 1 

Case I 𝑁𝑐 = 0.5 

Case II 

Case III 

Case IV
 

Case III 

𝑁𝑐 = 1 

𝑁𝑐 = 2 

𝑁𝑐 = 4 

Case I λ = 1 Case I λ = 1 Case I λ = 1 

Case II 

Case III 

λ = 2 

λ = 3 

Case II 

Case III λ = 3 

λ = 2 Case II 

Case III λ = 3 

λ = 2 

𝑁𝑟 = 2, 𝑁𝑐 = 1 𝑁𝑟 = 3, 𝑁𝑐 = 1 

FIGURE 6. Graphical overview of problems along with different cases studied in this paper.

this paper are presented in the flow chart through Figure 6.

Problem I : Effect of Variations in Nc on temperature

distribution with no resemblance of radiation heat loss

and λ.

In this problem, the proposed technique is applied to study

the influence of Nc on temperature distribution of fins with

neglected radiation heat loss Nr = 0 and dimensionless

parameter of thermal conductivity λ = 0. The fitness

function for this problem is formulated as

ǫ =
1

N

N∑

m=1

(
d2θm
dx2 −Ncθm

)
2

+
1

2

((
θ
′(0)

)2
+ (θ(1)− 1)2

)
,

(28)

where 0 ≤ x ≤ 1. Following four cases are considered.

Case I: Eq (28) with Nc = 0.5.

Case II: Eq (28) with Nc = 1.0.

Case III: Eq (28) with Nc = 2.0.

Case IV: Eq (28) with Nc = 4.0.

Problem II : Effect of Variations in dimensionless param-

eter of thermal conductivity λ on temperature distribu-

tion with Nc = Nr = 1.

In this problem, influence of variations in λ on temperature

distribution of conductive, convective and radiative fins is

considered with Nc = Nr = 1. Fitness function for this

problem is formulated as

Minimize ǫ =
1

N

N∑

m=1

(
d2θm
dx2 + λθm

d2θm
dx2 + λ

(
dθm
dx

)2
−θm − θ4m

)2

+
1

2

((
dθ

dx
(0)

)2

+ (θ(1)− 1)2

)
,

(29)

where 0 ≤ x ≤ 1, different cases for Eq (29) depending

on dimensionless parameter of thermal conductivity are

considered as follows.

Case I: Eq (29) with λ = 1.0.

Case II: Eq (29) with λ = 2.0.

Case III: Eq (29) with λ = 3.0.

Problem III : Effect of Variations in dimensionless pa-

rameter of thermal conductivity λ on temperature distri-

bution with Nc = 1 and Nr = 2.

In this problem, influence of variations in dimensionless

parameter of thermal conductivity on for temperature distri-

bution of conductive, convective and radiative fin is studied

with coefficient of convective heat loss (Nc = 1 ) and

coefficient of radiative heat loss Nr = 2. Fitness function

for given problem can be written as

Minimize ǫ =
1

N

N∑

m=1

(
d2θm
dx2 + λθm

d2θm
dx2 + λ

(
dθm
dx

)2
−θm − 2θ4m

)2

+
1

2

((
dθ

dx
(0)

)2

+ (θ(1)− 1)2

)
,

(30)

Three cases on bases os dimensionless parameter of thermal

conductivity λ are considered to study its effect on tempera-
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ture distribution of fin.

Case I: Eq (30) with λ = 1.0.

Case II: Eq (30) with λ = 2.0.

Case III: Eq (30) with λ = 3.0.

Problem IV : Effect of Variations in dimensionless pa-

rameter of thermal conductivity λ on temperature distri-

bution with Nc = 1 and Nr = 3.

In this problem, effect on variations in thermal conductivity

on temperature distribution of conductive, convective and

radiative fins is considered with coefficients of convective

heat loss Nc = 1 and coefficient of radiative heat loss

Nr = 3. Fitness based error function for this problem is

formulated as

Minimize ǫ =
1

N

N∑

m=1

(
d2θm
dx2 + λθm

d2θm
dx2 + λ

(
dθm
dx

)2
−θm − 3θ4m

)2

+
1

2

((
dθ

dx
(0)

)2

+ (θ(1)− 1)2

)
,

(31)

Following cases on basis of changes in dimensionless param-

eter of thermal conductivity are considered as follows

Case I: Eq (31) with λ = 1.0.

Case II: Eq (31) with λ = 2.0.

Case III: Eq (31) with λ = 3.0.

VIII. RESULTS AND DISCUSSION

This paper has analyzed the mathematical model for tem-

perature distribution of conductive, convective, and radiative

fins with thermal conductivity. The model given by Eq (6)

depends on different parameters named as the coefficient of

conductive heat loss, coefficient of radiative heat loss, and

dimensionless parameter of thermal conductivity. Further-

more, a new soft computing algorithm is designed to study

the influence of parameters on temperature distribution of

conductive-convective and radiative fins. The behavior of ap-

proximate solutions is discussed with trained neurons from [-

1,1]. Results obtained by the proposed method are compared

with exact solutions, and approximate solution by integration

method [71], decomposition method [11], Galerkin method

[70] and simplex search method [76].

To study the performance of the proposed technique by ob-

taining solutions to different cases of each problem, hundred

independent simulations have been carried out. Figures 7-14

demonstrates the comparison of best and worst approximate

solutions with exact solution along with absolute minimum

errors for temperature distribution of each case of problem I,

II, III, and IV, respectively. It can be observed from Figure

7 that with neglecting coefficient of radiation and thermal

conductivity, temperature distribution of fin decreases and

becomes strong convective with increasing coefficient of con-

vection (Nc = 0.5, 1, 2, 4). Furthermore, in the presence of

radiation heat loss and thermal conductivity from fin surface

we consider Nr = 1, 2, 3 and λ = 1, 2, 3, since these non

dimensionless parameters covers most of practical cases [1].

It can be viewed from Figure 9,11 and 13 that with increasing

value of thermal conductivity (λ), temperature at fin tip rises

and the accuracy of temperature distribution becomes higher.

In addition, it can be witnessed that with increasing value of

coefficient of convection, the temperature distribution of fin

rises with fixed values of thermal conductivity and coefficient

of radiation. Plots of best weights obtained by design scheme

for calculating temperature distribution of each case of differ-

ent problem are shown in Figures 15-18. Box plots for fitness

evaluation, MAD, TIC, and ENSE are shown in Figures 19-

22. It can be seen that mean values of fitness function and

performance indicators lies around 10−4 to 10−6, 10−3 to

10−5, 10−4 to 10−5 and 10−3 to 10−6 respectively. The

bar graphs are shown in Figures 23-26 represent minimum,

mean, median, mode, standard deviation, and variance of

fitness value and performance indices obtained by proposed

algorithm 100 independent runs.

Approximate solutions obtained by the LeNN-WOA-NM

algorithm for different cases of problems I, II, III, and IV

are compared with the exact solution and integral method

as dictated in Tables 3 and 4. Maximum and minimum

absolute errors (AE) of the proposed technique for each case

of different problems are given in Tables 5-8. Minimum AE’s

for case I, II, III and IV of problem I lies between 10−11

to 10−14, 10−12 to 10−14, 10−11 to 10−14 and 10−9 to

10−13 respectively. Minimum AE’s for case I, II, and III

of problem II lies between 10−9 to 10−12, 10−10 to 10−13

and 10−9 to 10−11 respectively. Minimum AE’s for case

I, II and III of problem III lies between 10−9 to 10−13,

10−10 to 10−13 and 10−10 to 10−12 respectively. Minimum

AE’s for case I, II and III of problem IV lies between 10−9

to 10−10, 10−9 to 10−12 and 10−10 to 10−11 respectively.

Statistics of fitness value, MAD, TIC, and ENSE in terms

of minimum, mean, median, mode, standard deviation and

variance are demonstrated through Tables 9-12. It can be seen

that the minimum value of fitness function for the problem I,

II, III and IV lies around 10−13, 10−10, 10−11 and 10−10

respectively. Unknown neurons in LeNN structure optimized

by design algorithm for obtaining best solutions for tem-

perature distribution of conductive, convective and radiative

fins with thermal conductivity. Convergence analysis of the

proposed algorithm for each case of problem I-IV is given in

Table 17. Statistical results and Figures 27 demonstrates the

effectiveness and accuracy of the proposed algorithm.
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TABLE 3. Comparison between temperature distributions obtained by exact, Integral method and proposed computing technique for different values of Nc with

Nr = λ = 0.

Nc = 0.5 Nc = 1.0 Nc = 2.0 Nc = 4.0

x Integral Method Exact LeNN-WOA-NM Integral Method Exact LeNN-WOA-NM Integral Method Exact LeNN-WOA-NM Integral Method Exact LeNN-WOA-NM

0.0 0.7931 0.7933 0.7933 0.6471 0.6481 0.6481 0.4545 0.4591 0.4591 0.2500 0.2658 0.2658

0.1 0.7952 0.7953 0.7953 0.6506 0.6513 0.6513 0.4607 0.4637 0.4637 0.2609 0.2711 0.2711

0.2 0.8012 0.8012 0.8012 0.6608 0.6611 0.6611 0.4761 0.4776 0.4776 0.2818 0.2874 0.2874

0.3 0.8113 0.8112 0.8112 0.6776 0.6774 0.6774 0.5011 0.5010 0.5010 0.3138 0.3151 0.3151

0.4 0.8255 0.8252 0.8252 0.7013 0.7006 0.7006 0.5361 0.5345 0.5345 0.3579 0.3555 0.3555

0.5 0.8438 0.8434 0.8434 0.7320 0.7308 0.7308 0.5816 0.5787 0.5787 0.4155 0.4102 0.4102

0.6 0.8663 0.8658 0.8658 0.7699 0.7682 0.7682 0.6384 0.6345 0.6345 0.4884 0.4813 0.4813

0.7 0.8932 0.8925 0.8925 0.8154 0.8134 0.8134 0.7073 0.7030 0.7030 0.5789 0.5717 0.5717

0.8 0.9243 0.9236 0.9236 0.8686 0.8667 0.8667 0.7895 0.7856 0.7856 0.6906 0.6851 0.6851

0.9 0.9599 0.9594 0.9594 0.9300 0.9287 0.9287 0.8864 0.8840 0.8840 0.8245 0.8260 0.8260

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000

TABLE 4. Comparison between temperature distribution for PROBLEM II, III and IV obtained by proposed algorithm for variations in λ with fixed value of coefficient

of convective heat loss (Nc = 1).

λ = 1.0 λ = 2.0 λ = 3.0

x Nr Integral Method Exact LeNN-WOA-NM Integral Method Exact LeNN-WOA-NM Integral Method Exact LeNN-WOA-NM

0 1 0.6987 0.7063 0.7063 0.7708 0.7742 0.7742 0.8147 0.8165 0.8165

2 0.6396 0.6578 0.6578 0.7170 0.7258 0.7258 0.7656 0.7706 0.7706

3 0.5917 0.6223 0.6223 0.6739 0.6896 0.6896 0.7261 0.7353 0.7353

0.3 1 0.7303 0.7316 0.7316 0.7938 0.7942 0.7942 0.8328 0.8329 0.8329

2 0.6823 0.6860 0.6860 0.7480 0.7494 0.7494 0.7901 0.7907 0.7907

3 0.6458 0.6524 0.6524 0.7128 0.7156 0.7156 0.7567 0.7580 0.7580

0.6 1 0.8093 0.8085 0.8085 0.8543 0.8545 0.8545 0.8818 0.8822 0.8822

2 0.7738 0.7730 0.7730 0.8201 0.8211 0.8211 0.8500 0.8514 0.8514

3 0.7468 0.7461 0.7461 0.7936 0.7954 0.7954 0.8248 0.8271 0.8271

TABLE 5. Maximum and minimum absolute errors (AE) in solutions of design scheme for cases of Problem I.

Nc = 0.5 Nc = 1.0 Nc = 2.0 Nc = 4.0

x Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE

0.0 1.90E-07 1.20E-11 3.05E-06 1.65E-13 4.25E-07 1.64E-11 1.09E-04 1.52E-10

0.1 1.60E-07 4.32E-11 1.48E-07 2.93E-13 2.32E-06 9.86E-11 4.00E-05 1.15E-09

0.2 1.90E-07 1.70E-12 1.42E-06 3.05E-13 2.53E-09 1.07E-11 8.14E-05 1.79E-10

0.3 1.11E-08 1.70E-11 1.26E-06 6.48E-14 1.50E-06 4.22E-11 1.81E-05 7.65E-10

0.4 6.29E-08 1.84E-11 3.30E-07 7.08E-13 7.45E-07 3.58E-14 5.59E-06 6.84E-13

0.5 1.71E-07 3.91E-14 1.35E-08 2.63E-13 1.70E-07 2.80E-11 4.43E-05 7.46E-10

0.6 8.86E-08 1.58E-11 4.64E-07 2.38E-13 1.78E-06 5.05E-12 3.97E-05 2.32E-10

0.7 1.71E-09 1.67E-11 8.59E-07 1.18E-12 8.46E-07 1.97E-11 1.80E-06 4.98E-10

0.8 1.58E-07 7.41E-13 5.41E-07 5.07E-14 5.56E-07 1.34E-11 2.83E-05 6.87E-10

0.9 1.74E-07 3.44E-11 6.01E-09 2.24E-12 3.66E-06 5.21E-11 5.48E-05 1.19E-09

1.0 1.60E-07 8.13E-12 9.79E-07 3.83E-13 1.62E-06 8.35E-12 2.84E-05 1.01E-10

TABLE 6. Maximum and minimum absolute errors (AE) in solutions of design scheme for cases of Problem II.

λ = 1.0 λ = 2.0 λ = 3.0

x Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE

0 9.25E-06 7.25E-11 1.49E-05 3.77E-11 8.97E-06 2.22E-10

0.1 3.39E-05 6.23E-10 1.07E-05 4.45E-10 7.27E-05 2.21E-09

0.2 5.56E-06 1.38E-10 1.41E-05 2.52E-10 2.64E-05 7.38E-10

0.3 1.56E-05 4.69E-10 1.35E-06 1.86E-10 2.46E-05 1.22E-09

0.4 3.28E-05 4.90E-12 3.32E-06 8.06E-11 7.25E-06 9.07E-11

0.5 1.61E-06 6.11E-10 1.18E-05 2.68E-10 2.20E-05 1.40E-09

0.6 2.86E-05 1.89E-10 7.75E-06 5.70E-13 2.96E-07 1.89E-10

0.7 4.93E-05 5.24E-10 4.68E-09 2.55E-10 1.57E-05 1.05E-09

0.8 6.05E-07 8.23E-10 1.05E-05 5.89E-11 3.79E-08 8.89E-10

0.9 1.28E-04 1.54E-09 1.55E-05 3.37E-10 6.46E-06 2.04E-09

1 3.42E-05 1.52E-10 1.17E-05 3.98E-11 1.18E-06 1.89E-10
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TABLE 7. Maximum and minimum absolute errors (AE) in solutions of design scheme for cases of Problem III.

λ = 1.0 λ = 2.0 λ = 3.0

x Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE

0 6.21E-05 4.23E-11 7.48E-06 4.15E-13 3.22E-06 1.51E-11

0.1 3.10E-04 7.68E-10 1.18E-05 1.66E-11 3.89E-06 2.36E-10

0.2 3.04E-11 1.31E-09 1.08E-05 5.75E-11 1.92E-06 3.01E-10

0.3 1.66E-04 1.64E-13 1.53E-07 1.44E-12 8.59E-08 1.39E-11

0.4 8.15E-05 8.40E-10 7.24E-06 6.50E-11 1.61E-06 2.02E-10

0.5 1.63E-05 4.45E-12 1.78E-05 1.03E-13 1.02E-06 2.47E-11

0.6 1.67E-04 6.88E-10 1.03E-05 9.89E-11 2.82E-09 1.62E-10

0.7 7.32E-05 8.13E-12 1.86E-07 9.54E-13 8.29E-07 2.94E-11

0.8 4.81E-05 7.33E-10 2.62E-05 2.00E-10 3.99E-07 2.39E-10

0.9 2.83E-04 2.92E-10 3.92E-05 1.07E-10 3.80E-07 7.10E-11

1 1.18E-04 1.15E-11 3.97E-05 5.45E-12 2.10E-11 2.32E-12

TABLE 8. Maximum and minimum absolute errors (AE) in solutions of design scheme for cases of Problem IV.

λ = 1.0 λ = 2.0 λ = 3.0

x Maximum AE Minimum AE Maximum AE Minimum AE Maximum AE Minimum AE

0 3.05E-04 2.15E-09 2.07E-06 1.70E-10 6.55E-05 6.89E-11

0.1 6.96E-05 1.78E-08 5.50E-06 1.90E-09 5.69E-05 4.04E-10

0.2 2.35E-04 4.92E-09 1.23E-06 1.39E-09 7.37E-05 2.42E-11

0.3 1.06E-04 6.84E-09 1.40E-06 3.12E-10 6.95E-06 2.06E-10

0.4 1.74E-07 2.44E-10 4.41E-06 8.83E-10 2.03E-05 8.77E-12

0.5 1.71E-04 5.23E-09 8.71E-07 3.54E-10 7.48E-05 1.18E-10

0.6 1.92E-04 1.55E-09 1.74E-06 6.54E-10 5.45E-05 9.71E-11

0.7 5.36E-05 2.10E-09 6.00E-06 3.30E-10 3.25E-07 4.11E-11

0.8 6.25E-05 6.61E-09 1.89E-07 1.16E-09 7.23E-05 2.05E-10

0.9 3.61E-04 7.90E-09 1.19E-05 2.59E-10 1.27E-04 1.95E-10

1 1.30E-04 5.51E-10 2.16E-06 4.11E-12 9.03E-05 1.23E-11

TABLE 9. Comparison through performance indices for each case of problem I obtained during 100 independent execution of proposed technique.

Cases Min Mean Median Mode Std. Var.

Nc = 0.5 1.53E-11 3.94E-06 1.08E-07 1.53E-11 2.31E-05 5.36E-10
Nc = 1.0 5.36E-13 3.47E-06 9.79E-08 5.36E-13 1.38E-05 1.91E-10

Fit Nc = 2.0 2.68E-11 3.01E-05 4.79E-07 2.68E-11 2.10E-04 4.40E-08
Nc = 4.0 5.19E-10 1.10E-04 4.97E-06 5.19E-10 6.01E-04 3.61E-07

Nc = 0.5 1.83E-05 5.40E-05 2.79E-05 1.83E-05 1.10E-04 1.21E-08
Nc = 1.0 2.46E-05 5.30E-05 2.95E-05 2.46E-05 8.63E-05 7.44E-09

MAD Nc = 2.0 2.42E-05 1.06E-04 3.00E-05 2.42E-05 3.49E-04 1.22E-07
Nc = 4.0 1.90E-05 2.50E-04 4.55E-05 1.90E-05 9.72E-04 9.45E-07

Nc = 0.5 6.09E-06 1.73E-05 9.22E-06 6.09E-06 3.28E-05 1.07E-09
Nc = 1.0 8.83E-06 1.97E-05 1.07E-05 8.83E-06 3.13E-05 9.78E-10

TIC Nc = 2.0 9.73E-06 4.34E-05 1.34E-05 9.73E-06 1.32E-04 1.74E-08
Nc = 4.0 1.15E-05 1.27E-04 2.53E-05 1.15E-05 4.76E-04 2.26E-07

Nc = 0.5 8.04E-07 3.57E-05 1.88E-06 8.04E-07 2.67E-04 7.12E-08
Nc = 1.0 5.07E-07 8.50E-06 7.27E-07 5.07E-07 5.00E-05 2.50E-09

ENSE Nc = 2.0 2.09E-07 4.72E-05 3.21E-07 2.09E-07 3.74E-04 1.40E-07
Nc = 4.0 7.12E-08 1.98E-04 4.09E-07 7.12E-08 1.75E-03 3.08E-06
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TABLE 10. Comparison through performance indices for each case of problem II obtained during 100 independent execution of proposed technique.

Cases Min Mean Median Mode Std. Var.

λ = 1.0 4.68E-10 3.18E-05 1.85E-06 4.68E-10 1.16E-04 1.36E-08
Fit λ = 2.0 1.78E-10 5.24E-05 1.12E-06 1.78E-10 3.45E-04 1.19E-07

λ = 3.0 9.31E-10 2.03E-05 9.69E-07 9.31E-10 1.16E-04 1.34E-08

λ = 1.0 1.80E-05 2.12E-04 3.54E-05 1.80E-05 9.61E-04 9.23E-07
MAD λ = 2.0 7.62E-06 1.43E-04 2.53E-05 7.62E-06 4.83E-04 2.33E-07

λ = 3.0 2.47E-05 8.51E-05 3.23E-05 2.47E-05 2.19E-04 4.79E-08

λ = 1.0 6.34E-06 6.39E-05 1.13E-05 6.34E-06 2.83E-04 8.00E-08
TIC λ = 2.0 3.25E-06 4.14E-05 8.78E-06 3.25E-06 1.33E-04 1.78E-08

λ = 3.0 7.90E-06 2.44E-05 9.87E-06 7.90E-06 5.77E-05 3.33E-09

λ = 1.0 3.87E-07 1.10E-03 1.50E-06 3.87E-07 1.10E-02 1.21E-04
ENSE λ = 2.0 1.17E-07 5.05E-04 1.29E-06 1.17E-07 4.20E-03 1.74E-05

λ = 3.0 1.85E-06 1.66E-04 3.17E-06 1.85E-06 1.10E-03 1.12E-06

TABLE 11. Comparison through performance indices for each case of problem III obtained during 100 independent execution of proposed technique.

Cases Min Mean Median Mode Std. Var.

λ = 1.0 4.27E-10 8.05E-05 6.49E-06 1.63E-07 1.87E-04 3.49E-08
Fit λ = 2.0 5.03E-11 8.63E-05 3.94E-06 5.03E-11 4.55E-04 2.07E-07

λ = 3.0 1.18E-10 6.17E-05 3.41E-06 1.18E-10 3.11E-04 9.68E-08

λ = 1.0 3.16E-05 5.50E-04 6.47E-05 3.23E-05 0.0012 1.55E-06
MAD λ = 2.0 1.67E-05 4.87E-04 3.85E-05 1.67E-05 0.0022 4.69E-06

λ = 3.0 2.10E-05 1.34E-04 3.97E-05 2.10E-05 3.16E-04 1.00E-07

λ = 1.0 1.05E-05 1.70E-04 2.25E-05 1.07E-05 3.79E-04 1.44E-07
TIC λ = 2.0 5.62E-06 1.44E-04 1.35E-05 5.62E-06 6.39E-04 4.09E-07

λ = 3.0 6.92E-06 3.86E-05 1.23E-05 6.92E-06 8.85E-05 7.84E-09

λ = 1.0 8.86E-07 1.60E-03 3.72E-06 9.24E-07 1.00E-02 9.91E-05
ENSE λ = 2.0 3.81E-07 6.70E-03 2.03E-06 3.81E-07 5.94E-02 3.50E-03

λ = 3.0 8.61E-07 2.28E-04 3.08E-06 8.61E-07 1.40E-03 2.10E-06

TABLE 12. Comparison through performance indices for each case of problem IV obtained during 100 independent execution of proposed technique.

Cases Min Mean Median Mode Std. Var.

λ = 1.0 5.08E-09 3.42E-04 7.17E-05 1.91E-06 5.58E-04 3.11E-07
Fit λ = 2.0 6.75E-10 9.65E-05 6.14E-06 6.75E-10 3.40E-04 1.16E-07

λ = 3.0 1.26E-10 2.71E-04 4.47E-06 1.26E-10 2.20E-03 4.81E-06

λ = 1.0 2.29E-05 0.0023 4.60E-04 2.33E-05 3.80E-03 1.47E-05
MAD λ = 2.0 1.88E-05 4.65E-04 5.15E-05 1.88E-05 1.10E-03 1.25E-06

λ = 3.0 1.72E-05 6.10E-04 3.44E-05 1.72E-05 2.50E-03 6.05E-06

λ = 1.0 8.96E-06 7.33E-04 1.47E-04 9.07E-06 1.20E-03 1.56E-06
TIC λ = 2.0 7.48E-06 1.40E-04 1.77E-05 7.48E-06 3.33E-04 1.11E-07

λ = 3.0 5.61E-06 1.76E-04 1.10E-05 5.61E-06 7.06E-04 4.99E-07

λ = 1.0 3.86E-07 1.44E-02 1.55E-04 3.99E-07 4.53E-03 2.10E-03
ENSE λ = 2.0 3.82E-07 1.60E-03 2.85E-06 3.82E-07 6.80E-03 4.60E-05

λ = 3.0 4.35E-07 9.40E-03 1.75E-06 4.35E-07 8.25E-03 6.80E-03
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TABLE 13. Neurons in LeNN structure obtained by proposed technique for different cases of Problem I.

Nc = 0.5 Nc = 1.0 Nc = 2.0 Nc = 4.0

Index δn ψn ξn δn ψn ξn δn ψn ξn δn ψn ξn

1 -0.0056999 0.56339002 -0.4606574 -0.0814582 1.88462856 -3.3836816 0.22351245 -0.6663826 0.505491167 -0.2122688 -0.41265014 0.020059708

2 -0.9421679 -1.3079032 -0.3347157 -0.0148904 0.70707834 0.41276378 0.47656437 0.69545047 -0.27470296 1.103411242 -0.11144084 -0.01324012

3 0.06428925 0.00505866 -0.3683929 0.57864707 -0.03647 0.06739899 -0.2893142 0.27282928 -0.0116783 -0.37337654 -0.44440324 0.617963109

4 1.05284074 -0.002407 -0.7056344 0.75272266 -0.1936297 -0.0952606 0.03550429 0.42879053 0.448110716 0.695542738 -0.4810622 0.021505784

5 -1.0861276 -0.0099081 0.45922171 0.79960221 0.24060228 -0.0780438 0.60619246 0.00047626 0.422966552 0.85462366 -0.11822472 -0.00887714

6 -0.3813831 0.06902592 0.10915186 -0.3925408 0.06408482 0.09491794 0.71804765 0.29094246 0.077154613 -0.82450308 -0.46530213 -0.05750548

7 2.77693591 -0.3620337 -0.9233865 -1.3871735 -0.3122319 0.02719796 0.83045925 -0.2303568 0.763937695 0.335412263 -0.36612741 0.210247339

8 -0.0004241 -0.0242191 -0.1480398 0.00096331 -0.2407119 -0.6555106 0.14458446 -0.2213035 0.25368457 -0.50587932 -0.20844397 -0.25911716

9 -1.8180972 0.00272134 -0.4997041 0.00816391 -0.01006 0.17454087 0.38877955 0.25946848 0.274271687 0.04196392 -0.07186884 -0.97234379

10 0.74914235 0.14024229 -0.2704175 0.46113581 -0.065251 0.99325379 0.05314317 0.09101029 0.121209977 -0.38475254 0.239319604 -0.60685924

11 0.10657239 0.03889412 0.31447797 0.04506201 0.07960856 0.64450626 0.54268851 -0.0156076 0.375574324 0.09602406 0.018736866 -0.30994201

TABLE 14. Neurons in LeNN structure obtained by proposed technique for different cases of Problem II.

λ = 1.0 λ = 2.0 λ = 3.0

Index δn ψn ξn δn ψn ξn δn ψn ξn

1 0.26935844 0.27481814 0.5093007 -0.0569247 -0.0128095 -0.5751289 0.84448022 0.10615057 0.993413424

2 0.98537909 0.82168089 -0.4566929 -0.9198956 -0.4178017 0.01557818 -0.4143321 0.35724283 0.335469194

3 0.30180549 0.30456039 0.00057639 0.04045664 -0.1980751 -0.097936 1.03398222 0.87478855 1.502562163

4 0.07177307 0.34229441 0.32998926 0.47700961 0.03676333 0.68353214 0.0219351 -0.2173315 1.012263325

5 0.33552246 -0.177395 -0.0344335 -0.4022056 -0.3810678 -0.7085721 0.26240062 0.32895515 -0.76232907

6 0.16086163 -0.0819464 0.89464099 0.47690051 -0.345897 0.63588174 0.18557116 -0.4232553 0.54206351

7 -0.0300643 0.3336523 0.01181181 0.05210866 -0.1735951 -0.8706297 -0.0795377 0.07015775 0.902723565

8 0.15173329 0.29932437 0.4069841 -0.6445273 -0.0456398 0.28609717 -0.572535 -0.3785929 0.189610707

9 0.04609494 0.27627505 0.02488004 -0.5862381 0.37941325 -0.4010591 -0.1247952 -0.1615479 0.873108621

10 0.11633037 -0.115249 0.4338842 -0.0069589 -0.0756862 0.4446333 0.08099934 0.24427674 -0.07145994

11 1.07166941 -0.0134561 0.2323527 -0.7844586 -0.1176402 0.5252287 -0.2617872 0.22603824 0.007639225

TABLE 15. Neurons in LeNN structure obtained by proposed technique for different cases of Problem III.

λ = 1.0 λ = 2.0 λ = 3.0

Index δn ψn ξn δn ψn ξn δn ψn ξn

1 0.62578938 0.01264802 -0.0314049 1.04065116 0.43626649 -0.5083717 -0.3797966 -0.3102128 0.389930251

2 -0.1167977 0.70370075 -0.5616733 -1.7917414 1.50512181 -1.7462894 -0.2391842 1.01472658 0.380900944

3 0.39160762 -0.9761912 0.00509997 0.1586005 1.08183793 0.46057357 -0.2127764 -0.2546925 1.010985777

4 -0.1872278 -0.3459903 0.12619718 0.04384281 -0.2778872 0.23232805 0.70985312 -0.2274543 -1.02212325

5 0.57380571 -0.307834 -0.4145015 -0.9133443 0.10061135 -0.244175 0.34487281 -0.347361 0.532875028

6 0.57070862 -0.4238162 -0.2190803 -0.7972735 0.20396746 -0.8838576 0.96056849 -0.3200126 0.783810028

7 -0.1313001 -0.3269274 0.45429252 0.35689026 -0.0661261 -0.8422708 -0.0910685 0.18221442 -0.7592668

8 -0.3677613 0.32571374 -0.5598948 1.32054625 0.11131492 -1.2856468 0.58717488 -0.1731806 -0.02173868

9 -0.0054736 0.37042192 0.03862467 -0.0288581 0.09456858 -0.1574551 -0.0013674 0.36693981 0.270824079

10 -0.5487134 0.30053242 0.19205644 -0.289878 -0.4603285 -0.6366003 0.0118006 -0.4410427 0.058796468

11 0.84726777 0.27796037 0.56535073 7.51E-05 -0.2763708 0.39514944 0.00356616 -0.1215339 -0.45959078
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TABLE 16. Neurons in LeNN structure obtained by proposed technique for different cases of Problem IV.

λ = 1.0 λ = 2.0 λ = 3.0

Index δn ψn ξn δn ψn ξn δn ψn ξn

1 0.57174675 1.34289992 0.47516407 0.17752421 -0.0551147 0.59182964 0.13882379 0.13826902 0.203256479

2 0.15215204 0.19122935 0.90103211 0.64405052 1.16139197 -0.0034589 -0.7640621 -0.0236816 -0.00388855

3 0.7133632 0.17390159 -0.5151335 0.15493528 0.81978044 -0.151075 -0.7633091 -0.1350345 -0.88167506

4 0.26577576 0.29965597 -0.6138366 0.003952 0.00967189 0.08888884 -0.866505 0.12627377 0.1918368

5 0.56545429 0.64293736 -0.0712394 0.09809999 0.00216662 0.08226314 0.09815612 -0.0168432 -0.00881928

6 0.38213932 0.28990554 -0.3042828 0.71028955 -0.1888177 0.45684718 0.28417016 0.14442232 -0.02870721

7 0.09838338 0.35454184 -0.1031601 0.22659854 0.47762783 -0.0027904 0.28381553 -0.235924 -0.29817323

8 0.56561309 0.03961569 0.2774475 -0.0395085 0.12463642 0.93020801 0.13726141 -0.7541787 -0.41037637

9 1.81357554 0.33641133 0.27103122 0.02233341 0.77848921 0.00359144 9.40E-05 -0.1211273 -0.73905578

10 0.5177736 0.10448221 -0.6385506 0.00050199 0.97124938 -0.0122281 0.0351829 -0.4556906 -0.07844437

11 0.91392796 0.32060487 0.16558197 -3.06E-06 0.44787914 0.00260238 0.001232 0.02432631 -0.98536794

TABLE 17. Convergence analysis of fitness function and performance measures obtained during 100 independent executions by proposed algorithm.

Cases FIT MAD TIC ENSE

≤ 10−6 ≤ 10−7 ≤ 10−8 ≤ 10−3 ≤ 10−4 ≤ 10−5 ≤ 10−4 ≤ 10−5 ≤ 10−6 ≤ 10−5 ≤ 10−6 ≤ 10−7

I 98 80 50 100 99 90 100 98 56 98 85 2
II 93 98 50 100 100 91 100 98 46 99 92 70

Problem I III 87 56 26 100 98 86 99 94 8 96 92 78
IV 60 35 17 100 98 63 98 75 0 96 79 58

I 70 46 22 100 99 68 99 85 46 84 46 68
Problem II II 78 50 29 100 99 75 99 91 56 88 70 46

III 82 50 31 100 98 90 100 96 52 94 79 0

I 52 27 9 100 86 54 95 60 0 60 55 23
Problem III II 62 40 16 100 93 65 98 78 44 73 63 43

III 69 32 12 100 97 75 100 92 43 87 65 25

I 38 16 3 100 56 0 76 47 10 47 40 18
Problem IV II 58 27 8 100 91 61 96 72 36 71 60 48

III 59 33 18 100 88 62 98 72 48 72 62 45
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FIGURE 7. Comparison of exact solutions with best and worst solutions

obtained by proposed algorithm for problem I.
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technique for each case of Problem I.
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FIGURE 9. Comparison of exact solutions with best and worst solutions obtained by proposed algorithm for problem II.
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FIGURE 10. Minimum absolute errors (AE) in best solution of proposed technique for each case of Problem II.
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FIGURE 11. Comparison of exact solutions with best and worst solutions obtained by proposed algorithm for problem III.
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FIGURE 12. Minimum absolute errors (AE) in best solution of proposed technique for each case of Problem IV.
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FIGURE 13. Comparison of exact solutions with best and worst solutions obtained by proposed algorithm for problem IV.
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FIGURE 14. Minimum absolute errors (AE) in best solution of proposed technique for each case of Problem V.
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FIGURE 15. Trained weights in LeNN optimized by proposed technique for Case I, II, III and IV of problem I.
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FIGURE 16. Trained weights in LeNN structure optimized by proposed technique for Case I, II and III of problem II.
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FIGURE 17. Trained weights in LeNN structure optimized by proposed technique for Case I, II and III of problem III.

-1

0

1
2

V
a
lu

e
s

1

3
4

2

5

Neurons

6
7

 = 1.0

8
9

10
11

(a) Case I

-0.5

0

1
2

0.5

V
a

lu
e

s

3

1

4
5

Neurons

6
7

 =2.0

8
9

10
11

(b) Case II

-1

-0.5

1
2

V
a

lu
e

s

0

3
4

0.5

5

Neurons

6
7

 = 3.0

8
9

10
11

(c) Case III

FIGURE 18. Trained weights in LeNN structure optimized by proposed technique for Case I, II and III of problem IV.
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FIGURE 19. Box plot for fitness evaluation by proposed algorithm for multiple cases of Problem I-IV.
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FIGURE 20. Box plot for MAD by proposed algorithm for multiple cases of Problem I-IV.
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FIGURE 21. Box plot for TIC by proposed algorithm for multiple cases of Problem I-IV.
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FIGURE 22. Box plot for ENSE by proposed algorithm for multiple cases of Problem I-IV.
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FIGURE 23. Performance analysis on fitness value for different cases of Problem I-IV.
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FIGURE 24. Performance analysis on MAD for different cases of Problem I-IV.
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FIGURE 25. Performance analysis on TIC for different cases of Problem I-IV.
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FIGURE 26. Performance analysis on ENSE for different cases of Problem I-IV.
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FIGURE 27. Results comparison for temperature distribution obtained by LeNN-WOA-NM algorithm under the influence of Nc, Nr and λ.
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IX. CONCLUSION

This paper has analyzed a mathematical model for tempera-

ture distribution of fin with thermal conductivity in the con-

ductive, convective and radiative environment. Furthermore,

we have designed an intelligent soft computing paradigm

named as LeNN-WOA-NM algorithm. Weighted Legendre

polynomials are used to model approximate series solutions

for temperature distribution under the influence of variations

in thermal conductivity (λ) and coefficients of convective and

radiative heat loss Nc and Nr. We summarize our findings as

follows:

• In problem I, with the increasing value of the coefficient

of convective heat loss, the excess of temperature is getting

lower, which decreases the transfer of heat and fin becomes

strong convective as shown in Figure 27(a).

• With the increasing value of dimensionless parameter λ

in thermal conductivity, the excess of temperature becomes

higher, and the transfer of heat increases. Figure 27(b),(c)

and (d) represent the behavior of temperature distribution for

problem II, III and IV, respectively.

• Approximate solutions obtained by LeNN-WOA-NM al-

gorithm are compared with exact solutions, and integral

methods [71]. Tables 21-25 shows the accuracy of proposed

technique in obtaining solutions for temperature distributions

under influence of Nc,Nr and λ.

• Minimum absolute errors in approximate solutions by

design algorithm prove that LeNN-WOA-NM is efficient and

accurate. Moreover, the values of performance indicators

MAD, TIC and ENSE extend the worth of the designed

scheme.

• Convergence of proposed algorithm has been proven by

boxplots and bar graphs representing the minimum and mean

values of performance indicators obtained during 100 inde-

pendent runs.

• From the above-discussed figures and tables, it should

be noted that the lower value of convection and radiation

parameter, the higher is the accuracy of approximate solu-

tions, while larger the value of thermal conductivity, the more

accurate the approximate temperature distributions for fins.

In the future, the application of Legendre neural networks-

based soft computing algorithms can be extended to solve

highly nonlinear and stiff models arising in different applica-

tions of practical interest.

X. APPENDIX

Approximate solution obtained by proposed algorithm for

problem I with Nc = 0.5, 1.0, 2.0 and 4.0 are given as

θapprox(x) = −0.0056999 + (−0.9421679x − 1.3079032)(−0.3347157)

+





3(0.06428925x + 0.00505866)2 − 1

2



 (−0.3683929)

+





5(1.052841x − 0.00241)3 − 3(1.052841x − 0.00241)

2



 (−0.70563)

+





35(−1.086128x − 0.009908)4 − 30(−1.086128x − 0.009908)2

8
+

3

8

)

(0.459222)

+







63(−0.3813831x+0.06902592)5−70(−0.3813831x+0.06902592)3

8

+
15(−0.3813831x+0.06902592)

8






(0.10915186)

+







231(2.77693591x−0.3620337)6−315(2.77693591x−0.3620337)4

16

+
105(2.77693591x−0.3620337)2−5

16






(−0.9233865)

+







429(−0.0004241x−0.0242191)7−693(−0.0004241x−0.0242191)5

16

+
315(−0.0004241x−0.0242191)2−35(−0.0004241x−0.0242191)

16






(−0.148039)

+









6435(−1.81809x+0.002721)8−12012(−1.81809x+0.002721)6

128

+
6930(−1.81809x+0.002721)4−1260(−1.81809x+0.002721)2+35

)

128









(−0.49971).

+













12155(0.749142x+0.140242)9−25740(0.749142x+0.140242)7

128
+18018(0.749142x+0.140242)5−4620(0.749142x+0.140242)3

128
+315(0.749142x+0.140242)

128













(−0.2704175)

+













46189(0.106572x+0.038894)10−109395(0.106572x+0.03889)8

256
+90090(0.106572x+0.038894)6−30030(0.10657239x+0.03889)4

128
+3465(0.106572x+0.03889)2−63

128













(0.31448)

θapprox(x) = −0.0814582 + (−0.0148904x + 0.70707834)(0.41276378)

+





3(0.57864707x − 0.03647)2 − 1

2



 (0.06739899)

+





5(0.75272266x − 0.1936297)3 − 3(0.75272266x − 0.1936297)

2



 (−0.0952606)

+





35(0.79960x + 0.240602)4 − 30(0.79960x + 0.240602)2

8
+

3

8

)

(−0.078044)

+







63(−0.39254x+0.064085)5−70(−0.39254x+0.064085)3

8

+
15(−0.39254x+0.064085)

8






(0.0949179)

+







231(−1.38717x−0.31223)6−315(−1.38717x−0.31223)4

16

+
105(−1.38717x−0.31223)2−5

16






(0.02719)

+







429(0.00096x−0.24071)7−693(0.00096x−0.24071)5

16

+
315(0.00096x−0.24071)2−35(0.00096x−0.24071)

16






(−0.65551)

+









6435(0.008164x−0.0101)8−12012(0.008164x−0.0101)6

128

+
6930(0.008164x−0.0101)4−1260(0.008164x−0.0101)2+35

)

128









(0.174541).

+













12155(0.46114x−0.06525)9−25740(0.46114x−0.06525)7

128
+18018(0.46114x−0.06525)5−4620(0.46114x−0.06525)3

128
+315(0.46114x−0.06525)

128













(0.993254)

+













46189(0.04506x+0.079609)10−109395(0.04506x+0.079609)8

256
+90090(0.04506x+0.079609)6−30030(0.04506x+0.079609)4

128
+3465(0.04506x+0.079609)2−63

128













(0.64451)
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Nomenclature

Abbreviation Description Abbreviation Description

LeNN Legendre Neural Networks α Reflection Coefficient

NM Nelder-Mead Algorithm β Expansion Coefficient

MAD Mean Absolute Deviation γ Contraction Coefficient

TIC Theil’s inequality coefficient δ Shrink Coefficient.

NSE Nash Sutcliffe Efficiency L Axial length,

ENSE Error In Nash Sutcliffe Efficiency Tb Base temperature,

λ Dimensionless constant in the thermal conductivity ǫ Surface emissivity,

x Dimensionless axial distance measured from the tip Ts Sink temperature

X Axial distance measured from the fin’s tip Ta Ambient temperature,

p Random number b, l Arbitrary constants

X∗ Best solution of WOA so far A Cross section

Nc Coefficient of convective heat loss xe Expansion point in NM

Nr Coefficient of radiative heat loss ~A, ~C Coefficient vectors

x0 Centroid value xr Reflection point

xh Worst value xb Best value

θapprox(x) = 0.22351245 + (0.47656437x + 0.69545047)(−0.27470296)

+





3(−0.2893142x + 0.27282928)2 − 1

2



 (−0.0116783)

+





5(0.035504x + 0.4287905)3 − 3(0.035504x + 0.428791)

2



 (0.448111)

+





35(0.606193x + 0.000476)4 − 30(0.606193x + 0.000476)2

8
+

3

8

)

(0.42297)

+







63(0.71805x+0.290943)5−70(0.71805x+0.290943)3

8

+
15(0.71805x+0.290943)

8






(0.42297)

+







231(0.83046x−0.23036)6−315(0.83046x−0.23036)4

16

+
105(0.83046x−0.23036)2−5

16






(0.76394)

+







429(0.14459x−0.2213)7−693(0.14459x−0.2213)5

16

+
315(0.14459x−0.2213)2−35(0.14459x−0.2213)

16






(0.25369)

+









6435(0.3888x+0.25947)8−12012(0.3888x+0.25947)6

128

+
6930(0.3888x+0.25947)4−1260(0.3888x+0.25947)2+35

)

128









(0.274272).

+













12155(0.05314x+0.09101)9−25740(0.05314x+0.09101)7

128
+18018(0.05314x+0.09101)5−4620(0.05314x+0.09101)3

128
+315(0.05314x+0.09101)

128













(0.121209)

+













46189(0.54269x−0.015608)10−109395(0.54269x−0.015608)8

256
+90090(0.54269x−0.015608)6−30030(0.54269x−0.015608)4

128
+3465(0.54269x−0.015608)2−63

128













(0.37557)

θapprox(x) = −0.2122688 + (1.103411242x − 0.11144084)(−0.01324012)

+





3(−0.37337654x − 0.44440324)2 − 1

2



 (0.617963109)

+





5(0.69554274x − 0.481062)3 − 3(0.69554274x − 0.481062)

2



 (0.0215058)

+





35(0.854624x − 0.118225)4 − 30(0.854624x − 0.118225)2

8
+

3

8

)

(−0.00888)

+







63(−0.8245x−0.4653)5−70(−0.8245x−0.4653)3

8

+
15(−0.8245x−0.4653)

8






(−0.0575)

+







231(0.3354x−0.36613)6−315(0.3354x−0.36613)4

16

+
105(0.3354x−0.36613)2−5

16






(0.21025)

+







429(−0.5059x−0.2084)7−693(−0.5059x−0.2084)5

16

+
315(−0.5059x−0.2084)2−35(−0.5059x−0.2084)

16






(−0.25912)

+









6435(0.04196x−0.07187)8−12012(0.04196x−0.07187)6

128

+
6930(0.04196x−0.07187)4−1260(0.04196x−0.07187)2+35

)

128









(−0.9723).

+













12155(−0.3848x+0.23932)9−25740(−0.3848x+0.23932)7

128
+18018(−0.3848x+0.23932)5−4620(−0.3848x+0.23932)3

128
+315(−0.3848x+0.23932)

128













(−0.60686)

+













46189(0.09602x+0.018737)10−109395(0.09602x+0.018737)8

256
+90090(0.09602x+0.018737)6−30030(0.09602x+0.018737)4

128
+3465(0.09602x+0.018737)2−63

128













(−0.3099)

Approximate solution obtained by proposed algorithm for
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problem II with λ = 1.0, 2.0 and 3.0 are given as

θapprox(x) = 0.26935844 + (0.98537909x + 0.82168089)(−0.4566929)

+





3(0.30180549x + 0.30456039)2 − 1

2



 (0.00057639)

+





5(0.071773x + 0.342294)3 − 3(0.071773x + 0.342294)

2



 (0.329989)

+





35(0.33552x − 0.177395)4 − 30(0.33552x − 0.177395)2

8
+

3

8

)

(−0.0344)

+







63(0.16086x−0.08195)5−70(0.16086x−0.08195)3

8

+
15(0.16086x−0.08195)

8






(0.8946)

+







231(−0.03006x+0.3337)6−315(−0.03006x+0.3337)4

16

+
105(−0.03006x+0.3337)2−5

16






(0.01181)

+







429(0.15173x+0.2993)7−693(0.15173x+0.2993)5

16

+
315(0.15173x+0.2993)2−35(0.15173x+0.2993)

16






(0.40698)

+









6435(0.04196x−0.07187)8−12012(0.04196x−0.07187)6

128

+
6930(0.04196x−0.07187)4−1260(0.04196x−0.07187)2+35

)

128









(0.02488).

+













12155(0.0461x+0.27626)9−25740(0.0461x+0.27626)7

128
+18018(0.0461x+0.27626)5−4620(0.0461x+0.27626)3

128
+315(0.0461x+0.27626)

128













(0.43388)

+













46189(1.0717x−0.01347)10−109395(1.0717x−0.013477)8

256
+90090(0.09602x+0.018737)6−30030(1.0717x−0.01347)4

128
+3465(1.0717x−0.01347)2−63

128













(0.23235)

θapprox(x) = −0.0569247 + (−0.9198956x − 0.4178017)(0.01557818)

+





3(0.04045664x − 0.1980751)2 − 1

2



 (−0.097936)

+





5(0.4770096x + 0.036763)3 − 3(0.4770096x + 0.036763)

2



 (0.68353)

+





35(−0.402206x − 0.381068)4 − 30(−0.402206x − 0.381068)2

8
+

3

8

)

(−0.70857)

+







63(0.4769x−0.3459)5−70(0.4769x−0.3459)3

8

+
15(0.4769x−0.3459)

8






(0.63588)

+







231(0.0521x−0.1736)6−315(0.0521x−0.1736)4

16

+
105(0.0521x−0.1736)2−5

16






(−0.87063)

+







429(−0.64453x−0.04564)7−693(−0.64453x−0.04564)5

16

+
315(−0.64453x−0.04564)2−35(−0.64453x−0.04564)

16






(0.2861)

+









6435(−0.5862x+0.3794)8−12012(−0.5862x+0.3794)6

128

+
6930(−0.5862x+0.3794)4−1260(−0.5862x+0.3794)2+35

)

128









(−0.4011).

+













12155(−0.00696x−0.0757)9−25740(−0.00696x−0.0757)7

128
+18018(−0.00696x−0.0757)5−4620(−0.00696x−0.0757)3

128
+315(−0.00696x−0.0757)

128













(0.4446)

+













46189(−0.78446x−0.11764)10−109395(−0.78446x−0.11764)8

256
+90090(−0.78446x−0.11764)6−30030(−0.78446x−0.11764)4

128
+3465(−0.78446x−0.11764)2−63

128













(0.52522)

θapprox(x) = 0.84448022 + (−0.4143321x + 0.35724283)(0.335469194)

+





3(1.03398222x + 0.87478855)2 − 1

2



 (1.502562163)

+





5(0.02193x − 0.21733)3 − 3(0.02193x − 0.21733)

2



 (1.01226)

+





35(0.2624x + 0.32896)4 − 30(0.2624x + 0.32896)2

8
+

3

8

)

(−0.762329)

+







63(0.18557x−0.4233)5−70(0.18557x−0.4233)3

8

+
15(0.18557x−0.4233)

8






(0.5421)

+







231(−0.07954x+0.07016)6−315(−0.07954x+0.07016)4

16

+
105(−0.07954x+0.07016)2−5

16






(0.90272)

+







429(−0.5725x−0.37859)7−693(−0.5725x−0.37859)5

16

+
315(−0.5725x−0.37859)2−35(−0.5725x−0.37859)

16






(0.1896)

+









6435(−0.1248x−0.16155)8−12012(−0.1248x−0.16155)6

128

+
6930(−0.1248x−0.16155)4−1260(−0.1248x−0.16155)2+35

)

128









(0.87311).

+













12155(0.08099x+0.24428)9−25740(0.08099x+0.24428)7

128
+18018(0.08099x+0.24428)5−4620(0.08099x+0.24428)3

128
+315(0.08099x+0.24428)

128













(−0.07146)

+













46189(−0.2618x+0.22604)10−109395(−0.2618x+0.226048

256
+90090(−0.2618x+0.22604)6−30030(−0.2618x+0.22604)4

128
+3465(−0.2618x+0.22604)2−63

128













(0.00764)

Approximate solution obtained by proposed algorithm for

problem III with λ = 1.0, 2.0 and 3.0 are given as

θapprox(x) = 0.6257893 + (−0.1167977x + 0.70370075)(−0.5616733)

+





3(0.391607x − 0.976191)2 − 1

2



 (0.005099)

+





5(−0.18723x − 0.34599)3 − 3(−0.18723x − 0.34599)

2



 (0.12619)

+





35(0.5738x − 0.3078)4 − 30(0.5738x − 0.3078)2

8
+

3

8

)

(−0.41450)

+







63(0.5707x−0.4238)5−70(0.5707x−0.4238)3

8

+
15(0.5707x−0.4238)

8






(−0.2190)

+







231(−0.1313x−0.3269)6−315(−0.1313x−0.3269)4

16

+
105(−0.1313x−0.3269)2−5

16






(0.45429)

+







429(−0.36776x+0.32571)7−693(−0.36776x+0.32571)5

16

+
315(−0.36776x+0.32571)2−35(−0.36776x+0.32571)

16






(−0.5598)

+









6435(−0.00547x+0.37042)8−12012(−0.00547x+0.37042)6

128

+
6930(−0.00547x+0.37042)4−1260(−0.00547x+0.37042)2+35

)

128









(0.0386).

+













12155(−0.54871x+0.3005)9−25740(−0.54871x+0.3005)7

128
+18018(−0.54871x+0.3005)5−4620(−0.54871x+0.3005)3

128
+315(−0.54871x+0.3005)

128













(0.192056)

+













46189(0.84726x+0.2779)10−109395(0.84726x+0.2779)8

256
+90090(0.84726x+0.27794)6−30030(0.84726x+0.2779)4

128
+3465(0.84726x+0.2779)2−63

128













(0.56535)
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θapprox(x) = 1.04065116 + (−1.7917414x + 1.50512181)(−1.7462894)

+





3(0.1586005x + 1.08183793)2 − 1

2



 (0.46057357)

+





5(0.04384x − 0.2779)3 − 3(0.04384x − 0.2779)

2



 (0.232328)

+





35(−0.91334x + 0.10061)4 − 30(−0.91334x + 0.10061)2

8
+

3

8

)

(−0.24418)

+







63(−0.7973x+0.20397)5−70(−0.7973x+0.20397)3

8

+
15(−0.7973x+0.20397)

8






(−0.88386)

+







231(0.3569x−0.06613)6−315(0.3569x−0.06613)4

16

+
105(0.3569x−0.06613)2−5

16






(−0.84227)

+







429(1.32055x+0.11132)7−693(1.32055x+0.11132)5

16

+
315(1.32055x+0.11132)2−35(1.32055x+0.11132)

16






(−1.2857)

+









6435(−0.0289x+0.09457)8−12012(−0.0289x+0.09457)6

128

+
6930(−0.0289x+0.09457)4−1260(−0.0289x+0.09457)2+35

)

128









(−0.15746).

+













12155(−0.2899x−0.46033)9−25740(−0.2899x−0.46033)7

128
+18018(−0.2899x−0.46033)5−4620(−0.2899x−0.46033)3

128
+315(−0.2899x−0.46033)

128













(−0.63660)

+













46189(7.51E−05x−0.2764)10−109395(7.51E−05x−0.2764)8

256
+90090(7.51E−05x−0.2764)6−30030(7.51E−05x−0.2764)4

128
+3465(−0.2618x+0.22604)2−63

128













(0.39515)

θapprox(x) = −0.37979 + (−0.239184x + 1.0147265)(0.380900)

+





3(−0.212776x − 0.25469)2 − 1

2



 (1.01098)

+





5(0.709853x − 0.2274)3 − 3(0.709853x − 0.2274)

2



 (−1.02212)

+





35(0.344872x − 0.34736)4 − 30(0.344872x − 0.34736)2

8
+

3

8

)

(0.53287)

+







63(0.960563x−0.3200)5−70(0.960563x−0.3200)3

8

+
15(0.960563x−0.3200))

8






(0.783816)

+







231(−0.09106x+0.18221)6−315(−0.09106x+0.18221)4

16

+
105(−0.09106x+0.18221)2−5

16






(−0.75926)

+







429(0.58717x−0.17318)7−693(0.58717x−0.17318)5

16

+
315(0.58717x−0.17318)2−35(0.58717x−0.17318)

16






(−0.021738)

+









6435(−0.00136x+0.36693)8−12012(−0.00136x+0.36693)6

128

+
6930(−0.00136x+0.36693)4−1260(−0.00136x+0.36693)2+35

)

128









(0.2708).

+













12155(0.01180x−0.44104)9−25740(0.01180x−0.44104)7

128
+18018(0.01180x−0.44104)5−4620(0.01180x−0.44104)3

128
+315(0.01180x−0.44104)

128













(−0.63660)

+













46189(0.00356x−0.12153)10−109395(0.00356x−0.12153)8

256
+90090(0.00356x−0.12153)6−30030(0.00356x−0.12153)4

128
+3465(0.00356x−0.12153)2−63

128













(−0.45959)

Approximate solution obtained by proposed algorithm for

problem IV with λ = 1.0, 2.0 and 3.0 are given as

θapprox(x) = 0.57174675 + (0.15215204x + 0.19122935)(0.90103211)

+





3(0.7133632x + 0.17390159)2 − 1

2



 (−0.5151335)

+





5(0.265776x + 0.299656)3 − 3(0.265776x + 0.299656)

2



 (−0.613837)

+





35(0.56545x + 0.642937)4 − 30(0.56545x + 0.642937)2

8
+

3

8

)

(−0.07124)

+







63(0.38214x+0.28991)5−70(0.38214x+0.28991)3

8

+
15(0.38214x+0.28991))

8






(−0.3043)

+







231(0.09838x+0.3545)6−315(0.09838x+0.3545)4

16

+
105(0.09838x+0.3545)2−5

16






(−0.10316

+







429(0.5656x+0.03962)7−693(0.5656x+0.03962)5

16

+
315(0.5656x+0.03962)2−35(0.5656x+0.03962)

16






(0.27744)

+









6435(1.81358x+0.3364)8−12012(1.81358x+0.3364)6

128

+
6930(1.81358x+0.3364)4−1260(1.81358x+0.3364)2+35

)

128









(0.27103).

+













12155(0.51778x+0.1045)9−25740(0.51778x+0.1045)7

128
+18018(0.51778x+0.1045)5−4620(0.51778x+0.1045)3

128
+315(0.51778x+0.1045)

128













(−0.6385)

+













46189(0.91393x+0.32061)10−109395(0.91393x+0.32061)8

256
+90090(0.91393x+0.32061)6−30030(0.91393x+0.32061)4

128
+3465(0.91393x+0.32061)2−63

128













(0.16558)

θapprox(x) = 0.17752421 + (0.64405052x + 1.16139197)(−0.0034589)

+





3(0.15493528x + 0.81978044)2 − 1

2



 (−0.151075)

+





5(0.003952x + 0.009672)3 − 3(0.003952x + 0.009672)

2



 (0.08889)

+





35(0.09809x + 0.002167)4 − 30(0.09809x + 0.002167)2

8
+

3

8

)

(0.08226)

+







63(0.7103x−0.18882)5−70(0.7103x−0.18882)3

8

+
15(0.7103x−0.18882))

8






(0.45685)

+







231(0.2266x+0.47763)6−315(0.2266x+0.47763)4

16

+
105(0.2266x+0.47763)2−5

16






(−0.00279)

+







429(−0.03951x+0.12464)7−693(−0.03951x+0.12464)5

16

+
315(−0.03951x+0.12464)2−35(−0.03951x+0.12464)

16






(0.93020)

+









6435(0.0223x+0.77849)8−12012(0.0223x+0.77849)6

128

+
6930(0.0223x+0.77849)4−1260(0.0223x+0.77849)2+35

)

128









(0.00359).

+













12155(0.00051x+0.97125)9−25740(0.00051x+0.97125)7

128
+18018(0.00051x+0.97125)5−4620(0.00051x+0.97125)3

128
+315(0.00051x+0.97125)

128













(−0.01223)

+













46189(−3.06E−06x+0.44788)10−109395(−3.06E−06x+0.44788)8

256
+90090(−3.06E−06x+0.44788)6−30030(−3.06E−06x+0.44788)4

128
+3465(−3.06E−06x+0.44788)2−63

128













(0.0026)
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θapprox(x) = 0.13882379 + (−0.7640621x − 0.0236816)(−0.00388855)

+





3(−0.7633091x − 0.1350345)2 − 1

2



 (−0.88167506)

+





5(−0.8665x + 0.126274)3 − 3(−0.8665x + 0.126274)

2



 (0.19184)

+





35(0.098156x − 0.01684)4 − 30(0.098156x − 0.01684)2

8
+

3

8

)

(−0.00882)

+







63(0.2841x+0.14442)5−70(0.2841x+0.14442)3

8

+
15(0.2841x+0.14442))

8






(−0.02870)

+







231(0.2838x−0.2359)6−315(0.2838x−0.2359)4

16

+
105(0.2838x−0.2359)2−5

16






(−0.29817)

+







429(0.1373x−0.75418)7−693(0.1373x−0.75418)5

16

+
315(0.1373x−0.75418)2−35(0.1373x−0.75418)

16






(−0.4103)

+









6435(9.40E−05x−0.1211)8−12012(9.40E−05x−0.1211)6

128

+
6930(9.40E−05x−0.1211)4−1260(9.40E−05x−0.1211)2+35

)

128









(−0.7390).

+













12155(0.0352x−0.45569)9−25740(0.0352x−0.45569)7

128
+18018(0.0352x−0.45569)5−4620(0.0352x−0.45569)3

128
+315(0.0352x−0.45569)

128













(−0.07844)

+













46189(0.00123x+0.02433)10−109395(0.00123x+0.02433)8

256
+90090(0.00123x+0.02433)6−30030(0.00123x+0.02433)4

128
+3465(0.00123x+0.02433)2−63

128













(−0.98536)
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