NASATECHNICAL NOTE

NASA TN D-4876 LOAN COPY: RET
AFWL (WLIL
KIRTLAND AFB,

THERMAL ANALYSIS OF SHADOW SHIELDS AND STRUCTURAL MEMBERS IN A VACUUM

by Robert J. Boyle and Richard H. Knoll
Lewis Research Center
Cleveland, Obio
national aeronautics and space administration - washington, d. C. - november 1968

THERMAL ANALYSIS OF SHADOW SHIELDS AND STRUCTURAL MEMBERS IN A VACUUM

By Robert J. Boyle and Richard H. Knoll
Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ABSTRACT

An analysis considering nonuniform radiosity and assuming diffusely emitting and reflecting surfaces is presented. The shields are planar and circular, while the sources may be surfaces of revolution. The effects of source geometry, number of shields, spacing, and surface properties are discussed. Shield conductivity and selective coatings are investigated. Specularly and diffusely reflecting surfaces are discussed under the simplifying assumption of uniform radiosity. Also, the effects of thermal radiation on the temperatures of a conducting structural member are analyzed. Results are presented showing the effects of significant parameters on the temperature profiles and heattransfer rates. The computer program for the shield analysis is listed.

THERMAL ANALYSIS OF SHADOW SHIELDS AND STRUCTURAL MEMBERS IN A VACUUM
 by Robert J. Boyle and Richard H. Knoll
 Lewis Research Center Cleveland, Ohio

SUMMARY

An analysis is presented which predicts heat-transfer rates as a function of the number of shadow shields used. The system analyzed consists of two sources and the shields. One of the sources may be solar radiation. It is shown that shields form an effective means of reducing radiant heat transfer. A possible application of these shields is the reduction in the heat transfer to a cryogenic propellant.

The shields are flat disks while the sources may be surfaces of revolution. The sources and shields have a common axis of revolution. The prime analysis used is for diffusely emitting, diffusely reflecting surfaces assuming nonuniform radiosity. The analysis considers thermal radiation and radial shield conduction. The effects of the simplifying assumption of uniform radiosity are considered. It is concluded that for many cases it may be necessary to use the more complicated assumption of nonuniform radiosity in order to have accurate heat-transfer predictions. Specularly reflecting surfaces are examined under the simplifying assumption of uniform radiosity. As the spacing between surfaces increases, the heat transfer for specular surfaces may significantly exceed that for diffusely reflecting surfaces.

In addition to the analysis for the shadow shields, an analysis is presented to predict the temperature distribution along a cylindrical conducting strut. This analysis for the strut considers both internal and external radiation. The struts are needed in order to attach the shields to the rest of the vehicle. The thermal analysis for the strut concludes that increasing the external emissitivity is effective in lowering the conducted heat transfer out of the strut. The interaction of the struts and shields was not considered in the analyses.

For both the shield and strut analyses, predicted temperatures are compared with experimental data. Heat-transfer rates for the shields are also compared with experimental data.

INTRODUCTION

The design of space vehicles for long-term missions often requires thermal protection systems. This is especially true when cryogenic propellants are involved. Shadow shields are a means of reducing the radiant energy absorbed by a propellant tank. This results in reduced boiloff. Shadow shields can also be useful in protecting a relatively warm body, such as a payload, from receiving excessive amounts of solar energy. The primary area of application for shadow shields is in a vacuum. Otherwise, convection may be the dominant mode of heat transfer. The basic purpose of this report is to present an analysis for multishield configurations in a space environment.

Previous studies considered shadow shields for thermal protection of cryogenic propellants on long-term missions, and the protection of payloads passing close to the sun. These studies considered flat disk, spherical, and conical shields (refs. 1 to 5). The analyses in these references were generally for shadow shields of uniform temperature. Reference 3 analyzed flat disks exposed to solar radiation for both zero and infinite radial conductance. Reference 6 determined the local and overall heat-transfer rates for two flat circular sources. In references 3 and 6 , the surfaces were treated as having nonuniform radiosity.

In this report, the effects of finite shield conductance and variable surface properties are considered. The analysis presented is applicable for any number of shields, and data are given for up to three shields. Assumptions made concerning the radiosity and reflectivity of the surfaces can affect the predicted heat-transfer rates. The prime analysis assumes diffusely emitting and diffusely reflecting surfaces of nonuniform radiosity. The consequences of making the simplifying assumption of uniform radiosity are examined. Specularly reflecting surfaces are also analyzed under this simplifying assumption.

The shields stand off from the surface which is being protected. It is necessary to support the shields, and an analysis for the appropriate structural members is also presented. However, the interaction between the shields and supports is not analyzed. Therefore, the thermal analysis for the shield support is applicable to cylindrical members in space. The analysis for the support gives the axial temperature distribution along a tube or rod. This analysis considers both conductive and radiant heat transfer.

Comparisons for both the shield and strut analyses are made with experimental data reported in reference 7. A computer code for the shield analysis is listed and discussed. The code is for diffusely emitting and reflecting surfaces of nonuniform radiosity.

METHOD OF ANALYSIS

Shield System

The steady-state temperature distributions in a shield system and consequently the heat-transfer rates are determined by taking heat balances on elemental areas of each shield. These heat balances account for the energy emitted, absorbed and reflected as well as conducted to or from the element under consideration. All of the elements on the shield as well as the surroundings and the elements of the adjacent surfaces enter into the radiant heat terms. Adjacent elements of the same shield also enter the conduction terms of the balance. Appendix A gives the symbol list used in the analyses. Appendix B presents the equations for a system consisting of shields and two sources. One of the sources may be solar radiation. Figure 1 gives a schematic of two possible shadowshield configurations. From an analytic standpoint, sources are similar to shields except that they have temperature distributions which are known a priori. The sources can be at any temperature; therefore, they may act as sinks.

In order for the analysis to be applicable to a system of shadow shields, the system must satisfy certain requirements. These conditions are:
(1) There can be no more than two sources and these may be surfaces of revolution but they cannot see themselves.
(2) The shields have to be circular and planar.
(3) The shields and the sources have a common axis of revolution.
(4) The size of the shields and sources are such that a surface of either a source or shield sees only one surface. When one of the two sources is solar radiation, the outermost surface, and only this surface, has solar radiation incident upon it.

The derivations of the governing equations in appendix B are made under the following assumptions:
(1) The environment between each pair of surfaces has a single temperature and constant reflectivity. The environment is that space which completes the enclosure between two surfaces.
(2) There is no thermal gradient in a shield in either the circumferential or axial directions.
(3) Heat is transmitted to or from a shield only by radiation. Under this assumption, each shield is isolated from its support structure.
(4) While each shield has a finite thickness, it is assumed that there is no radiation to or from the edge of the shield.
(5) The equations are derived for steady-state conditions.
(6) All surfaces are opaque so that $\alpha+\rho=1$ at every point on the surfaces.
(7) E missivity and absorptivity can each be separate functions of radial position and temperature, but are constant in the circumferential direction. These properties are taken to be only a function of the temperature of their surface. Emissivity and absorptivity may be functions of wavelength, but this is not accounted for in the analysis.
(8) Each shield is homogeneous so that the thermal conductivity of the shield is a function only of temperature.
(9) Each of the surfaces is diffusely emitting and diffusely reflecting.

A comparison is made in a later section of the report between the heat-transfer rates for specularly reflecting surfaces and diffusely reflecting surfaces. The equations used for determining the heat-transfer rate between specularly reflecting surfaces of uniform radiosity are presented in appendix C. In the analysis for specular surfaces, it is assumed that the reflectivity is independent of the angle of incidence. Also, polarization effects were neglected.

The equations presented in appendix B for predicting the performance of a shadowshield system result from each of the surfaces being divided into a series of concentric annuli and heat balances being made on each annulus. Heat enters an element due to solar radiation absorbed on the surface or from thermal energy radiated from an adjacent surface. Energy leaves the annulus due to the emissive power of the element. Additional heat enters or leaves the element due to conduction from the two adjacent elements on the same shield. As the number of annuli increases, each of the annuli approach a differential area in size. When the annuli represent differential areas, the results obtained are for surfaces of nonuniform radiosity. When only a single annulus is used for each surface, the results obtained are those for uniform radiosity surfaces. Unless otherwise noted, the results in this report are for diffusely reflecting surfaces of nonuniform radiosity. In connection with the discussion on specularly reflecting surfaces, a discussion is included on the errors which result from assuming surfaces to have uniform radiosity.

Thermal Distribution Along Structural Member

The analysis in appendix D yields the steady-state, one-dimensional temperature distribution in the axial direction along a structural member which may be either a rod or a tube. Figure 2 gives a representation of a strut. In order for the analysis to predict the temperature distribution for a rod accurately, the re should be low thermal resistance in the radial and circumferential directions. The environment is taken to have a uniform temperature and reflective properties. As in the derivation of shadow-shield equations, it is assumed that the surfaces are diffusely emitting and diffusely reflecting. It is necessary to divide the strut into several segments due to the axial temperature variation; and, therefore, the results obtained for the internal radiant heat transfer approach the case of nonuniform radiosity.

The governing equations are determined by taking a heat balance on the elements of the strut. Heat enters an element of the strut by conduction from an adjacent warmer element and may be conducted away to an adjacent colder element. Additional heat enters or leaves the element by thermal radiation from the inside surface of the tube. If the ends of the tube are closed, the end surfaces are taken to be at the same temperature as the ends of the tube. These two end temperatures are the known boundary temperatures. If the ends of the tube are open, the end disks have the properties of the surroundings, which are assumed black, but not necessarily at zero temperature.

The equations presented in appendix B for the shadow shields, and in appendix D for the strut are relatively complex. The solution of these equations is discussed in appendix E, and appendix F presents a computer code for solving the shadow-shield equations of appendix B.

COMPARISON OF RESULTS

This section of the report discusses the comparison of experimental and analytic results. In addition, mention is made of previous analyses with which the work presented herein was compared.

Shadow Shields

The analysis presented in appendix B yields results consistent with the assumptions of uniform radiosity surfaces when each surface is taken to have a single annulus. Under this condition, the results are comparable with those presented in reference 1.

When the analysis is performed using a large number of annuli for each surface, the results obtained approach those for nonuniform radiosity surfaces. In reference 6, analytic results are presented for the heat-transfer rates between two surfaces wherein it is assumed that the surfaces have nonuniform radiosity. Solving the equations of appendix B for the case of nonuniform radiosity gives results which agree with those of reference 6.

Experimental data for shadow -shield systems are given in reference 7 and some of these data are reproduced in the following figures. Figure 3 gives a comparison of analytic and experimental heat-transfer rates as a function of spacing for a one-and threeshield system. The shields were made of copper so that their radial temperature distribution was nearly uniform. The shields were evenly spaced between two plane sources with the warmer source being maintained at $444 \mathrm{~K}\left(800^{\circ} \mathrm{R}\right)$ and the colder one at 77.8 K $\left(140^{\circ} \mathrm{R}\right)$. This figure contains data for both a one- and three-shield system at two different shield emissivities. In one case, the shields were painted to give a nominal
emissivity of 0.94 , the same as the sources. While in the other case, the shields were glass blasted to give a nominal emissivity of 0.27 . (The surface properties of both the painted surfaces and glass-blasted shields were determined to be a function of temperature so that there was a variation in emissivity from one surface to the next.) As is expected, the heat transfer decreases with the addition of more shields and increases with increasing emissivity.

As the emissivity approaches unity, the difference in the heat-transfer rates between assuming uniform and nonuniform radiosity goes to zero. Therefore, the analytic predictions for the high-emissivity cases are nearly the same using either assumption. Only a single curve is shown for each of these cases. The single glass-blasted shield ($\epsilon \approx 0.27$) was located between two high-emissivity sources. For this case also, both heat-transfer rates are nearly the same. Therefore, only one heat-transfer rate curve is given.

There is a significant difference between the two heat-transfer rates for the three glass-blasted shields $(\epsilon \approx 0.27)$. As can be seen, the assumption of nonuniform radiosity gives better agreement with the experimental data.

In figure 4, the experimental and analytic temperatures are plotted as a function of radial position for a three-shield configuration. The shields were made of Mylar which is a very low conducting material; and, consequently, a large radial temperature gradient is present in each of the shields. All of the surfaces were painted with a high-emissivity coating ($\epsilon \approx 0.94$) in order to give a high heat-transfer rate to the colder source. A high heat-transfer rate was desirable in order to improve the accuracy of its measurement. The analytic radial temperature distribution closely follows the experimental one for each of the shields, even to the extent of predicting the temperatures at the outer edge of each of the shields.

In figure 5, the radial temperature distribution is plotted for a two-shield configuration. In the experiment, all surfaces except one were coated with a high-emissivity paint $(\epsilon \approx 0.94)$. The side of the warmer shield facing the colder shield was left unpainted except for a rim which covered 0.16 of the radial distance. The purpose of this test was to see if the calculations would accurately predict the behavior of a shadow-shield system when the emissivity of a surface was not constant. The shield with a targeted rim was made of Mylar with a thin layer of aluminum laminated to the Mylar on each side. This resulted in an emissivity of about 0.03 for the unpainted center portion. The colder of the two shields was a plain Mylar shield painted on both sides with a high-emissivity paint. Even though the aluminum increased the conductivity of the warmer shield, the thickness of the aluminum was so small that the overall conductivity was still low. If the rim of the shield were not coated, one would expect a temperature distribution similar to that presented in the previous figure. However, coating the outside surface of the shield causes much more energy to be emitted from the surface. This energy causes a local increase in the temperature of the adjacent colder shield. This effect is illustrated in this
figure. The analytic radial temperature distribution closely follows the experimental distribution for both the warmer and colder shields.

Structural Member

In reference 8, analytic data were presented for the temperature distribution and heat-transfer rates for a pipe penetration with an adiabatic external surface. Setting the external emissivity equal to zero simulated this condition when using the analysis presented herein. For similar cases, results calculated using the equations presented in appendix D, agreed to within the accuracy of the plot reported in reference 8.

In reference 7, experimental temperature distributions were reported for tubes designed as scaled-down representations of support members. Figure 6 gives two of these temperature distributions and an analytic comparison for each distribution. One of the struts was left unpainted while the other was partially painted in the circumferential direction to give an average emissivity of 0.6 in the axial direction. The manner in which the second strut was painted is shown in figure 6 . The measured emissivity of the bare metal over the temperature range to which the struts were subjected is closer to 0.25 than the handbook value of 0.3 which was reported in reference 7 . The analysis herein uses an emissivity of 0.25 for the bare metal and accounts for internal emissivity. The analytic curves in reference 7 were based on an emissivity of 0.3 and did not account for the effects of internal emissivity. Both struts were made of stainless steel which has a relatively low thermal conductivity. When considering only conduction with a constant thermal conductivity, a straight line would connect the end points in figure 6. It can be seen from this figure that at the higher emissivity the temperature distribution departs more from the straight-line distribution.

One of the possible reasons for the discrepancy between the analytic and experimental results in figure 6 is that the analysis assumes the strut to be a cylinder while the experimental struts formed a cone at each end. Also, the calculations were carried out assuming that the bare metal inside surfaces of the tube were diffusely reflecting. In reference 9, the effects of having specular surfaces on the heat transfer through a nonconducting tube are examined. In this reference, it is shown that for an l / d_{l} of 20 and an internal emissivity of 0.25 , which is representative of the struts reported in reference 7 , over four times as much energy can be transported through the tube when the surfaces are specularly reflecting as opposed to when they are diffusely reflecting. Since much of this energy would be reflected at the end of the tube, the temperature profile at the cold end would be altered if the surfaces were specularly reflecting. If, in addition, the energy was polarized so that the component of reflectivity was large in the direction parallel to the axis of the tube, larger heat-transfer rates would result.

Consequences of Assuming Specularly Reflecting Surfaces

 and Uniform RadiosityThe primary analysis used in this report (appendix B) assumes that all surfaces are diffusely emitting and reflecting and have nonuniform radiosity. In this section of the report, the change in the heat-transfer rate which results from surfaces being diffusely emitting but specularly reflecting is examined. Also, the effects on the heat-transfer rate due to the simplifying assumption that the surfaces have uniform radiosity are discussed. It is simpler to calculate heat-transfer rates assuming surfaces of uniform radiosity. However, this assumption does not yield temperature profiles for each shield and may significantly underestimate the real heat-transfer rates.

Specular surfaces. - In appendix C, the method used to calculate the heat-transfer rates and temperature of each shield for specularly reflecting surfaces is presented. This method is for diffusely emitting surfaces under the assumption of uniform radiosity.

An indication of the effects of assuming specular rather than diffuse reflections is given in figure 7 for various surface emissivities and spacing ratios. The ordinate gives the ratio of the heat-transfer rate to a source at zero temperature for specular surfaces of uniform radiosity to the heat-transfer rate for diffusely reflecting surfaces of uniform radiosity. Both surfaces have the same emissivity and curves of constant emissivity are plotted. It can be seen that as the spacing ratio increases at constant emissivity, the ratio of the heat-transfer rates also increases. In addition, as the emissivity decreases the ratio also increases.

In figure 8 , the same parameters as in figure 7 have been plotted except that a shield has been placed midway between the two sources. The surfaces of the shield are specularly reflecting like the sources and have the same emissivity as the sources. The results of placing the shield between the sources is to magnify the ratio of the heat-transfer rates. In figure 8, the shield temperature is uniform due to assuming uniform radiosity and emittance. Because of the assumption of uniform radiosity, these two figures only give an indication of the effects of specular reflectivity. It would be more accurate to consider the effect of nonuniform radiosity on the heat-transfer rates. However, this was beyond the scope of this report.

Comparison of uniform and nonuniform radiosity assumptions. - The two previous figures presented a comparison of the heat-transfer rates for specularly reflecting with diffusely reflecting surfaces under the assumption of uniform radiosity. In figures 9 and 10 , comparisons are made in the heat-transfer rates between uniform radiosity and nonuniform radiosity under the assumption of diffusely reflecting surfaces. In figure 9 , the ratio of the heat-transfer rates of nonuniform to uniform radiosity is given as a function of spacing ratio for constant emissivity. Both surfaces have the same area; and, again, the ratio is for a cold-source temperature of zero. It can be seen from figure 9
that as the spacing increases, the ratio of the heat-transfer rates reaches a maximum and then decreases. However, the ratio of the heat-transfer rates at any spacing decreases with increasing emissivity.

In figures $10(\mathrm{a})$ and (b), the same parameters as in figure 9 are plotted except that a shield has been placed midway between the two sources. Figure 10(a) is for a nonconducting shield while figure $10(\mathrm{~b})$ is for a uniform temperature shield. A comparison of these two figures shows that the effects of the shield conductivity assumptions on the heattransfer ratio are small in relation to the effects of the radiosity assumptions. In each of these figures, the effect of placing a shield between the source is to magnify the ratio of the heat-transfer rates.

In the previous four figures, the heat-transfer ratio was given as the dependent variable. In the next two figures, the actual heat-transfer rate is given as a function of emissivity. In figure 11, the nondimensional heat-transfer rate is plotted as a function of emissivity for two different spacing ratios and the various types of surfaces which have been discussed. In figure 12, the same parameters have been plotted with the addition of a single shield midway between the two sources.

At an L_{T} / R of 0.1 in either figure 11 or 12 , the difference between the heat-transfer rates for diffuse surfaces of uniform radiosity and specular surfaces of uniform radiosity is small. The difference between diffuse surfaces of uniform radiosity and those of nonuniform radiosity is larger. At an $\mathrm{L}_{\mathrm{T}} / \mathrm{R}$ of 1.0 , there is a significant difference in the heat-transfer rates between specular and diffuse surfaces of uniform radiosity. However, an L_{T} / R of 1.0 represents a relatively large spacing for shadow-shield applications.

By comparing figures 11 and 12 , it can be seen that as the number of surfaces involved increases, the differences in the heat-transfer rates caused by the various assumptions generally increase. The curves presented in this report for diffusely reflecting surfaces of nonuniform radiosity might be significantly different from the results obtained for specularly reflecting surfaces of nonuniform radiosity if the number of shields were large and the emissivity low with a large spacing ratio.

In the previous six figures, the cold-source temperature was taken to be zero. When the temperature of the colder source is increased, the change in the heat-transfer rate caused by the different analyses becomes greater. This is illustrated in figure 13 where the increase in the heat-transfer rate is given for various source temperature ratios. The increase in the heat-transfer rate is due to assuming specularly reflecting surfaces over diffusely reflecting surfaces. The increase in the nondimensional heat transfer to the colder source in terms of the warm-source temperature $\left(\Delta \dot{Q}_{1} / \sigma \mathrm{A}_{1} \mathrm{~T}_{2}^{4}\right)$ is plotted as a function of spacing ratio for constant source temperature ratios and a system consisting of two plane sources with no shields. It is necessary to plot the increase in the heattransfer rate rather than the ratio of the heat-transfer rates because for some coldsource temperature ratios, the heat-transfer rate for diffusely reflecting surfaces goes
to zero. It can be seen from figure 13 that the cold-source temperature has to become a fairly large fraction of the warm-source temperature before the increased heat transfer due to specular reflectivity becomes much greater than the increased value for a coldsource temperature of zero.

It is simpler to calculate heat-transfer relations assuming uniform radiosity surfaces. If one does not require the temperature profile across the shield and the emissivities of the surfaces involved are not too small, the heat-transfer relations presented in reference 1 for diffusely reflecting surfaces of uniform radiosity may suffice. The information presented in the previous figures should aid one in judging whether the assumption of uniform radiosity is satisfactory.

PARAMETRIC DATA

Shadow Shields

The equations used to determine the heat-transfer rates are linear in T^{4} when there is no conduction or when the shields have uniform temperatures. An additional requirement for linearity is that surface properties be independent of temperature. In appendix B, it is shown that when the equations are linear, the heat-transfer rate for any pair of source temperatures can be found using only a pair of nondimensional heat-transfer rates. Each of these rates gives the contribution of one of the sources. The equation for the addition of the heat-transfer rates is:

$$
\begin{equation*}
\frac{\dot{\mathrm{Q}}_{1}}{\mathrm{~A}_{1}}=\sigma\left[\left(\frac{\dot{\mathrm{Q}}_{1}^{*}}{\sigma \mathrm{~A}_{1} \mathrm{~T}_{2}^{4}}\right) \mathrm{T}_{2}^{4}+\left(\frac{\dot{\mathrm{Q}}_{1}}{\sigma \mathrm{~A}_{1} \mathrm{~T}_{1}^{4}}\right) \mathrm{T}_{1}^{4}\right] \tag{1}
\end{equation*}
$$

$\dot{\mathrm{Q}}_{1} / \mathrm{A}_{1}$ is the net heat-transfer rate per unit area to source $1 . \dot{\mathrm{Q}}_{1}^{*} / \sigma \mathrm{A}_{1} \mathrm{~T}_{2}^{4}$ is the nondimensional heat-transfer rate to source 1 due solely to a temperature on source 2 . $\dot{\mathrm{Q}} 1 / \sigma \mathrm{A}_{1} \mathrm{~T}_{1}^{4}$ is the nondimensional heat-transfer rate to 1 resulting from the temperature of source 1. T_{1} and T_{2} are the source temperatures. The application of this equation is illustrated in a subsequent portion of the report.

One of the applications of shadow shields would be the reduction of the heat transfer to a liquid hydrogen tank. The emissive power of a source at liquid hydrogen temperature is low. Therefore, much of the data in this report is for the heat-transfer rate to a source at 0°. This is done to avoid the necessity of giving two heat-transfer rates for each case. Nonconducting shields yield higher heat-transfer rates than conducting shields. For conservative results, heat-transfer rates are for nonconducting shields un-
less otherwise stated. For simplicity, the data given in this report are for shields of the same size. Planar sources have the same surface area as each side of the shields, and nonplanar sources have the same lateral radius as the shields. Also, for convenience, data are given for black surroundings at zero temperature.

Source geometry. - The heat-transfer rate for two plane sources with and without a single shield placed between them has been given in figures 11 and 12 . In figure 14 , the heat-transfer rate to a source at zero temperature is given as a function of emissivity for two nonplanar sources and various spacings. Each source is an oblate spheroid whose major radius is $\sqrt{2}$ times the minor radius. It can be seen from this figure that the heat-transfer rate is a strong function of emissivity. As the emissivity decreases, the effects of the spacing ratio become somewhat more pronounced.

In figure 15, the parameters given in figure 14 are plotted for a single planar shield placed midway between the two nonplanar surfaces. With the addition of a single shield, the effects on the heat-transfer rate due to the overall spacing become more pronounced especially at lower emissivities.

Number of shields. - The next two sets of figures are used to determine the net heattransfer rate to a plane source when both sources have nonzero temperatures. Figures 16(a) to (d) give the heat-transfer rate to a source of zero temperature, and figures 17(a) to (d) give the heat-transfer rate when the other source has a zero temperature.

In figures 16(a) to (d), the heat-transfer rate to source 1 is given as a function of the number of shields placed between the two sources. For each of the figures, the overall spacing ratio ($\mathrm{L}_{\mathrm{T}} / \mathrm{R}$) is held constant and curves are given in which all of the surfaces have the same emissivity. It should be noted that figures 16(a) and (b) have one ordinate scale while figures 16 (c) and (d) have another scale. Since a fractional number of shields has no physical significance, only integer values of the abscissa have meaning. By comparing particular points on each of these figures, it can be seen that increasing the spacing ratio increases the efficiency of shadow shields.

Figures 17(a) to (d) are the complement of figures 16(a) to (d) in that the heattransfer rate to source 1 due to the presence of a temperature on source 1 is given. Again, note that there is a scale change in the ordinate of these figures. Figures 17(a) and (b) have one scale while figures 17(c) and (d) have another scale. There is a net heat transfer out of the source for all cases; therefore, the ordinate of figures 17(a) to (d) is negative. It can be seen from these figures that as the spacing between the source and nearest surface becomes large, the heat-transfer rate out of the source approaches the limiting value of $\dot{\mathrm{Q}}_{1}^{\prime} / \sigma \mathrm{A}_{1} \mathrm{~T}_{1}^{4}=\epsilon$. This quantity is the amount of heat which would leave the source if the nearest surface was at an infinite distance from the source.

In order to show how the data in figures 16 and 17 may be used to determine the net heat transfer to a source, an illustrative example is given. The example is for two plane sources with two equally spaced shields. A spacing ratio (L_{T} / R) of 0.3 is chosen and the emissivity of each surface is 0.1 . The warmer source has a temperature of 300 K
$\left(540^{\circ} \mathrm{R}\right)$. The colder source has a temperature of $100 \mathrm{~K}\left(180^{\circ} \mathrm{R}\right)$.
The first nondimensional heat-transfer rate in equation (1) $\left(\dot{Q}_{1}^{*} / \sigma A_{1} T_{1}^{4}\right)$ is found from figure $16(\mathrm{c})$. The second nondimensional heat-transfer rate $\left(\dot{\mathrm{Q}}_{1} / \sigma \mathrm{A}_{1} \mathrm{~T}_{1}^{4}\right)$ is found from figure 17(c). Substituting the appropriate values in equation (1) gives the following result:

$$
\begin{gathered}
\frac{\dot{Q}_{1}}{\mathrm{~A}_{1}}=5.67 \times 10^{-8}\left[\left(2.1 \times 10^{-3}\right)(300)^{4}+(-0.065) 100^{4}\right] \\
\frac{\dot{\mathrm{Q}}_{1}}{\mathrm{~A}_{1}}=0.595 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}=\frac{0.189 \mathrm{Btu}}{(\mathrm{hr})\left(\mathrm{ft}^{2}\right)}
\end{gathered}
$$

Figure 18 illustrates the effects of varying the temperature of the colder source on the heat-transfer rate. In this figure, the nondimensional heat-transfer rate in terms of the temperature of the warmer source is plotted as a function of emissivity for various temperature ratios. It can be seen from this figure that the colder temperature has to be a fairly large fraction of the warmer temperature before the heat-transfer rate changes a great deal with respect to temperature. It can also be seen from this figure that for some temperature ratios the minimum heat-transfer rate has a negative value. This means that the absolute minimum heat-transfer rate may occur at an emissivity other than zero. When all surfaces have the same emissivity, the minimum heat-transfer rate is not a strong function of emissivity. If the emissivity were allowed to vary from one surface to another, the minimum could be lower. This can be seen from the dashed curve in figure 18. For this curve, the colder source has an emissivity of 0.9 while all other surfaces have the emissivity given by the abscissa of figure 18 . The temperature ratio ($\mathrm{T}_{1} / \mathrm{T}_{2}$) is 0.75.

Up to this point, only heat-transfer rates have been discussed. Shield temperatures are also of interest since the temperature gradients in the shields may affect the design of the shield system. The following figures give temperature profiles for some representative nonconducting shields. Figures 19 (a) to (c) present the shield temperature against radial position for a one-, two-, and three-shield case. For each of the three figures, the overall spacing between the sources is held constant. It can be seen that the shield temperatures drop off sharply toward the outer edge of each of the shields. The temperature difference across the shield become slightly greater as the temperature of the shield increases. The short horizontal line crossing each of the curves indicates the temperature of an infinitely conducting shield under the same conditions.

Targeting. - When the emissivity of the surfaces of a shadow-shield system are uniform in the radial direction, reducing the emissivity generally reduces the heat-transfer rate to the colder source. It is sometimes possible to gain a further reduction in the
heat-transfer rate for low-emissivity surfaces by using a high-emissivity coating on the outer edges. Shields for which this is done take on the appearance of targets due to circumferential symmetry. It is generally necessary that there be more than one shield in the system for targeting to produce a reduction in the heat-transfer rate.

Figures 20(a) and (b) illustrate the effects of targeting for uniform temperature shields and nonconducting shields for a system consisting of two plane sources separated by two shields. In order to obtain a decreased heat-transfer rate, it is necessary to target the surface of the warmer shield facing the colder shield. The percentage change in the heat-transfer rate due to targeting is plotted as a function of the percentage area of the shield which is targeted. The results for two overall spacing ratios are shown. From figures 20(a) and (b), it can be seen that for this case there is some decrease in the heattransfer rate due to targeting uniform temperature shields, but no improvement is noticeable for nonconducting shields. The targeted areas of the uniform temperature shields act like fins in that they are able to take energy from the shield and dissipate it to space. The nonconducting shields are less efficient at doing this. The changing of the shield temperatures due to targeting is illustrated in figures 21(a) to (c) for nonconducting shields. In these figures, the temperature profiles are plotted as a function of radial position for an untargeted system and two combinations of targeted shields. The upper curve gives the temperature of the warmer shield in each figure. In each case, the nondimensional heat-transfer rate is also given. Even if targeting does not provide an improvement in the heat transfer for nonconducting shields, targeting can drastically alter the temperature profile of the shield.

The heat-transfer rate varies little while the temperatures vary substantially in each of the three cases presented. In figure $21(\mathrm{~b})$, the temperature of the outer edge is greatly lowered. This could prove useful in attaching shields to their support members. Shields could be thermally bonded to the support structure. If the rim temperature was lower than that of the adjacent structure, the shields could act as fins to dissipate heat from the strut. In this way, the local temperature of the strut would be lowered and this, in turn, might reduce the conducted heat out of the strut. The interaction of shields and their support structure is not analyzed in this report. In figure 21(c), the radial temperature difference has been lessened for each of the shields by means of targeting.

Shield conductivity. - Figure 22 illustrates the effect of shield conductivity on the heat-transfer rate. As the conductivity of a shield increases, the temperature of the shield becomes more uniform and the heat-transfer rate decreases. Shields which have the same values of the scaling parameter (kt/ $/ \mathrm{T}_{2}^{3} \mathrm{R}_{1}^{2}$, where T_{2} is a reference temperature) have the same radial temperature profiles and heat-transfer rates. In figure 22 , heat-transfer ratios for partially conducting shields are given as a function of this parameter. The ordinate of figure 22 is the ratio of the heat-transfer rate to the heat-transfer rate for uniform temperature shields and data are given for one-, two-, and three-shield
configurations. Only when the conductivity parameter has a value of zero or infinity are the equations for the heat-transfer rates linear. It should be noted that at these two extremes the abscissa has been made discontinuous in order to show the effects of the two assumptions which yield linear equations. From this figure, it can be seen that when there are several shields involved, there can be a significant change in the heat-transfer rate due to thermal conductivity. These curves are given for an emissivity of 0.1 and although it is not shown on the figures, the ratio of the heat-transfer rates increases with decreasing emissivity.

When the thermal conductivity has a finite value other than zero, it is necessary to solve nonlinear equations in order to determine the temperature distributions. In appendix B, a solution is given in which the conducted heat transfer is treated as a known quantity during each iteration cycle. As the conductivity of the shields increases, it becomes less desirable to do this. In appendix E, an alternate solution is given in which the radiant heat transfer is treated as a known quantity during each iteration, and the temperature distributions are found by solving the conduction equations.

Shield position. - In the previous figures, the shields were placed so that there were equal spacings between surfaces. Figures 23(a) to (e) illustrate the effects of varying the spacings between surfaces for two emissivities. In each of the figures, the variable giving the relative spacing ($\mathrm{L} / \mathrm{L}_{\mathrm{T}}$) is measured from the warmer source.

The ordinate in each figure is the ratio of the heat-transfer rate to the heat-transfer rate for the same number of evenly spaced shields. In figure 23(a), there is a single shield present and in figures $23(\mathrm{~b})$ and (c), there are two and three shields, respectively, with the spacing between shields remaining constant. For these three cases, the spacing for the minimum heat-transfer rate is halfway between the two sources for both emissivities. As the emissivity decreases, the heat-transfer rate is more sensitive to spacing. The heat-transfer rate decreases with increasing number of shields, so that the ordinate is different for each of these figures. The actual heat-transfer rate is lowest for three shields.

Figures 23(d) and (e) are for configurations in which the shields have the same spacing relative to the sources. In figure 23(d), both shields come closer to the center as the abscissa is increased; and in figure 23 (e), the center shield remains fixed while the two outer shields approach it for increasing values of the abscissa. In both of these figures, the spacing for minimum heat transfer is a function of emissivity.

Solar radiation. - When one of the sources is solar radiation, this radiation is incident only on the outermost surface. If the equations are linear, the net heat-transfer rate to a source can be found by using two generalized heat-transfer rates. The heattransfer rate due to solar radiation is proportional to the solar flux (φ) times the solar absorptivity $\left(\alpha_{\varphi}\right)$. The solar absorptivity is taken to be independent of the emissivity of the surface. In this way, increasing the solar absorptivity is equivalent to increasing the
solar flux. Therefore, these variables can be combined with others to form nondimensional heat-transfer rates.

Figure 24 gives the nondimentional heat-transfer rate due to solar energy as a function of the spacing ratio for two nonconducting shields and a plane source. All surfaces have the same emissivity, and lines of constant emissivity are plotted. It can be seen that as the spacing ratio decreases, the heat-transfer rate increases with the greatest change coming for low-emissivity surfaces. As the spacing ratio reaches a very small value, the heat-transfer rates become less dependent on the emissivity of the surfaces.

In figure 25, the nondimensional heat-transfer rate is plotted as a function of spacing ratio for surfaces of constant emissivity. In this figure, the solar flux is taken to be zero. The inner shield is placed midway between the source and the outer shield. The heat-transfer rate to the plane source is negative since there is no solar flux. From this figure, it can be seen that as the emissivity decreases and spacing ratio increases, the heat-transfer rate approaches the limiting value of $\dot{Q}_{1}^{\prime} / \sigma \mathrm{A}_{1} \mathrm{~T}_{1}^{4}=\epsilon$.

The information presented in figures 24 and 25 can be utilized in order to determine the net heat-transfer rate into a source when the system is exposed to solar radiation. The solar flux varies with the square of the distance from the sun. At one AU, the solar flux is about $1390 \mathrm{~W} / \mathrm{m}^{2}\left(442 \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\right.$). If it is desired to approach a one-tenth AU distance from the sun, the solar flux would be $1.390 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}\left(4.42 \times 10^{4} \mathrm{Btu} /(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\right)$. The sun is not really a point source so that a conical array of shields might be needed. However, at this distance from the sun, the half angle of the cone is less than 3^{0} and this complication is neglected. In order to use figures 24 and 25 , a system of two equally spaced nonconducting shields is chosen. The overall spacing is taken to be 0.2 and the source temperature is taken as $300 \mathrm{~K}\left(540^{\circ} \mathrm{R}\right)$. The emissivity of all of the surface is assumed as 0.1 while the solar absorptivity is taken as 0.02 . The net heat-transfer rate to the source can be found from the equation:

$$
\begin{equation*}
\frac{\dot{\mathrm{Q}}_{1}}{\mathrm{~A}_{1}}=\left(\frac{\dot{\mathrm{Q}}_{1}^{*}}{\mathrm{~A}_{1} \varphi \alpha_{\varphi}}\right) \varphi \alpha_{\varphi}+\left(\frac{\dot{\mathrm{Q}}_{1}^{\prime}}{\sigma \mathrm{A}_{1} \mathrm{~T}_{1}^{4}}\right) \sigma \mathrm{T}_{1}^{4} \tag{2}
\end{equation*}
$$

The first heat-transfer term is found from figure 24 and the second from figure 25 . Substitution of values gives

$$
\begin{gathered}
\frac{\dot{\mathrm{Q}}_{1}}{\mathrm{~A}_{1}}=(0.0545) 1.390 \times 10^{5}(0.02)+(-0.064)\left(5.67 \times 10^{-8}\right)(300)^{4} \\
\frac{\dot{\mathrm{Q}}_{1}}{\mathrm{~A}_{1}}=122.6 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}=38.9 \frac{\mathrm{Btu}}{(\mathrm{hr})\left(\mathrm{ft}^{2}\right)}
\end{gathered}
$$

This value of $122.6 \mathrm{~W} / \mathrm{m}^{2}$ is considerably less than the value of $2734 \mathrm{~W} / \mathrm{m}^{2}$ (867 Btu / $\left.(\mathrm{hr})\left(\mathrm{ft}^{2}\right)\right)$ which would occur if no shields were present.

Structural Member

The structural member which is thermally analyzed in this report could be a support member of a system for shadow shields. It could also be any of several other structural members in an upper stage. The thermal analysis of this member can involve many independent variables. This is especially true when the internal emissivity is not zero. The following figures present datafor a few cases representative of structural members in a space vehicle. In figures 26 (a) to (c), the nondimensional total heat-transfer rate is given as a function of emissivity. The solid lines are for closed ends while the dashed line in each figure is for opened ends and an external emissivity of zero. When the ends are closed, the total heat-transfer rate is the conducted heat-transfer rate at the colder end plus the radiant energy absorbed by the end disk. When the ends are open, the total heat-transfer rate is the conducted heat-transfer rate. When the internal emissivity is zero, the internal radiant heat-transfer rate is also zero. For each of these figures, a different l / d_{l} is given and since the diameter of the tube is held constant, the radiation to conduction parameter $\sigma \mathrm{T}_{2}^{3} l^{2} / \mathrm{kt}$ increases with increasing l / d_{l}. It should be noted that figure 26(c) has a different ordinate scale from figures 26(a) and (b).

From these figures, it can be seen that both the internal and external emissivities can affect the heat-transfer rate. The heat-transfer rate is more sensitive to changes in emissivity at low values of emissivity than at high values. As the external emissivity increases, more energy is radiated to the surroundings. This, in turn, reduces the temperature gradient at the colder end of the strut thereby lowering the conducted heattransfer rate. In these cases, the surroundings were taken to be at zero temperature. Increasing the internal emissivity causes an increase in the heat-transfer rate at the colder end of the strut in a twofold manner. First, as the internal emissivity increases, the temperatures along the strut increase. This increases the thermal gradient at the colder end which results in an increased conducted heat-transfer rate. Second, for closed ends, increasing the internal emissivity increases the amount of radiant energy which is absorbed by the end of the strut.

In the next series of figures, the temperature profiles are given as a function of external emissivity for constant values of l / d_{ι}. In figures 27 (a) to (c), the nondimensional temperature is plotted as a function of axial position. For all of these figures, the internal emissivity is held constant at 0.6 while the l / d_{ι} changes for each figure. By comparing these figures, it can be seen that as the radiation to conduction parameter increases, the temperature profile departs more from the straight line which would occur if conduction were the only mechanism determining the heat-transfer rate. In each of
these figures, increasing the external emissivity causes an increase in the thermal gradient at the warm end of the strut and a decrease in the thermal gradient at the cold end. It should be noted that the thermal conductivity varies greatly between materials. Therefore, the values of the radiation to conduction parameter are strongly dependent on the strut material used. The values of this parameter which are shown on figure 27 were formed using a thermal conductivity representative of fiberglass.

Generally, it is desired to minimize the heat-transfer rate to the colder end of the strut. Returning to figures 26(a) to (c), it can be seen that reducing the internal emissivity of the strut reduces the heat-transfer rate. If the inside of the tube were filled with a very low conductivity material, the effective internal emissivity would be zero and the added heat transfer due to the conduction of the filler would be small. Also, if radiation barriers were placed along the length of the tube, the strut would be divided into a series of nearly isothermal compartments and the effective internal emissivity would be reduced.

In appendix D, it is shown that when the internal emissivity is zero and when emissivity and conductivity are taken to be independent of temperature, the temperature profile, and, consequently, the heat-transfer rate for a thin-walled tube seeing a zerotemperature environment can be expressed by two parameters. One of these parameters is the ratio of the boundary temperatures, and the other contains various specifications of the strut. The second parameter (κ) is $\sigma \epsilon_{\mathrm{o}} \mathrm{T}_{2}^{3} l^{2} / \mathrm{kt}$ and is dimensionless.

Figure 28 presents the ratio of the temperature slope at the colder end of the strut to that obtained by considering conduction only. This is done for an internal emissivity of zero. The data are presented as a function of κ and various temperature ratios. The ordinate of figure 28 can be directly related to the heat transfer out of the tube. The heat-transfer rate out of the tube considering the effects of emissivity is $k \pi d_{0} t(d T / d x)$ while the heat-transfer rate, when only conduction is considered, is $k \pi d_{o} t\left(T_{2}-T_{1}\right) / l$. Increasing κ decreases the heat-transfer rate. The effects of this parameter become more pronounced as the temperature ratio decreases. When the ordinate of this figure becomes negative, heat is being transferred into the strut from both ends and is dissipated to the surroundings along the length of the tube.

In figures $29(\mathrm{a})$ to (c), temperature ratio is plotted as a function of axial position for various values of κ. In each of these figures, the temperature ratio is held constant; and it can be seen that as κ increases, the temperature profiles become more distorted. As κ increases, the temperature along the strut becomes lower. If the temperature ratio is sufficiently low and κ is sufficiently high, the temperature along the strut can fall below the colder end temperature. Under this circumstance, heat is transferred into the strut at both ends.

CONCLUSIONS

In this report, the thermal analyses of both a system of shadow shields and a structural member have been carried out. It has been shown that the shadow-shield analysis developed herein is capable of accurately predicting the behavior of shadow-shield systems. The effects of emissivity and spacing ratio on the heat-transfer rates have been shown. This has been done for a system consisting of up to several shadow shields. This report shows that the effectiveness of shadow shields is most pronounced when the emissivity of the surface is low. By targeting shadow shields, large changes in the temperature profile of the shields can be achieved. This can be done with only a moderate change in the heat-transfer rate and may be advantageous in reducing the heat transferred by conduction through the strut if the shields are thermally connected to the support structure. In some cases, the heat-transfer rate will be lowered when targeting is applied.

In addition to protecting a cryogenic propellant, shadow shields may be used to protect a payload or other body from incident solar energy. Here again, shadow shields can be effective in reducing the heat-transfer rate especially when the emissivities of the surfaces are low.

The effects of having specularly reflecting surfaces have been examined for the simplifying case of surfaces with uniform radiosity. It has been shown that with this assumption specularly reflecting surfaces yield a higher heat-transfer rate than diffusely reflecting surfaces. The percentage increase due to specular reflectance increases with increasing shield spacing.

The effects of nonuniform radiosity for diffusely reflecting surfaces have also been examined. It has been shown that for reasonable shield spacings the possible error due to assuming uniform radiosity surfaces can be significant. This error is often greater than the error which would result from treating specularly reflecting surfaces as diffusely reflecting surfaces at the same spacing. For a more complete understanding of the behavior of specular surfaces, an analysis which would account for both specular reflectivity and nonuniform radiosity is necessary.

The ability of the thermal analysis for a structural member to predict the behavior of an actual strut has been examined. By taking advantage of the external emissivity of the strut, the rate of heat transfer through the strut can be greatly affected, even to the point of becoming a negative value. The thermal interaction between the shadow shields and their support members would also be needed for a more complete understanding of the entire system.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, July 3, 1968, 124-09-05-12-22.

APPENDIX A

SYMBOLS

area of a radiating surface
cross-sectional area of an element on the strut
absorption factor - the fraction of energy which leaves the $i^{\text {th }}$ surface and is absorbed by the $j^{\text {th }}$ surface
diameter of the strut
view factor between specular surfaces
diffuse view factor between the $i^{\text {th }}$ and $j^{\text {th }}$ surfaces
incident energy per unit time and area
step size
constant used in appendix B
thermal conductivity
spacing between surfaces in the shield system
length of the strut
shield number or the number of steps in the solution of the differential equation number of annuli on a shield or the number of elements into which a strut is divided. This symbol is also used as a subscript.
heat-transfer rate to a whole surface
heat-transfer rate to an element
thermal resistance between annuli
radius of a shield
radial distance
absolute temperature
shield thickness or thickness of a thin-walled tube
emissive power per unit area of an element
distance along the strut
absorptivity
solar absorptivity
$\delta_{i j} \quad$ Kronecker delta; equals 1 when $i=j$; equals 0 if $i \neq j$
$\epsilon \quad$ emissivity
ζ number of terms used to approximate the finite series
$\eta \quad$ number of times energy has been reflected off an adjacent surface
$\rho \quad$ reflectivity, $\rho=1-\alpha$
$\sigma \quad$ Stefan-Boltzmann constant
$\varphi \quad$ solar flux
The following matrices and vectors are used:
C

D n-by-n matrix whose elements are the sum of the entries in Ψ and Ψ^{c} which refer to the annuli of the shield times the emissivity of the annuli (D) ${ }_{p q}=(\Psi)_{n+p, n+q} \epsilon_{n+p}+\left(\Psi^{c}\right)_{p q} \epsilon_{p}^{c}$
column vector of size k whose elements are the emissive power of each surface $(\mathrm{E})_{\mathrm{p}}=\mathrm{W}_{\mathrm{p}} \mathrm{A}_{\mathrm{p}}=\sigma \epsilon_{\mathrm{p}} \mathrm{T}_{\mathrm{p}}^{4} \mathrm{~A}_{\mathrm{p}}$
identity matrix $(\mathrm{I})_{\mathrm{pq}}=\delta_{\mathrm{pq}}$
column vector of size n with entries containing the radiant heat transfer from each element of the shield from known temperature surfaces
column vector of size n whose elements contain the heat transfer away from each annulus of the $\mathrm{m}^{\text {th }}$ shield
$\Psi \quad \mathrm{k}$-by-k matrix defined as $\Psi=\mathrm{U}-\mathrm{I}$ by a surface $(V)_{p q}=-f_{p q} \alpha_{q}$ strut system $(\overline{\mathrm{V}})_{p}=-\mathrm{f}_{\mathrm{jp}} \frac{\epsilon_{\mathrm{j}}}{A_{p}}$ are linear in temperature
column vector of size n containing $(Z)_{j}=\sigma A_{j} T_{j}^{4}$ peratures along the strut annulus in the system to the differential equation
k -by-k matrix whose elements contain the negative of fraction of energy absorbed
column vector of V in the shadow-shield system $(\bar{v})_{q}=-f_{q j} \alpha_{j}$ and a vector containing the negative of the fraction of energy absorbed by a surface in the
n -by-n matrix containing the coefficients of the temperatures when the equations
column vector containing the temperatures of the annuli of the shield or the tem-
column vector of size k whose entries contain the heat-transfer rate to each
m-by-m matrix whose entries contain the temperature coefficients in the solution
column vector of size m, the entries of which are the values of the second derivative in the differential equation

Subscripts:
c conductive heat transfer
i any surface in the system
in heat transfer towards the surface
j particular surface under consideration
k total number of elements in a system. Equals $2 \mathrm{n}+1$ for a shield system and $\mathrm{n}+2$ for a strut system.
number of annuli on a shield or segments of a strut
o outside surface of strut
out heat transfer away from the surface
$\mathrm{p}, \mathrm{q} \quad$ dummy subscripts denoting any element in a matrix or vector
r radiant heat transfer
S
sr surroundings

T total heat-transfer rate through the strut or the total spacing between sources
$\iota \quad$ inside surface of the strut
1,2 each of the two sources or each end of the strut
Superscripts:
c complimentary system composed of the $m^{\text {th }}$ and $m^{\text {th }}+1$ shields and their surroundings
source for which the heat-transfer rate is given has a zero temperature
1 source for which the heat-transfer rate is given is the only source of thermal energy in the system
heat-transfer rate is a ratio to the case of uniform radiosity and diffusely reflecting surfaces

APPENDIX B

DERIVATION OF SHADOW-SHIELD EQUATIONS

The following derivation for determining the temperature distribution for a system of shadow shields follows the work of Gebhart given in reference 10. Heat balances are formulated which consider radiation and radial conduction. The steady-state temperature distribution for each shield is determined from the heat balances, since there is no net heat transfer to the elements of the shield or the shield as a whole. The properties of the shields are allowed to be functions of the shield temperatures. This results in an iterative solution. In order to avoid matrices of cumbersome size, the temperature distribution for each shield is determined assuming that adjacent shields and surroundings have known temperature distributions. As the iterative procedure converges, the assumed and calculated temperature distributions become nearly identical.

Figure 30 gives a schematic of a shield bounded by two other surfaces and the surroundings. In the derivation of the equations for the temperature of the $\mathrm{m}^{\text {th }}$ shield, it is assumed that the temperatures of the $m^{\text {th }}+1$ and the $m^{\text {th }}-1$ shield are known. Each of the four surfaces (there are two surfaces to consider for the $\mathrm{m}^{\text {th }}$ shield) are divided into n elements. Because surface properties are assumed constant in the circumferential direction, the elements are a series of concentric annuli. Both surfaces of the $j^{\text {th }}$ element of a shield have the same temperature and area, but not necessarily the same surface properties. The temperature of both sides of the shield are the same because it is assumed that there is no axial temperature gradient.

The total rate of heat transfer to the $j^{\text {th }}$ element on the $m^{\text {th }}$ shield is the sum of the radiant heat transfer occasioned by the shield seeing the $m^{\text {th }}+1$ and $m^{\text {th }}-1$ shields plus the conducted heat transfer from the $j^{\text {th }}-1$ and the $j^{\text {th }}+1$ elements of the $m^{\text {th }}$ shield to the $j^{\text {th }}$ element. The rate of heat transfer away from the element is the emitted radiation from both surfaces of the element.

The shield temperatures are determined by constructing two closed systems as is illustrated in figure 31. The first system consists of the $m^{\text {th }}-1$ shield, the $m^{\text {th }}$ shield, and the surroundings enclosing these two shields. The second system consists of the $\mathrm{m}^{\text {th }}$ shield, the $\mathrm{m}^{\text {th }}+1$ shield, and the surroundings enclosing these two shields. The $m^{\text {th }}$ shield forms the common boundary for the two systems. The temperature of the boundary must be the same when viewed from either system. If the enclosures do not represent physical surfaces, they are nonreflective.

There are n elements on each surface of each system. Therefore, there are $2 n+1$ elements in each system. The manner in which elements were assigned subscripts is also illustrated in figure 31. Each element in a system is assigned a unique subscript; therefore, it is not necessary to distinguish elements on the $\mathrm{m}^{\text {th }}$ shield from
those on the other surface with an additional subscript denoting the particular shield.
The net rate of radiant heat transfer away from the $j^{\text {th }}$ element is:
$q_{r, j}=W_{j} A_{j}-B_{1 j} W_{1} A_{1} B_{2 j} W_{2} A_{2}-B_{3 j} W_{3} A_{3}-\cdots-B_{k j} W_{k} A_{k} \quad$ where $k=2 n+1$
W_{i} is the emissive power per unit area of the $i^{\text {th }}$ element, and $B_{i j}$ represents the fraction of energy which is emitted from the $i^{\text {th }}$ surface and is absorbed by the $j^{\text {th }}$ surface. It is assumed that the radiant energy is uniformly distributed over each of the elemental surfaces, and that each of the surfaces emits and reflects energy diffusely. Therefore, B_{ij} can be found in terms of the other B 's. The following equations give this relation.

$$
\begin{aligned}
& \mathrm{B}_{1 \mathrm{j}}=\mathrm{f}_{1 \mathrm{j}} \alpha_{\mathrm{j}}+\mathrm{f}_{11} \rho_{1} \mathrm{~B}_{1 \mathrm{j}}+\mathrm{f}_{12} \rho_{2} \mathrm{~B}_{2 \mathrm{j}}+\ldots+\mathrm{f}_{1 \mathrm{k}} \rho_{\mathrm{k}} \mathrm{~B}_{\mathrm{kj}} \\
& \mathrm{~B}_{2 \mathrm{j}}=\mathrm{f}_{2 \mathrm{j}} \alpha_{\mathrm{j}}+\mathrm{f}_{21} \rho_{1} \mathrm{~B}_{1 \mathrm{j}}+\mathrm{f}_{22} \rho_{2} \mathrm{~B}_{2 \mathrm{j}}+\ldots+\mathrm{f}_{2 k} \rho_{\mathrm{k}} \mathrm{~B}_{\mathrm{kj}} \\
& \cdot \\
& \\
& \mathrm{~B}_{\mathrm{kj}}=\mathrm{f}_{\mathrm{kj}} \alpha_{\mathrm{j}}+\mathrm{f}_{\mathrm{k} 1} \rho_{1} \mathrm{~B}_{1 \mathrm{j}}+\mathrm{f}_{\mathrm{k} 2} \rho_{2} \mathrm{~B}_{2 \mathrm{j}}+\ldots+\mathrm{f}_{\mathrm{kk}} \rho_{\mathrm{k}} \mathrm{~B}_{\mathrm{kj}}
\end{aligned}
$$

This set of linear algebraic equations can be rewritten as:

$$
\begin{aligned}
& \left(\rho_{1} \mathrm{f}_{11}-1\right) \mathrm{B}_{1 \mathrm{j}}+\rho_{2} \mathrm{f}_{12} \mathrm{~B}_{2 \mathrm{j}}+\cdots+\rho_{\mathrm{k}} \mathrm{f}_{1 \mathrm{k}} \mathrm{~B}_{\mathrm{kj}}=-\mathrm{f}_{1 \mathrm{j}} \alpha_{\mathrm{j}} \\
& \rho_{1} \mathrm{f}_{21} \mathrm{~B}_{1 \mathrm{j}}+\left(\rho_{2} \mathrm{f}_{22}-1\right) \mathrm{B}_{2 \mathrm{j}}+\ldots+\rho_{\mathrm{k}} \mathrm{f}_{2 \mathrm{k}} \mathrm{~B}_{\mathrm{kj}}=-\mathrm{f}_{2 \mathrm{j}} \alpha_{\mathrm{j}} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \rho_{1} \mathrm{f}_{\mathrm{k} 1} \mathrm{~B}_{1 \mathrm{j}}+\rho_{2} \mathrm{f}_{\mathrm{k} 2} \mathrm{~B}_{2 \mathrm{j}}+\ldots+\left(\rho_{\mathrm{k}} \mathrm{f} \mathrm{kk}-1\right) \mathrm{B}_{\mathrm{kj}}=-\mathrm{f}_{\mathrm{kj}} \alpha_{\mathrm{j}}
\end{aligned}
$$

These equations can be rewritten in matrix form for each j. This gives:

$$
\begin{equation*}
C \bar{u}=\bar{v} \tag{B2}
\end{equation*}
$$

where

$$
\begin{gathered}
(C)_{q p}=f_{q p} \rho_{p}-\delta_{q p} \\
(\bar{u})_{p}=B_{p j}
\end{gathered}
$$

and

$$
(\bar{v})_{q}=-f_{q j} \alpha_{j}
$$

The heat-transfer balance can be taken for each of the other elements in the system. The coefficient matrix C is independent of the surface for which the heat balance is taken. The entire k^{2} set of algebraic equations can be represented in terms of $\mathrm{k}-\mathrm{by}-\mathrm{k}$ matrices. The matrix equation for this is:

$$
\begin{equation*}
C U=V \tag{B3}
\end{equation*}
$$

Each of the matrices have the following values in their respective elements:

$$
\begin{gathered}
(\mathrm{U})_{\mathrm{pq}}=\mathrm{B}_{\mathrm{pq}} \\
(\mathrm{~V})_{\mathrm{pq}}=-\mathrm{f}_{\mathrm{pq}} \alpha_{\mathrm{q}}
\end{gathered}
$$

and the coefficient matrix C remains the same.
Solving for U yields:

$$
\begin{equation*}
\mathrm{U}=\mathrm{C}^{-1} \mathrm{~V} \tag{B4}
\end{equation*}
$$

The entire process can be repeated for the other system. And an equation similar to equation (B4) can be written for this system.

$$
\begin{equation*}
U^{c}=\left(C^{c}\right)^{-1} V^{c} \tag{B4'}
\end{equation*}
$$

The surface properties and the spacing between surfaces are not necessarily the same in each system. Therefore, there is no necessary correspondence between the systems. In general,

$$
\begin{aligned}
& \mathrm{C} \neq \mathrm{C}^{\mathrm{c}} \\
& \mathrm{U} \neq \mathrm{U}^{\mathrm{c}} \\
& \mathrm{~V} \neq \mathrm{V}^{\mathrm{c}}
\end{aligned}
$$

Equation (B1) can be written for each of the elements in each of the systems. For the system containing the $\mathrm{m}^{\text {th }}$ shield and the $\mathrm{m}^{\text {th }}-1$ shield, these equations are:

$$
\begin{aligned}
& -q_{r, 1}=\left(B_{11}-1\right) W_{1} A_{1}+B_{21} W_{2} A_{2}+\cdots+B_{k 1} W_{k} A_{k} \\
& -q_{r, 2}=B_{12} W_{1} A_{1}+\left(B_{22}-1\right) W_{2} A_{2}+\ldots+B_{k 2} W_{k} A_{k} \\
& \cdot \\
& \cdot \\
& -q_{r, k}=B_{1 k} W_{1} A_{1}+B_{2 k} W_{2} A_{2}+\ldots+\left(B_{k k}-1\right) W_{k} A_{k}
\end{aligned}
$$

These equations can be written in matrix form giving:

$$
\begin{equation*}
\Phi=\Psi^{\mathrm{T}} \mathrm{E} \tag{B5}
\end{equation*}
$$

Because the indices are reversed, it is the transpose of the coefficient matrix which is used in the matrix equation. Φ is a column vector whose elements represent the net radiant heat transfer to each of the surfaces in the system. Each of these matrices are made up of the following elements:

$$
\begin{gathered}
(\Psi)_{p i}=(U)_{p i}-\delta_{p i} \text { or } \Psi=U-I \\
(\Phi)_{i}=-q_{i} \\
(E)_{p}=W_{p} A_{p}=\sigma \epsilon_{p} T_{p}^{4} A_{p}
\end{gathered}
$$

For the other system involving the $m^{\text {th }}$ and $m^{\text {th }} \rightarrow 1$ shields, it is possible to write the heat-balance equations. These equations in matrix form are:

$$
\begin{equation*}
\Phi^{\mathrm{c}}=\left(\Psi^{\mathrm{c}}\right)^{\mathrm{T}} \mathrm{E}^{\mathrm{c}} \tag{B5'}
\end{equation*}
$$

The $\mathrm{m}^{\text {th }}$ shield is common to both systems, and the temperature of each annulus of this shield is the same when viewed from either system $\left(A_{i}=A_{i}^{c}\right.$ and $T_{i}=T_{i}^{c}$, where i represents any element of the $\mathrm{m}^{\text {th }}$ shield). However, because the surface properties as well as the spacing between surfaces may be different in each system, there is, in general, no correspondence between equations (B5) and (B5') so that

$$
\begin{gathered}
\Phi^{\mathrm{c}} \neq \Phi \\
\Psi^{\mathrm{c}} \neq \Psi \\
\mathrm{E}^{\mathrm{c}} \neq \mathrm{E}
\end{gathered}
$$

It is desirable to maintain a system of linear equations. Radiation terms in the heat balances are linear in T^{4}, while conduction terms are linear in T . In this appendix, equations are given which are linear in T^{4}. The conduction terms are considered known during an interation and are recalculated after every iteration. When the conduction terms are relatively large compared with the radiation terms, it may be advantageous to solve a system of equations that are linear in T. In appendix E, equations, which are linear in T, are presented for determining the temperatures of partially conducting shields. Either form of the solution should yield the same result since each is iterative in nature so that at the final iteration the terms that were assumed known are truly known. The heat-transfer rate to the $j^{\text {th }}$ element by conduction is

$$
\begin{equation*}
q_{c, j}=\frac{T_{j+1}-T_{j}}{\mathscr{R}_{j+1, j}}+\frac{T_{j-1}-T_{j}}{\mathscr{R}_{\mathrm{j}-1, \mathrm{j}}} \tag{B6}
\end{equation*}
$$

\mathscr{P} is the thermal resistance between the $\mathrm{j}^{\text {th }}$ element and an adjacent element

$$
\begin{equation*}
\mathscr{R}_{\mathrm{i}, \mathrm{j}}=\frac{\left|\ln \left(\frac{r_{i}}{r_{j}}\right)\right|}{2 \pi \mathrm{kt}} \quad \text { where } \quad \mathrm{i}=\mathrm{j} \pm 1 \tag{B7}
\end{equation*}
$$

In each of the systems considered, only n of the k elements are for the $m^{\text {th }}$ shield. It can be seen from figure 31 that for the system containing the $\mathrm{m}^{\text {th }}$ and $m^{\text {th }}-1$ shields the elements for the $m^{\text {th }}$ shield are the $n^{\text {th }}+1$ to the $2 n$ elements. For all of the other $2 \mathrm{k}-2 \mathrm{n}$ elements in the two systems, temperatures as well as emissivities and, therefore, reflectivities are considered known.

Equations (B5) and (B5') can be added together and rewritten so as to separate the knowns from the unknowns. Our interests are in determining the temperatures of the $2 n$ elements common to both systems. The algebraic equations which result from the addition of equations (B5) and (B5') are:

$$
\begin{align*}
& (\Phi)_{n+1}+\left(\Phi^{c}\right)_{1}=\sum_{p=1}^{n}(\Psi)_{p, n+1}(E)_{p}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, 1}\left(E^{c}\right)_{p}+(\Psi)_{k, n+1}(E)_{k} \\
& +\sum_{p=n+1}^{k-1}(\Psi)_{p, n+1}(E)_{p}+\sum_{p=1}^{n}\left(\Psi^{c}\right)_{p, 1}\left(E^{c}\right)_{p} \\
& (\Phi)_{n+2}+\left(\Phi^{c}\right)_{2}=\sum_{p=1}^{n}(\Psi)_{p, n+2}(E)_{p}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, 2}\left(E^{c}\right)_{p}+(\Psi)_{k, n+2}(E)_{k} \\
& +\sum_{p=n+1}^{\mathrm{k}-1}(\Psi)_{p, n+2}(E)_{p}+\sum_{p=1}^{n}\left(\Psi^{c}\right)_{p, 2}\left(E^{c}\right)_{p} \tag{B8}\\
& (\Phi)_{2 n}+\left(\Phi^{c}\right)_{n}=\sum_{p=1}^{n}(\Psi)_{p, 2 n}(E)_{p}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, n}\left(E^{c}\right)_{p}+(\Psi)_{k, 2 n}(E)_{k} \\
& +\sum_{p=n+1}^{k-1}(\Psi)_{p, 2 n}(E)_{p}+\sum_{p=1}^{n}\left(\Psi^{c}\right)_{p, n}\left(E^{c}\right)_{p}
\end{align*}
$$

It should be noted that in the equations of (B8), because of the order in which the subscripts were written, the transpose of Ψ or Ψ^{c} was not used.

For each of the algebraic equations of (B8), the first three terms to the right of the equal sign are for elements with known temperatures. Since there is no net heat transfer to any annulus of the shield, the two terms on the left side of each equation equal the rate of heat transfer away from the annulus by conduction

$$
(\Phi)_{n+i}+\left(\Phi^{c}\right)_{i}=-q_{c, i}
$$

If the shield does not have a uniform temperature, it is convenient to write equation (B8) in matrix form. The algebraic equations become:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{D}^{\mathrm{T}} \mathrm{Z} \tag{B9}
\end{equation*}
$$

Equation (B9) is composed of an n-by-n matrix D^{T} and two vectors, each containing n values. (Q) ${ }_{i}$ represents the heat transfer away from the $i^{\text {th }}$ annuli of the $\mathrm{m}^{\text {th }}$ shield due to conduction less the radiant heat transfer to the annuli from all of the surfaces whose temperatures are known

$$
(Q)_{i}=-q_{c, i}-\sum_{p=1}^{n}(\Psi)_{p, n+i}(E)_{p}-\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}-(\Psi)_{k, n+i}(E)_{k}
$$

$(Z)_{j}$ is an entry of a column vector and has the value $\sigma A_{j} T_{j}^{4} . D$ is an $n-b y-n$ matrix containing the entries:

$$
(D)_{j, i}=(\Psi)_{n+j, n+i} \epsilon_{n+j}+\left(\Psi^{c}\right)_{j, i} \epsilon_{j}^{c}
$$

The transpose of D can be written in terms of the matrices containing the absorption factors. This yields:

$$
\left(D^{T}\right)_{i, j}=\left[(U)_{n+j, n+i}-\delta_{j, i}\right] \epsilon_{n+j}+\left[\left(U^{c}\right)_{j, i}-\delta_{j, i}\right] \epsilon_{j}^{c}
$$

In these equations, ϵ_{n+j} and ϵ_{j}^{c} both refer to the $j^{\text {th }}$ annulus of the $m^{\text {th }}$ shield, but each must be taken from the appropriate system. A_{j} and T_{j} are the same in both systems.

When one of the sources is solar radiation, the energy which is absorbed on the outward facing surface of the $\mathrm{j}^{\text {th }}$ element is $\varphi \mathrm{A}_{\mathrm{j}} \alpha_{\varphi}$ where φ is the incident solar flux, and α_{φ} is the solar absorptivity. For flat disk shields, A_{j} equals the area of the annulus. However, if solar energy is incident upon a curved surface A_{j}, in this instance only, represents the area of the projection of the surface element into a plane perpendicular to the solar flux.

The heat transfer away from the $j^{\text {th }}$ annulus when a solar flux is present is:

$$
(Q)_{i}=-q_{c, i}-\varphi A_{i} \alpha_{\varphi}-\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}
$$

Also, when solar radiation is present, the outer shield is not bounded by either surroundings or another surface. Therefore, none of the energy which leaves the surface in the direction of the solar flux is returned to any annulus of the shield. Under this circumstance, the matrix D has the entries:

$$
(D)_{j, i}=-\delta_{j, i}{ }^{\epsilon}{ }_{n+j}+\left(\Psi^{c}\right)_{j, i} \epsilon_{j}^{c}
$$

Equation (B9) can be solved for the vector \mathbf{Z} to give:

$$
Z=\left(D^{T}\right)^{-1} Q
$$

The temperatures of each al llus can be found from the various values of Z

$$
\begin{equation*}
T_{j}=\left[\frac{(Z)_{j}}{A_{j}}\right]^{1 / 4} \tag{B10}
\end{equation*}
$$

When the temperature of the shield is uniform, equation (B8) can be utilized directly to find the shield temperature. Since there is no net heat transfer to the shield as a whole, the following equation can be written:

$$
\begin{equation*}
\sum_{i=1}^{n}\left[(\Phi)_{n+i}+\left(\Phi^{c}\right)_{i}\right]=0 \tag{B11}
\end{equation*}
$$

The sum of the equations given by equation (B8) can be written as:

$$
\begin{align*}
&-\sum_{i=1}^{n}\left[\sum_{p=1}^{n}(\Psi)_{p, n+i}(E)_{p}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}+(\Psi)_{k, n+i}(E)_{k}\right] \\
&= \sum_{i=1}^{n}\left[\sum_{j=n+1}^{k-1}(\Psi)_{j, n+i}(E)_{j}+\sum_{j=1}^{n}\left(\Psi^{c}\right)_{j, i}\left(E^{c}\right)_{j}\right] \tag{B12}
\end{align*}
$$

All of the quantities on the left side of this equation are known. The shield temperature can be factored out of the right side of the equation. This yields:

$$
\begin{align*}
T_{m}^{4}= & -\sum_{i=1}^{n}\left[\sum_{p=1}^{n}(\Psi)_{p, n+j}(E)_{p}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}+(\Psi)_{k, n+i}(E)_{k}\right] \tag{B13}\\
& \sigma \sum_{i=1}^{n}\left\{\sum_{j=1}^{n} A_{j}\left[(\Psi)_{n+j, n+i} \epsilon_{n+j}+\left(\Psi^{c}\right)_{j, i} \epsilon_{j}^{c}\right]\right\}
\end{align*}
$$

When there is solar radiation present, the temperature of an infinitely conducting shield can be found from the amount of solar radiation absorbed by the shield as a whole. The shield temperature is found from the following equation:

$$
\begin{align*}
T_{m}^{4}= & -\sum_{i=1}^{n}\left[\varphi A_{i} \alpha_{\varphi}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}\right] \tag{B14}\\
& \sigma \sum_{i=1}^{n}\left\{\sum_{j=1}^{n} A_{j}\left[\left(\Psi^{c}\right)_{j, i} \epsilon_{j}^{c}-\delta_{i, j} \epsilon_{n+j}\right]\right\}
\end{align*}
$$

When the conducted heat transfer to an element ($q_{c, j}$) is zero so that the shield is either nonconducting or the shield has a uniform temperature, and all properties are independent of temperature, the equations for determining the temperature are linear in T^{4}. When the equations are linear, the shield temperature and heat-transfer rates can be found by summing up the contributions of each source separately.

If there is no heat transfer between the elements of the shields, entries of the vector Q in equation (B9) can be portioned into two parts with each part being the negative of the heat transfer to the element due to one of the sources. Since the matrix D is a function only of the surface properties of the sources and not their temperatures, the values in the vector Z are proportional to the magnitude of the entries of Q. The entries of Z are $\sigma \mathrm{A}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}^{4}$. T^{4} for every element can be found by summing the contribution due to each source.

Similarly, the heat-transfer rates due to each of the sources appears in the numerator of equation (B13) in a linear combination. Therefore, if the shield has a uniform temperature, this temperature can be found by summing up the contributions due to each source taken separately.

When the equations are linear and there is only one source with a finite temperature, the shield temperatures are porportional to this temperature. The heat-transfer rates are proportional to this temperature raised to the fourth power. In this way, if the source
temperature is doubled, the shield temperature will also double while the heat-transfer rate will increase by a factor of 16 . The additive procedure, when the case resolved itself into a linear problem for a single shield between two sources, is illustrated as follows:

$$
\begin{gathered}
\frac{\mathrm{T}=0}{} \begin{array}{c}
\mathrm{T}=\mathrm{T}_{2} \\
\underline{\mathrm{~T}_{\mathrm{S}}^{4}=\mathrm{T}_{\mathrm{S} 1}^{4}} \\
\frac{\mathrm{~T}=\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{S}}^{4}=\mathrm{T}_{\mathrm{S} 2}^{4}} \\
\frac{\dot{\mathrm{Q}}=\dot{Q}^{\prime}}{\mathrm{T}=\mathrm{T}_{1}}
\end{array} \frac{\mathrm{~T}_{\mathrm{S}}=\sqrt[4]{\mathrm{T}_{\mathrm{S} 1}^{4}+\mathrm{T}_{\mathrm{S} 2}^{4}}}{\mathrm{~T}=0} \\
\frac{\dot{\mathrm{Q}}=\dot{\mathrm{Q}}^{*}}{\mathrm{~T}=\mathrm{T}_{1}}
\end{gathered}
$$

The procedure can be extended to the situation in which more than one shield is present.
The heat-transfer rate into the $j^{\text {th }}$ element is the sum of conduction and radiation heat-transfer rates and equals zero

$$
q_{c, j}+q_{r, j+n}+q_{r, j}^{c}=0
$$

Substituting values from equations (B1) and (B6) gives:

$$
\begin{equation*}
\frac{\left(\mathrm{T}_{\mathrm{j}+1}-\mathrm{T}_{\mathrm{j}}\right)}{\mathscr{R}_{\mathrm{j}+1, \mathrm{j}}}+\frac{\left(\mathrm{T}_{\mathrm{j}-1}-\mathrm{T}_{\mathrm{j}}\right)}{\mathscr{R} \mathrm{j}-1, \mathrm{j}}=\sum_{\mathrm{p}=1}^{\mathrm{k}}\left[(\Psi)_{\mathrm{p}, \mathrm{n}+\mathrm{j}}(\mathrm{E})_{\mathrm{p}}+\left(\Psi^{\mathrm{c}}\right)_{\mathrm{p}, \mathrm{j}}\left(\mathrm{E}^{\mathrm{c}}\right)_{\mathrm{p}}\right] \tag{B15}
\end{equation*}
$$

So long as the ratio of the radii ($\mathrm{r}_{\mathrm{i}} / \mathrm{r}_{\mathrm{j}}$ where $\mathrm{i}=\mathrm{j} \pm 1$) stays constant, the thermal resistances are not a function of the radiating area. Each term on the right side of equation (B15) is proportional to the radiating area. However, for a linearly scaled system in which the spacing ratio (L / R) between surfaces remains constant, a reference area A_{1} may be factored out. Since it is assumed that the projection of all surfaces is circular, this reference area is proportional to its lateral radius squared ($A_{1} \propto R_{1}^{2}$). When all properties are independent of temperature, it is convenient to express temperatures as a ratio to a reference value T_{2}. Physically, A_{1} could be the area of a cold source, while T_{2} could be the temperature of a warm source. Equation (B15) can be nondimensionalized to give:

$$
\begin{array}{r}
\frac{k t}{T_{2}^{3} R_{1}^{2}}\left[\ln \left(\frac{r_{j}}{r_{j-1}}\right)\left(\frac{T_{j+1}-T_{j}}{T_{2}}\right)+\ln \left(\frac{r_{j+1}}{r_{j}}\right)\left(\frac{T_{j-1}-T_{j}}{T_{2}}\right)\right]=K \sum_{p=1}^{k}\left[(\Psi)_{p, n+j} \epsilon_{p} \frac{A_{p}}{A_{1}}\left(\frac{T_{p}}{T_{2}}\right)^{4}\right. \\
\left.+\left(\Psi^{c}\right)_{p, j} \epsilon_{p}^{c} \frac{A_{p}^{c}}{A_{1}}\left(\frac{T_{p}^{c}}{T_{2}}\right)^{4}\right] \tag{B16}
\end{array}
$$

K is a nondimensional constant determined by the shape of the reference area A_{1}. For a plane source

$$
K=0.5 \ln \left(\frac{r_{j+1}}{r_{j}}\right) \ln \left(\frac{r_{j}}{r_{j-1}}\right)
$$

APPENDIX C

HEAT TRANSFER BETWEEN SPECULARLY REFLECTING SURFACES

The purpose of this section of the report is to present the relations used to determine the shield temperature and heat-transfer rates for diffusely emitting, specularly reflecting surfaces of uniform radiosity. Because of the assumptions of uniform radiosity and uniform emittance, there is no thermal gradient in the shields.

The equations for the heat-transfer rate between two plane specular surfaces having uniform radiosity (diffuse emissivity) are given in reference 11. The sources appear mirror-like so that the view factor between surfaces is a function of the number of reflections encountered by the bundle of energy. Figure 32 gives an illustration of the way the apparent spacing increases due to each reflection for the specular surfaces. The surfaces numbered 1 and 3 are specularly reflecting, while the other two surfaces are simply windows to let the radiant energy escape. The apparent spacing for the direct view factor from 1 to 3 is the actual spacing between 1 and 3 . The apparent spacing for the view factor from 1 to 1 after being reflected off 3 is twice the actual spacing. Thus, the energy appears to be coming from the dashed surface immediately to the left of surface 3. Figure 33 is a schematic of a shield and two sources. The surfaces are specular so that the angle of incidence equals the angle of reflection ($\beta=\beta^{\prime}$).

The net heat transfer away from a surface is:

$$
\begin{equation*}
\frac{\dot{\mathrm{Q}}}{\mathrm{~A}}=\sigma \in \mathrm{T}^{4}-\alpha \mathrm{H} \tag{C1}
\end{equation*}
$$

where H, the incident energy per unit time and area, is composed of two parts. The first part is the energy from the other surface, and the second is the energy from the surface under consideration which is incident on itself after it has been reflected off the other surface. For surface 1:
$\mathrm{H}_{1}=\sigma \epsilon_{3} \mathrm{~T}_{3}^{4}\left[\mathrm{~F}_{1,3}+\mathrm{F}_{1,3(1,3)} \rho_{1} \rho_{3}+\mathrm{F}_{1,3(1,3,1,3)^{\rho}} 1_{1}^{2} \rho_{3}^{2}+\ldots\right]+\sigma \epsilon_{1} \mathrm{~T}_{1}^{4}\left[\mathrm{~F}_{1,1(3)}{ }^{\rho} 3\right.$

$$
\begin{equation*}
\left.+\mathrm{F}_{1,1(3,1,3)} \rho_{3}^{2} \rho_{1}+\mathrm{F}_{1,1(3,1,3,1,3)} \rho_{3}^{3} \rho_{1}^{2}+\ldots\right] \tag{C2}
\end{equation*}
$$

The view factor from surface 1 to surface 3 is used so as to have only one area (A_{1}) in the equation. This is done by the use of the reciprocity theorem which states that:

$$
\mathrm{F}_{1,3} \mathrm{~A}_{1}=\mathrm{F}_{3,1} \mathrm{~A}_{3}
$$

Rewriting equation (C2) in terms of an infinite series gives:

$$
\begin{equation*}
\mathrm{H}_{1}=\sigma \epsilon_{3} \mathrm{~T}_{3}^{4} \sum_{\eta=0}^{\infty} \mathrm{F}_{1,3\left(1^{\eta}, 3^{\eta}\right)} \rho_{1}^{\eta} \rho_{3}^{\eta}+\sigma \epsilon_{1} \mathrm{~T}_{1}^{4} \sum_{\eta=1}^{\infty} \mathrm{F}_{1,1\left(3^{\eta}, 1^{\eta-1}\right)^{\rho} 3_{3}^{\eta} \rho_{1}^{\eta-1}} \tag{C3}
\end{equation*}
$$

The view factor between two disks is given in reference 1 and the view factor is a function of the spacing ratio $F=g(L / R)$. As the apparent distance between the shields increases due to an increasing number of reflections, the view factors decrease due to the widening distances between images. Returning to figure 32 shows that the direct view factor between a pair of surfaces $\left(F_{1,3}\right)$ is a function of the actual spacing between surfaces $F_{1,3}=g(L / R)$. The view factor from a surface to itself as seen in the other surface ($\mathrm{F}_{1,1(3)}$) is a function of twice the actual spacing between the surfaces $\mathrm{F}_{1.1(3)}$ $=g(2 L / R)$. The view factor after two reflections from the opposite surface is a function of three times the actual spacing $\mathrm{F}_{1,3(1,3)}=\mathrm{g}(3 \mathrm{~L} / R)$. In general

$$
\mathrm{F}_{1,3\left(1^{\eta}, 3^{\eta}\right)}=\mathrm{g}\left(\left(2^{\eta}+1\right) \mathrm{L} / \mathrm{R}\right)
$$

and

$$
\begin{equation*}
\mathrm{F}_{1,1\left(3^{\eta}, 1^{\eta-1}\right)}=\mathrm{g}\left(2^{\eta} \mathrm{L} / \mathrm{R}\right) \quad \text { for } \eta>0 \tag{C4}
\end{equation*}
$$

Equation (C3) is evaluated by taking a large number of terms in each of the series and estimating the remainder. The terms in the remainder are estimated by assuming the remainder forms a geometric series. For a constant view factor, the remainder would be exactly a geometric series. The value of the parameter in the geometric series is the ratio of the two final terms. Equation (C3) is approximated as:

$$
\begin{align*}
& +\sigma \epsilon_{1} \mathrm{~T}_{1}^{4}\left[\sum_{\eta=1}^{\zeta}\left(\mathrm{F}_{\left.1,1\left(3^{\eta}, 1{ }^{\eta-1}\right) \rho_{3}^{\eta} \rho_{1}^{\eta-1}\right)+} \begin{array}{r}
\mathrm{F}_{1,1}\left(3^{\zeta+1}, 1^{\zeta}\right) \rho_{3}^{\zeta+1} \rho_{1}^{\zeta} \\
1-\frac{\mathrm{F}_{1,1}\left(3^{\zeta}+2,1\right.}{}{ }^{\zeta+1) \rho_{1} \rho_{3}} \\
\mathrm{~F}_{1,1}\left(3^{\zeta+1}, 1^{\zeta}\right)
\end{array}\right]\right. \tag{C5}
\end{align*}
$$

The value of ζ was chosen so that the remainders (the last term in each bracket) were less than 0.1 percent of the first term in the bracket which is the value found by summing over ζ.

A shield placed between two sources has no net heat transfer to it in steady-state conditions. This fact can be utilized to determine the shield temperature. Figure 33 gives an illustration of a single shield placed between two plane sources. The four-surface system is divided into two two-surface systems, and the heat-transfer rate to the surfaces of the shield can be found in terms of the source temperature for each system. The sum of the heat transfer to the shield from both systems is zero and the shield temperature is determined.

APPENDIX D

DERIVATION OF THE DIFFERENTIAL EQUATION FOR
 A STRUCTURAL MEMBER

The equation giving the temperature distribution along the strut is derived by considering the heat balance on an element of the structural member. Figure 34 gives a schematic of a strut. Heat enters the element by conduction from the warmer adjacent element and leaves by means of conduction to the colder adjacent element. Heat is transmitted to or from the element by radiation on both the inside and outside surfaces of the element.

The rate at which heat enters the element due to conduction at the position x on the strut is given by:

$$
\begin{equation*}
q_{i n, c}=-\left.k a \frac{d T}{d x}\right|_{x}=-\left.\frac{k \pi}{4}\left(d_{o}^{2}-d_{\nu}^{2}\right) \frac{d T}{d x}\right|_{x} \tag{D1}
\end{equation*}
$$

The rate at which heat leaves the element due to conduction at $x+\Delta x$ is given by:

$$
\begin{equation*}
q_{o u t, c}=-\left.k a \frac{d T}{d x}\right|_{x+\Delta x}=-\left.\frac{k \pi}{4}\left(d_{o}^{2}-d_{L}^{2}\right) \frac{d T}{d x}\right|_{x+\Delta x} \tag{D2}
\end{equation*}
$$

Since the environment is assumed black ($\epsilon_{\mathrm{Sr}}=1$), energy which is emitted or reflected from the outside surface of the strut is absorbed by the surroundings and cannot return to any part of the strut. The rate at which heat is absorbed by the element due to the surroundings is given by:

$$
\mathrm{q}_{\mathrm{in}, \mathrm{sr}}=\sigma \epsilon_{\mathrm{sr}} \mathrm{~A}_{\mathrm{sr}} \mathrm{f}_{\mathrm{sr}-\mathrm{x}^{\mathrm{T}}} \mathrm{Tr}^{4} \alpha_{\mathrm{o}}=\sigma \mathrm{A}_{\mathrm{sr}} \mathrm{f}_{\mathrm{sr}-\mathrm{x}^{2}} \mathrm{~T}_{\mathrm{sr}}^{4} \alpha_{\mathrm{o}}
$$

The reciprocity theorm for view factors yields the relation:

$$
A_{S r} f_{s r-x}=A_{x} f_{x-s r}=\pi d_{0} \Delta x f_{x-S r}
$$

The view factor from the element to the surroundings ($\mathrm{f}_{\mathrm{x}-\mathrm{sr}}$) is unity.
The rate at which heat is radiated from the outside surface toward the surroundings is $\sigma \pi \epsilon_{\mathrm{o}} \mathrm{d}_{\mathrm{o}} \Delta \mathrm{x} \mathrm{T}^{4}$. It is assumed that the surfaces are gray; therefore, $\epsilon_{\mathrm{o}}=\alpha_{\mathrm{o}}$. The net rate of radiant heat transfer from the outside surface of the element is therefore:

$$
\begin{equation*}
\mathrm{q}_{\mathrm{out}, \mathrm{r}}=\sigma \pi \mathrm{d}_{\mathrm{o}} \epsilon_{\mathrm{o}} \Delta \mathrm{x}\left(\mathrm{~T}^{4}-\mathrm{T}_{\mathrm{sr}}^{4}\right) \tag{D3}
\end{equation*}
$$

The net rate at which heat is absorbed on the internal surface due to radiation from the rest of the strut is found by Gebhart's solution for problems of radiant interchange in an enclosure. This method has been described in appendix B.

In attempting to determine the temperature distribution along the strut, a differential equation is derived. In deriving the equation, the limit is taken as the area for radiant interchange approaches zero. The view factor to an infinitesimal area from another surface approaches zero, though the view factor from the infinitesimal area to the surface is not necessarily zero. It is desirable, therefore, to express view factors as going from the infinitesimal element to the other surface rather than going from the other surface to the infinitesimal area.

The net radiant heat-transfer rate for the internal surface is found by dividing the strut into $n+1$ sections. One of these sections is the element under consideration and the size of this element approaches zero. Physically, this represents the division of the strut into n sections. The amount of radiant energy which leaves the element and is later absorbed by the element goes to zero as the size of the element decreases. If j represents the element under consideration, this last statement is equivalent to saying that B_{jj} approaches zero in the heat-transfer balances. (The mathematical justification for this is shown at a later stage in the development of the equations.) In addition to the n physical sections of the strut, there are two additional sections necessary to complete the enclosure. These two sections are the end disks of the strut.

The set of algebraic equations for the $n+2$ nonzero values of $B_{i j}$ for the heattransfer rate to the $j^{\text {th }}$ element are:

where $\mathrm{k}=\mathrm{n}+2$.
These equations can be rewritten as:

$$
\begin{aligned}
& \left(\rho_{1} \mathrm{f}_{11}-1\right) \mathrm{B}_{1 \mathrm{j}}+\rho_{2} \mathrm{f}_{12} \mathrm{~B}_{2 \mathrm{j}}+\ldots+\rho_{\mathrm{k}} \mathrm{f}_{1 \mathrm{k}} \mathrm{~B}_{\mathrm{kj}}=-\epsilon_{\mathrm{j}} \mathrm{f}_{1 \mathrm{j}} \\
& \rho_{1} \mathrm{f}_{21} \mathrm{~B}_{1 \mathrm{j}}+\left(\rho_{2} \mathrm{f}_{22}-1\right) \mathrm{B}_{2 \mathrm{j}}+\ldots+\rho_{\mathrm{k}} \mathrm{f}_{2 k} \mathrm{~B}_{\mathrm{kj}}=-\epsilon_{\mathrm{j}} \mathrm{f}_{2 \mathrm{j}} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \cdot \\
& \rho_{1} \mathrm{f}_{\mathrm{k} 1} \mathrm{~B}_{1 \mathrm{j}}+\rho_{2} \mathrm{f}_{\mathrm{k} 2} \mathrm{~B}_{2 \mathrm{j}}+\ldots+\left(\rho_{\mathrm{k}} \mathrm{f}_{\mathrm{kk}}-1\right) \mathrm{B}_{\mathrm{kj}}=-\epsilon_{\mathrm{j}} \mathrm{f}_{\mathrm{kj}}
\end{aligned}
$$

The reciprocity theorem for view factors gives:

$$
A_{i} f_{i j}=A_{j} f_{j i}
$$

If each side of every equation is divided by A_{j} and the view factors on the right side are transformed so that they are from the $j^{\text {th }}$ element to another source, one obtains:

$$
\begin{align*}
& \left(\rho_{1} f_{11}-1\right) \frac{B_{1 j}}{A_{j}}+\rho_{2} f_{12} \frac{B_{2 j}}{A_{j}}+\ldots+\rho_{k} f_{1 k} \frac{B_{k j}}{A_{j}}=-\frac{\epsilon_{j} f_{j 1}}{A_{1}} \\
& \rho_{1} f_{21} \frac{B_{1 j}}{A_{j}}+\left(\rho_{2} f_{22}-1\right) \frac{B_{2 j}}{A_{j}}+\ldots+\rho_{k} f_{2 k} \frac{B_{k j}}{A_{j}}=-\frac{\epsilon_{j} f_{j} 2}{A_{2}} \tag{D5}\\
& \cdot \\
& \cdot \\
& \rho_{1} f_{k 1} \frac{B_{1 j}}{A_{j}}+\rho_{2} f_{k 2} \frac{B_{2 j}}{A_{j}}+\ldots+\left(\rho_{k} f_{k k}-1\right) \frac{B_{k k}}{A_{j}}=-\frac{\epsilon_{j} f_{j k}}{A_{k}}
\end{align*}
$$

These equations can be placed in matrix form

$$
\begin{equation*}
C \bar{u}=\bar{v} \tag{D6}
\end{equation*}
$$

where C is a coefficient matrix and is independent of j. The entries of C are:

$$
(\mathrm{C})_{\mathrm{pi}}=\rho_{\mathrm{i}} \mathrm{f}_{\mathrm{pi}}-\delta_{\mathrm{pi}}
$$

\bar{v} is a column vector with the entries $(\bar{v})_{p}=-\left(\epsilon_{j} f_{j p}\right) / A_{p} \cdot \bar{u}$ is a column vector which contains the values of $B_{i j} / A_{j}, \bar{u}$ is found from equation (D6) by taking the inverse of C

$$
\begin{equation*}
\overline{\mathrm{u}}=\mathrm{C}^{-1} \overline{\mathrm{v}} \tag{D7}
\end{equation*}
$$

The net heat-transfer rate to the $j^{\text {th }}$ element due to internal radiation is:

$$
\begin{equation*}
q_{i n, r}=\sum_{i=1}^{k} B_{i j}(E)_{i}-\left(1-B_{j j}\right) \sigma A_{j} T_{j}^{4} \epsilon_{j} \tag{D8}
\end{equation*}
$$

It should be noted that E contains only entries for the finite area elements, and therefore the emissive power of the element under consideration (j) is not an entry in E. Equation (D8) can be expressed in terms of the column vector \bar{u} to give:

$$
q_{i n, r}=A_{j}\left[\sum_{i=1}^{k}(\bar{u})_{i}(E)_{i}\right]-\left(1-B_{j j}\right) \sigma A_{j} T_{j}^{4} \epsilon_{j}
$$

If $B_{j j}$ had been included as the $k+1$ equation of (D4), the above equation would be:

$$
\begin{equation*}
q_{i n}, r=A_{j}\left[\sum_{i=1}^{k}(\bar{u})_{i}(E)_{i}-\sigma T_{j}^{4} \epsilon_{j}\right]+\sigma T_{j}^{4} \epsilon_{j} A_{j}^{2}(\bar{u})_{k+1} \tag{D9}
\end{equation*}
$$

A_{j} is the internal surface area of the element under consideration ($\pi d_{\iota} \Delta x$). In subsequently forming the differential equation, the right side of equation (D9) is divided by $\Delta \mathrm{x}$ and the limit is taken as $\Delta \mathrm{x}$ approaches zero. When this is done, the last term in equation (D9) goes to zero. Therefore, the net radiant heat transfer into the internal surface of the element is:

$$
\begin{equation*}
q_{i n, r}=\pi d_{\iota} \Delta x\left[\sum_{i=1}^{k}(\bar{u})_{i}(E)_{i}-\sigma T_{j}^{4} \epsilon_{j}\right] \tag{D10}
\end{equation*}
$$

Equating the rate at which heat enters the element with the rate at which it leaves gives:

$$
\begin{equation*}
q_{i n, c}-q_{o u t, c}=q_{o u t, r}-q_{i n, r} \tag{D11}
\end{equation*}
$$

Expanding each term and collecting common factors gives:

$$
-\frac{k \pi}{4}\left(d_{o}^{2}-d_{l}^{2}\right)\left(\left.\frac{d T}{d x}\right|_{x}-\left.\frac{d T}{d x}\right|_{x+\Delta x}\right)=\pi \sigma \Delta x\left\{T_{j}^{4}\left(\epsilon_{j} d_{\iota}+\epsilon_{o} d_{o}\right)-\epsilon_{o} d_{o} T_{s r}^{4}-d_{\iota}\left[\sum_{i=1}^{k}(\bar{u})_{i} A_{i} \epsilon_{i} T_{i}^{4}\right]\right\}
$$

Taking the limit as $\Delta x \rightarrow 0$ for both sides of the equation yields:

$$
\begin{equation*}
\frac{\mathrm{k}\left(\mathrm{~d}_{\mathrm{o}}^{2}-\mathrm{d}_{\iota}^{2}\right)}{4 \sigma} \frac{\mathrm{~d}^{2} \mathrm{~T}}{\mathrm{dx}^{2}}=\mathrm{T}^{4}\left(\epsilon_{\iota} \mathrm{d}_{\iota}+\epsilon_{\mathrm{o}} \mathrm{~d}_{\mathrm{o}}\right)-\epsilon_{\mathrm{o}} \mathrm{~d}_{\mathrm{o}} \mathrm{~T}_{\mathrm{Sr}}^{4}-\mathrm{d}_{\iota}\left[\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\overline{\mathrm{u}}_{\mathrm{i}} \mathrm{~A}_{\mathrm{i}} \epsilon_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}^{4}\right]\right. \tag{D12}
\end{equation*}
$$

In equation (D12), the subscript \mathbf{j} has been dropped. However, the entries in $\overline{\mathrm{u}}$ do depend on the relative position of the differential element and the finite area sections.

The differential equation is integrated from zero to l where l is the length of the strut. By letting $\xi=x / l$, the range of the independent variable is from zero to one. Since $\mathrm{dx}=\ell \mathrm{d} \xi$, equation (D12) becomes:

$$
\begin{equation*}
\frac{k\left(d_{o}^{2}-d_{\imath}^{2}\right)}{4 \sigma l^{2}} \frac{d^{2} T}{d \xi^{2}}=T^{4}\left(\epsilon_{\iota} d_{\iota}+\epsilon_{o} d_{o}\right)-\epsilon_{o} d_{o} T_{s r}^{4}-d_{\iota}\left[\sum_{i=1}^{k}(\vec{u})_{i} A_{i} \epsilon_{i} T_{i}^{4}\right] \tag{D13}
\end{equation*}
$$

When the thermal conductivity and emissivity are independent of temperature, nondimensional temperature profiles can be obtained. Since both end temperatures (T_{1} and T_{2}) are known, the differential equation has known boundary values. Dividing each side of the equation by T_{2}^{4} yields:

$$
\frac{k\left(d_{o}^{2}-d_{\iota}^{2}\right)}{4 \sigma \ell^{2} T_{2}^{3}} \frac{d^{2}\left(\frac{T}{T_{2}}\right)}{d \xi^{2}}=\left(\frac{T}{T_{2}}\right)^{4}\left(\epsilon_{\iota} d_{\iota}+\epsilon_{o} d_{o}\right)-\epsilon_{o} d_{o}\left(\frac{T_{s r}}{T_{2}}\right)^{4}-d_{\iota}\left[\sum_{i=1}^{k}(\bar{u})_{i} A_{i} \epsilon_{i}\left(\frac{T_{i}}{T_{2}}\right)^{4}\right]
$$

Letting $\theta=\mathrm{T} / \mathrm{T}_{2}$ one obtains:

$$
\begin{equation*}
\frac{k\left(d_{o}^{2}-d_{L}^{2}\right)}{4 \sigma l^{2} T_{2}^{3}} \frac{d^{2} \theta}{d \xi^{2}}=\theta^{4}\left(\epsilon_{\iota} d_{L}+\epsilon_{o} d_{o}\right)-\epsilon_{o} d_{o} \theta_{s r}^{4}-d_{\iota}\left[\sum_{i=1}^{k}(\bar{u})_{i} A_{i} \epsilon_{i} \theta_{i}^{4}\right] \tag{D14}
\end{equation*}
$$

The boundary conditions are $\theta_{2}=1$ and $\theta_{1}=T_{1} / T_{2}$. Since the values of θ_{i} are functions of the temperature distribution along the strut, they are determined by θ.

When the strut is a thin-walled tube, the cross-sectional area is approximately $\pi d t$ where t is the thickness of the tube and d represents either the inside or outside diam-
eter. For a thin-walled tube equation (D14) becomes:

$$
\begin{equation*}
\frac{k t}{\sigma z^{2} \mathrm{~T}_{2}^{3}} \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d} \xi^{2}}=\theta^{4}\left(\epsilon_{i}+\epsilon_{o}\right)-\epsilon_{o} \theta_{\mathrm{sr}}^{4}-\sum_{\mathrm{i}=1}^{\mathrm{k}}(\overline{\mathrm{u}})_{i} A_{i} \epsilon_{i} \theta_{i}^{4} \tag{D15}
\end{equation*}
$$

When the temperature of the surroundings goes to zero and the internal emissivity is reduced to zero, equation (D15) becomes:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} \xi^{2}}=\frac{\sigma l^{2} \mathrm{~T}_{2}^{3} \epsilon_{\mathrm{o}} \theta^{4}}{\mathrm{kt}} \tag{D16}
\end{equation*}
$$

The total heat-transfer rate out of the cold end of the strut is the sum of the conducted heat transfer out and the radiant energy absorbed by the end disk. For illustration, consider the end at which x equals zero. From figure 34 it is seen that the end disk is the k^{th} element in the system. The temperature of the strut at this end is T_{1} and for closed disks T_{k} would probably equal T_{1}. The total heat-transfer rate is:

$$
\begin{equation*}
\dot{Q}_{\mathrm{T}}=\dot{Q}_{\mathrm{c}}+\dot{Q}_{\mathrm{r}}=\left.k a \frac{d T}{d x}\right|_{\mathrm{x}=0}+\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\mathrm{~B}_{\mathrm{ik}}-\delta_{i k}\right)(\mathrm{E})_{i} \tag{D17}
\end{equation*}
$$

Note that since the end disk is a finite area element, B_{kk} is not zero. In reference 10 , it is shown that $\epsilon_{k} B_{k i} A_{k}=\epsilon_{i} B_{i k} A_{i}$ for gray surfaces. Equation (D17) can be rewritten as:

$$
\dot{\mathrm{Q}}_{\mathrm{T}}=\left.\mathrm{k} \frac{\pi}{4}\left(\mathrm{~d}_{\mathrm{o}}^{2}-\mathrm{d}_{\iota}^{2}\right) \frac{\mathrm{dT}}{\mathrm{dx}}\right|_{\mathrm{x}=0}+\sigma \epsilon_{\mathrm{k}} \frac{\pi \mathrm{~d}_{\iota}^{2}}{4}\left[\sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\mathrm{~B}_{\mathrm{ki}}-\delta_{\mathrm{ik}}\right) \mathrm{T}_{\mathrm{i}}^{4}\right]
$$

Introducing nondimensional parameters gives:

$$
\begin{equation*}
\frac{4 \dot{\mathrm{Q}}_{\mathrm{T}}}{\pi \sigma \mathrm{~T}_{2}^{4} \mathrm{~d}_{\iota}^{2}}=\left.\frac{\mathrm{k}\left(\mathrm{~d}_{\mathrm{o}}^{2}-\mathrm{d}_{\iota}^{2}\right)}{\sigma \mathrm{T}_{2}^{3} l \mathrm{~d}_{\iota}^{2}} \frac{\mathrm{~d} \theta}{\mathrm{~d} \xi}\right|_{\xi=0}+\epsilon_{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{k}}\left(\mathrm{~B}_{\mathrm{ki}}-\delta_{\mathrm{ik}}\right) \theta_{\mathrm{i}}^{4} \tag{D18}
\end{equation*}
$$

For a constant internal emissivity $\epsilon_{k}=\epsilon_{i}$. The absorption factors $B_{k i}$ depend only on the internal emissivities and l / d_{ι} of the tube.

APPENDIX E

SOLUTION OF EQUATIONS

The purpose of this appendix is to discuss the solution of the equations presented in appendix B for the shadow-shield system and the equations presented in appendix D for the thermal analysis of a structural member.

Shadow-Shield Equations

In appendix B, equations are given for the shield temperature and concomitant heattransfer rates when the equations are linear in T^{4}. As the conducted heat transfer increases relative to the radiant heat transfer, it becomes more advantageous to solve the equations for the shield temperatures assuming that the equations are linear in T. The various terms contributing to the heat balance for an element are shown in figure 30. The conduction heat-transfer rate into the $j^{\text {th }}$ element is given by equation (B6). The equations of (B8) give the radiant heat-transfer rate into each element of the shield. In steady state, the net heat-transfer rate into each element is zero. Adding equations (B6) and (B8) for the $j^{\text {th }}$ element gives:

$$
\begin{equation*}
q_{c, j}+(\Phi)_{n+j}+\left(\Phi^{c}\right)_{j}=0 \tag{E1}
\end{equation*}
$$

Expanding this equation and placing terms involving known temperature sources on the right side yields for the $j^{\text {th }}$ element:

$$
\begin{aligned}
&\left(\frac{T_{j-1}-T_{j}}{\mathscr{R}_{j-1, j}}\right)+\left(\frac{T_{j+1}-T_{j}}{\mathscr{R}_{j+1, j}}\right)+\sum_{i=1}^{n}(\Psi)_{n+i, n+j}(E)_{n+i}+\sum_{i=1}^{n}\left(\Psi^{c}\right)_{i, j}\left(E^{c}\right)_{i} \\
&=-\left[\sum_{p=1}^{n}(\Psi)_{p, n+j}(E)_{p}+(\Psi)_{k, n+j}(E)_{k}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}\right]
\end{aligned}
$$

Factoring out the temperature of each element of the shield gives:

$$
\begin{aligned}
\left(\frac{T_{j-1}-T_{j}}{\mathscr{R}_{j-1, j}}\right)+\left(\frac{T_{j+1}-T_{j}}{\mathscr{R}_{j+1, j}}\right)+\sum_{i=1}^{n} & {\left[(\Psi)_{n+i, n+j} \epsilon_{n+i}+\left(\Psi^{c}\right)_{i, j} \epsilon_{i}^{c}\right] \sigma A_{i} T_{i}^{3} T_{i} } \\
& =-\left[\sum_{p=1}^{n}(\Psi)_{p, n+j}(E)_{p}+(\Psi)_{k, n+j}(E)_{k}+\sum_{p=n+1}^{k}\left(\Psi^{c}\right)_{p, i}\left(E^{c}\right)_{p}\right]
\end{aligned}
$$

An equation can be written for each of the n elements of the shield. This results in the matrix equation:

$$
\begin{equation*}
\mathrm{Y} \Theta=\mathrm{P} \tag{E2}
\end{equation*}
$$

Y is an n -by- n matrix containing the entries:

$$
(\mathrm{Y})_{\mathrm{i}, \mathrm{j}}=\left[(\Psi)_{\mathrm{n}+\mathrm{j}, \mathrm{n}+\mathrm{i}} \epsilon_{\mathrm{n}+\mathrm{j}}+\left(\Psi^{c}\right)_{\mathrm{j}, \mathrm{i}} \epsilon_{\mathrm{j}}^{\mathrm{c}}\right] \sigma \mathrm{A}_{\mathrm{j}} \mathrm{~T}_{\mathrm{j}}^{3}-\delta_{\mathrm{i}, \mathrm{j}}\left(\frac{1}{\mathscr{R}_{\mathrm{j}-1, \mathrm{j}}}+\frac{1}{\mathscr{R} \mathrm{j}+1, \mathrm{j}}\right)+\frac{\delta_{\mathrm{i}, \mathrm{j}+1}}{\mathscr{R}_{\mathrm{i}-1, \mathrm{i}}}+\frac{\delta_{\mathrm{i}, \mathrm{j}-1}}{\mathscr{R}_{\mathrm{i}+1, \mathrm{i}}}
$$

Θ is a column vector containing the temperature for each annulus

$$
(\Theta)_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}}
$$

P is a column vector containing the negative of the radiant heat transfer to each annulus from the sources with known temperatures.

$$
(\mathrm{P})_{\mathrm{i}}=-\left[\sum_{\mathrm{p}=1}^{\mathrm{n}}(\Psi)_{\mathrm{p}, \mathrm{n}+\mathrm{i}}(\mathrm{E})_{\mathrm{p}}+(\Psi)_{\mathrm{k}, \mathrm{n}+\mathrm{i}}(\mathrm{E})_{\mathrm{k}}+\sum_{\mathrm{p}=\mathrm{n}+1}^{\mathrm{k}}\left(\Psi^{\mathrm{c}}\right)_{\mathrm{p}, \mathrm{i}}\left(\mathrm{E}^{\mathrm{c}}\right)_{\mathrm{p}}\right]
$$

The temperatures are found by taking the inverse of Y in equation (E2). This gives:

$$
\begin{equation*}
\Theta=\mathrm{Y}^{-1} \mathrm{P} \tag{E3}
\end{equation*}
$$

The equation for the matrix Y can be expanded to give:

$$
\begin{aligned}
&(\mathrm{Y})_{\mathrm{i}, \mathrm{j}}=\left\{\left[(\mathrm{U})_{\mathrm{n}+\mathrm{j}, \mathrm{n}+1}-\delta_{\mathrm{i}, \mathrm{j}}\right] \epsilon_{\mathrm{n}+\mathrm{j}}+\left[\left(\mathrm{U}^{\mathrm{c}}\right)_{\mathrm{j}, \mathrm{i}}-\delta_{\mathrm{i}, \mathrm{j}}\right] \epsilon_{\mathrm{j}}^{\mathrm{c}}\right\} \sigma{A_{j} \mathrm{~T}_{\mathrm{j}}^{3}} \\
&-\delta_{\mathrm{i}, \mathrm{j}}\left(\frac{1}{\mathscr{R}_{\mathrm{j}-1, \mathrm{j}}}+\frac{1}{\mathscr{R}_{\mathrm{j}+1, \mathrm{j}}}\right)+\frac{\delta_{\mathrm{i}, \mathrm{j}+1}}{\mathscr{R}_{\mathrm{i}-1, \mathrm{i}}}+\frac{\delta_{\mathrm{i}, \mathrm{j}-1}}{\mathscr{R}_{\mathrm{i}+1, \mathrm{i}}}
\end{aligned}
$$

When one of the sources is solar radiation, the matrix Y and the vector P become:

$$
\begin{gathered}
(\mathrm{Y})_{\mathrm{i}, \mathrm{j}}=\left\{-\delta_{\mathrm{i}, \mathrm{j}} \epsilon_{\mathrm{n}+\mathrm{j}}+\left[\left(\mathrm{U}^{\mathrm{c}}\right)_{\mathrm{j}, \mathrm{i}}-\delta_{\mathrm{j}, \mathrm{i}}\right] \epsilon_{\mathrm{j}}^{\mathrm{c}}\right\} \sigma \mathrm{A}_{\mathrm{j}} \mathrm{~T}_{\mathrm{j}}^{3}-\delta_{\mathrm{i}, \mathrm{j}}\left(\frac{1}{\mathscr{R}_{\mathrm{j}-1, \mathrm{j}}}+\frac{1}{\mathscr{R}_{\mathrm{j}+1, \mathrm{j}}}\right)+\frac{\delta_{\mathrm{i}, \mathrm{j}+1}}{\mathscr{R}_{\mathrm{i}-1, \mathrm{i}}}+\frac{\delta_{\mathrm{i}, \mathrm{j}-1}}{\mathscr{R}_{\mathrm{i}+1, \mathrm{i}}} \\
(\mathrm{P})_{\mathrm{i}}=-\varphi \mathrm{A}_{\mathrm{i}} \alpha_{\varphi}-\sum_{\mathrm{p}=\mathrm{n}+1}^{\mathrm{k}}\left(\Psi^{\mathrm{c}}\right)_{\mathrm{p}, \mathrm{i}}\left(\mathrm{E}^{\mathrm{c}}\right)_{\mathrm{p}}
\end{gathered}
$$

From the equations presented above and those of appendix B, it can be seen that when the equations are linear and only one shield present, the shield temperatures are determined explicitly. The equations can be nonlinear due to a finite shield conductivity or temperature-dependent surface properties. When the equations are nonlinear or there is more than a single shield, an iterative procedure is used. This iterative procedure simply sets a new trial value for each annulus of each shield at a value lying between the old estimate and the latest calculated value. When the shields are conducting, the new estimate lies close to the old estimate. The computer program chooses this degree of closeness so as to minimize computer time, but also insuring that the system of equations remains stable. The tolerance used to determine when the iteration has converged is $0.0055 \mathrm{~K}\left(0.01^{\circ} \mathrm{R}\right)$. The difference between the calculated and estimated temperatures is less than this value for each annulus of each shield at convergence. To insure that the tolerance is sufficiently fine, the first case in each run is automatically rerun with the tolerance halved.

When the conduction term does not enter into the equations, convergence is fairly rapid. With a two-shield system and no conduction, about five iterations are required to obtain a solution. The number of iterations increases with the number of shields involved going to about 20 iterations for a four-shield system with no conduction. The number of iterations required when the shields have a uniform temperature is about the same as when there is no conduction between annuli. If there is conduction between annuli, the number of iterations increases drastically so that a factor of 10 in the number of iterations required would not be unexpected.

The execution time for the program is proportional to the number of iterations and the number of shields involved. It is proportional to the square of the number of annuli
into which each shield is divided. A two-shield configuration with conduction and 14 annuli per surface would take about 2 minutes to execute on an IBM 7094 mod II digital computer. If conduction were neglected, the execution time would be less than half a minute.

In order to obtain heat-transfer rates for surfaces of nonuniform radiosity, each of the annuli should represent a differential area. To closely approximate this directly using a computer would result in an exceedingly large amount of running time. The results for nonuniform radiosity surfaces, which constitute the bulk of the data in this report, are obtained by graphing the heat-transfer rate as a function of the reciprocal of the number of annuli. This procedure is illustrated in figure 35. In this figure, the ratio of the heattransfer rate to the heat-transfer rate for uniform radiosity surfaces (a single annulus per surface) is given as a function of the reciprocal of the number of annuli per surface. The ratio refers to the heat-transfer rate to the colder source, and is given for two emissivities and two spacing ratios. The single shield was spaced evenly between the two sources and all surfaces had the same emissivity. The point on the graph corresponding to an infinite number of annuli $(1 / n=0)$ corresponds to the heat-transfer rate for surfaces of nonuniform radiosity. The solid line represents points for which data were actually generated, and the dashed line represents an extrapolation. It can be seen from this figure that the accuracy of the extrapolation decreases with decreasing emissivity. Also, it can be seen from this figure that increasing the number of annuli (this results in increased computer time) reduces the uncertainty in the extrapolation.

Thermal Equations for Struts

The differential equation presented in appendix D for the thermal analysis of a structural member is a second-order nonlinear equation with known boundary values. A finite difference scheme is used to solve the differential equation. In this technique, the length of the strut is taken as unity. The strut is divided into several equally spaced intervals, each with an axial length h. The second derivative expressed in terms of the dependent variable and the step size is

$$
\begin{equation*}
\frac{d^{2} T_{i}}{d \xi^{2}}=\frac{T_{i-1}-2 T_{i}+T_{i+1}}{h^{2}} \tag{E4}
\end{equation*}
$$

Here i represents the particular point along the strut for which the differential equation is being approximated. Because the range of the independent variable is from zero to one, $h=1 /(m+1)$. Where m is the number of interior points on the strut at which the differential equation is evaluated. The first point along the strut at which the differential equation is evaluated is a distance h from the end. Since this is a boundary value prob-
lem, the end temperatures (T_{o} and $\mathrm{T}_{\mathrm{m}+1}$) are known a priori. There are m equations of the same form as equation (E4) and these can be written in matrix form as:

$$
\begin{equation*}
\Omega=\chi \Theta \tag{E5}
\end{equation*}
$$

Ω is a column vector of size m containing the evaluations of the second derivatives.

$$
\begin{equation*}
(\Omega)_{\mathrm{p}}=\mathrm{h}^{2} \frac{\mathrm{~d}^{2} \mathrm{~T}_{\mathrm{p}}}{\mathrm{~d} \xi^{2}}-\left(\delta_{1}, \mathrm{p}^{\mathrm{T}_{\mathrm{o}}}+\delta_{\mathrm{m}, \mathrm{p}^{\mathrm{T}}}^{\mathrm{m}+1},\right. \tag{E6}
\end{equation*}
$$

X is an m-by-m coefficient matrix containing the coefficients of the temperatures. The entries of this matrix are clustered along the diagonal and have the values:

$$
\begin{equation*}
(x)_{p, q}=-2 \delta_{p, q}+\delta_{p, q+1}+\delta_{p, q-1} \tag{E7}
\end{equation*}
$$

Θ is a column vector containing the temperatures at each node point

$$
\begin{equation*}
(\Theta)_{\mathrm{q}}=\mathrm{T}_{\mathrm{q}} \tag{E8}
\end{equation*}
$$

Equation (E5) can be solved to yield the temperature distribution along the strut. This yields the equation:

$$
\begin{equation*}
\Theta=\chi^{-1} \Omega \tag{E9}
\end{equation*}
$$

Since the second derivative is dependent upon the temperature distribution along the strut, an iterative procedure is used to determine the correct temperature distribution. This iterative procedure is much like the one employed in the solution of the equations for the shadow shield.

APPENDIX F

COMPUTER CODE FOR SHADOW-SHIELD CALCULATIONS

The purpose of this section of the report is to discuss the computer code used to solve the shadow-shield equations. The procedure for reading in the necessary data and the resulting output are discussed. Following this are general descriptions of the various routines used to make up the code. Flowcharts are given for these routines. This appendix concludes with a listing of the program and a sample output.

Description of Input

All of the necessary data enter the program through READ statements in the routine INPUT. For every case in a run this routine is called by SHIELD. Whenever view factor data for nonplanar sources are read in INPUT is called by TBVUF. All data enter the program through the use of NAMELIST statements. NAMELST is an input/output feature of the FORTRAN IV language in which this code was written. The use of this feature is described in FORTRAN IV manuals such as reference 12.

The NAMELIST input/output feature uses names in place of Format numbers in the read and write statements. There are two names used in the reading statements of the INPUT routine. These two names are INPUT1 and INPUT2. The first of these is used to read in all of the data when there is only planar sources or solar radiation. When there is one or more nonplanar sources present data are read in for view factors through the use of the name INPUT2.

The necessary data are described in the listing of the routine INPUT. At the beginning of a run, prior to reading any data, many input variables are assigned certain values. This is done to reduce the amount of data which are read in. NAMELIST provides a flexible means of entering data into core. It is not necessary to specify all of the variables which are associated with a NAMELIST name, therefore, only those data necessary to execute a case need be provided. There is no provision for storing data for more than one case, so that at least one variable must be read in for each case in a multiple case run. However, only the data which change need be specified for each case. The program continues to search for new data until all of the input has been processed. (This programming results in a warning diagnostic for the routine SHIELD at compilation.) Because of the flexibility of NAMELIST, it is possible to inadvertently omit some of the data necessary to run a case. This will result in either error messages during execution or erroneous results. The latter situation is the more troublesome of the two. In order to be able to check the data, a listing of the input is provided at the beginning of each case.

This listing may be more extensive than the input because it consists of all of the data which have a bearing on the results. The sample case given at the end of the listing is for two nonconducting shields and a planar tank. The outermost shield is exposed to solar radiation. The variables required are determined from the listing of the routine INPUT. The values used for each variable are found in the output.

Description of Output

The output from a successfully executed case is written by the routine SHIELD. A description of the variables printed out can be found by consulting the listing of this routine. In addition to the expected output there may be additional output. Faulty data may result in an illegal operation such as division by zero. The execution monitor will then print out its own message. Faulty data may also result in the routine FACTOR encountering a singular matrix. If this occurs, an error message is printed and the run is terminated.

As mentioned previously, a large number of iterations is required when the shields are partially conducting. If the number of iterations exceeds the value of the variable ITMAX, a message is printed along with the last estimates of the shield temperatures. When the shields are partially conducting, a solution may become divergent from a given starting condition, or may become divergent due to the means used to calculate the solution. There are two starting conditions for partially conducting shields and these are specificed by the variable IVCOND. These starting conditions are either uniform temperature shields or nonconducting shields. The solution for partially conducting shields can be found by assuming that the equations are linear in T or linear in T^{4}. The initial assumption concerning the linearity of the equations is governed by the value of the variable NCA LCR. If, starting with the specified values for IVCOND and NCALCR, the solution appears to be diverging, one of the variables is changed, and the case is restarted. If, after the four possible combinations have been tried, the solution still appears to be diverging, the case is abandoned. Each time a change is made a message is printed. The current values of IVCOND and NCA LCR are stored in ICOND and NCALC, respectively, and these values are printed as part of the message. All of these messages occur from the routine SHIE LD.

Whenever a case is run involving one or two nonplanar surfaces, a check is made to insure that the necessary view factor data have been read in. This check is for the spacing ratio between surfaces, the type of surfaces, the ratio of the axial radius to the lateral radius for the nonplanar surfaces, and the number of annuli used. If the check fails, an error message is printed from the routine TBVUF and the run is terminated.

Description of Computer Code

This section of the appendix discusses the computer program which performs the calculations of the shadow-shield equations. This program is composed of several routines each of which performs a specific function. In the program, one of the sources is referred to as a heater and the other source is referred to as a tank. It is convenient to describe the computer program using these terms for the sources. The following is a brief description of each of the routines used in the program. Most of the routines have an accompanying flowchart and following some of the routines is a list of the FORTRAN symbols which correspond to symbols used in appendix B. The FORTRAN variables which are needed as input are described in the listing of the program and are not repeated here. Some variables are used throughout the program while others are limited to one or two routines. The FORTRAN symbols which are used throughout the program are given after the routine SHIELD and the others are given after the first routine in which they appear. The list of FORTRAN symbols is not exhaustive but is limited to the major variables. Accompanying the description of the FORTRAN variables is a key. This key describes the subscripting of variables and is explained after the discussion of the routines FACTOR and INVERT.

INPUT. - This subroutine reads in the necessary data. All of the input to the program enters through this routine. Figure 36 is a flowchart of this routine. The listing of the routine contains a description of the input.

SHIELD. - This is the main program. One of the functions of this routine is to provide a means of controlling the calling sequence to the subroutines which perform the actual calculations. Also, the iterative procedure for calculating the shield temperatures is done by this routine. With the exception of error messages, all output is generated in this routine. Figure 37 is a flowchart of this program. The numbers in connectors or to the left of a function block represent statement numbers in the program.

FORTRAN name	Variable in appendix B	Description	Key
AREA	A	The area of each annulus of each surface	1
AB	α	The absorptivity of each annulus of each surface	2
EMS	ϵ	The emissivity of each annulus of each surface	2
REF	ρ	The reflectivity of each annulus of each surface	2
COND	k	The thermal conductivity between annuli of a shield	1

FORTRAN name	Variable in appendix B	Description	Key
RES	\mathscr{R}	The thermal resistance between annuli of a shield	1
T	T	The temperature of each annulus of each surface	1
FNNHTT	f	The view factor from the surface of an annulus facing towards the tank to an annulus on a surface facing towards the heater. If there are no shields present, this is the view factor from an annulus on the heater to an annulus on the tank	3
FNNTTH	f	The complement of FNNHTT except that this is the view factor from an annulus towards the tank to an annulus towards the heater	3

TBVUF. - This routine calls INPUT to read view-factor data when nonplanar sources are present. These view factors were obtained using the computer program given in reference 13. This routine is set up so that all the data which are generated for nonplanar surfaces may be kept together and read in as a unit. Figure 38 is a flowchart of this subroutine.

VUFAC1. - This routine calculates the radii and areas for planar surfaces and sets up the call to the routines TBVUF and SUBVF in order to generate the view factors between annuli. VUFAC1 calculates the view factors between whole surfaces by summing up view factors. Figure 39 is a flowchart of this routine.

SUBVF. - This subroutine calculates the view factors between planar surfaces. The view-factor relations that are given in reference 1 are used in this routine. Figure 40 is a flow chart of this routine.

SCHLC. - This routine calculates the temperatures of the shields assuming that the temperatures of adjacent surfaces are known for each shield. Figure 41 is a flowchart of this routine.

FORTRAN name	Variable in appendix B	Description
PHI	φ	The solar flux
Q	Q	The rate of heat transfer to an annulus from known temperature sources
D	D^{T}	The matrix containing the absorption fac- tors times emissivity

COEF. - This' routine determines the absorption factors for each system consisting of two surfaces and the surroundings. Figure 42 is a flowchart of this subroutine.

FORTRAN name	Variable in appendix B	Description	Key
A	C	The coefficient matrix in the solution of the absorption factors	4
Y	V	The matrix containing the negative of the view factors times absorptivity	4
AI	C^{-1}	The inverse of A	4
B	U	The matrix containing the absorption factors	4

QDOT. - This routine calculates the heat-transfer rates to the tank as well as both the adjacent surface and the surroundings between these two surfaces. Figure 43 is a flow chart of this routine.

FACTOR and INVERT. - These two routines are used to invert a matrix. The method used is given in reference 14. As a consequence of the way these two routines are programmed, four warning diagnostics result at compilation.

Explanation of keys. -

Key

1 These variables are doubly subscripted. The first subscript refers to an annulus of a surface. The first element is the innermost annulus. The second subscript refers to the particular surface beginning with the heater. Thus AREA $(5,2)$ is the area of the fifth annulus of the first shield.

4 These variables are doubly subscripted and represent matrices. The two subscripts refer to the rows and columns of each matrix, respectively.
These variables are triply subscripted. The first two subscripts have the same meaning as the two subscripts for variables with a key 1 . The third subscript denotes the particular side of the shields. The side designated a 1 faces the heater while side 2 faces the tank. Thus $\mathrm{AB}(5,2,2)$ is the absorptivity of the fifth annulus of the first shield on the side facing towards the tank.

These variables are triply subscripted. The first two subscripts refer to annuli on the originating and receiving surfaces, respectively. The third subscript refers to the pair of surfaces involved. These subscripts are arranged in the same fashion as the two previous keys. Thus, FNNTTH ($1,10,1$) refers to the view factor from the innermost annulus to the tenth annulus and is from an annulus of a shield or source adjacent to the heater to an annulus on the heater itself.

INPUT - EFN SOURCE STATEMENT - IFN(S) -

unless input these variables have a value of 1.0
ICONCR

ITMAX
INDICATES THE TYPE OF SHIELOS USED. O WHEN THE SHIELDS ARE PARTIALLY CONDUCTING. 1 WHEN THE SHIELDS ARE NON-CONCUCTING. 2 WHEN THE SHIELDS HAVE A UNIFORM TEMPERATURE. ICONDR IS INITIALLY ASSIGNED A VALUE OF I. THIS VARIABLE HAS SIGNIFICANCE ONLY IF NRNGS IS GREATER THAN I, AND CANNOT BE ZERO WHEN NRNGS IS 1. THE MAXIMUM NUMBER OF ITERATIONS BEFORE THE SOLUTION OF THE IS ABANCONED. UNLESS SPECIFIED THIS VARIABLE IS ASSIGNED THE VALUE 200
1 WHEN THE SOLUTION FOR PARTIALLY CONDUCTING SHIELDS IS STARTED FROM A NON CONOUCTING SOLUTION. 2 IF THE STARTING POINT IS FROM THE UNIFORM TEMPERATURE SOLUTION. KEY USED TO SPECIFY ABSORPTIVITY UF ELEMENTS OF HEATER. THE EQUIVALENT OF NAH EXCEPT FUR THE TANK.
KEY USEC TO SPECIFY ABSORPTIVITY OF ELEMENTS OV SIDE OF SHIELD Closest to heater facing the HEATER.
NAIT THE EQUIVALENT OF NAIB EXCEPT NRNGS B,C FOR SIDE FACIVG AWAY FROM HEATER. THE EQUIVALENT OF NAIB OR NAIT EXCEPT THAT THESE VARIABLES REFER TO THE SECOND THROUGH THE FIFTH SHIELDS RESPECTIVELY.
NA5B
NA 2 T
NA3T
NA4T
NAST
NCALCR
0 WHEN THE SOLUTION IS FOUND WITH
1
THE FQUATIUNS LINEAR IN T**4.
1 WHEN THE EQUATIONS ARE LINEAR IN T. 1 IF THE LAST CASE IS TO BE RERUN

1 WITH THE TOLERANCE ON THE TEMPERATURE DISTRIBUTION HALVED. A VALUE OF 1 IS ASSIGNED FOR THE FIRST CASE AND UNLESS a VALUE IS INPUT A VALUE OF 2 IS ASSIGNED EACH SUCEEDING CASE.
NCOND KEY DENOTING THE THERMAL CONDUCTIVITY OF EACH OF THE SHIELDS.
NEH KEY USED TO SPECIFY EMISSIVITY OF ELEMENTS UF HEATER.
THE FQUIVALENT OF NEH EXCEPT FOR THE TANK.
THIS VARIABLE HAS MEANING ONLY IF

NSHLDS	C
NRNGS	B, C
NRNGS	B, C

C		VIEN FACTOR DATA FOR A NONPLANAR		
C		HEATER OR TANK IS READ IN FOR A CASE		
C		OTHER THAN THE FIRST CASE IN A RUN.		
C		SET EQUAL TO O FOR EACH CASE IN WHICH		
C		VIEW FACTOR DATA ARE READ IN. CARE		
C		SHOULD RE TAKEN IF VIEW FACTOR DATA		
C		ARE REAC IN MORE THAN ONCE, SINCE		
C		SUCEEDING DATA OVERWRITE PRECEEDING		
C		DATA.		
C	NEIB	KEY USED TO SPECIFY FMISSIVITY OF	NRNGS	B,C
C		ELEMENTS ON SIDE OF SHIELD CLOSEST		
C		TO HEATER FACING THE HEATER.		
C	NE 1 T	THE EQUIVALENT OF NEIB EXCEPT FOR SIDE FACING AWAY FROM HEATER.	NRNGS	B, C
C				
C	NE2B	THE EQUIVALENT OF NEIB OR NEIT	NRNGS	B, C
C	NE3B	EXCEPT THAT THESE VARIABLES REFER		
C	NE4B	TO THE SECOND THROUGH THE FIFTH		
C	NE5B	SHIELD RESPECTIVELY.		
C	NE2T			
C	NE3T			
C	NE4T			
C	NE5T			
C	NRACS	1 WHEN EQUAL AREA ANNULI ARE CHOSEN	1	
C		FOR EACH SURFACE. O WHEN EQUAL		
C		RADII ANNULI ARE CHOSEN FOR EACH		
C		SURFACE. UNLESS A Value is		
C		SPECIFIED A VALUE UF 1 IS ASSIGNED.		
C		THIS VARIABLE IS IGNORED FOR SURFACES		
C		OPPOSITE NON PLANAR SUURCES.		
C	NRNGS	THE NUMBER OF ANNULI ON EACH SURFACE. 1		
C		NRNGS NORMALLY CANNOT EXCEED 20, BUT		
C		IT CANNOT EXCEED 10 IF NON PLANAR		
C		SURFACES ARE [NVOLVED.		
C	NSHLCS	THE NUMEER OF SHIELDS. THERE MAY BE 1		
C		UP TU 5 SHIELDS IN THE SYSTEM.		
C	NVUFt	1 WHEN THE HEATER SURFACE IS NON 1		
C		PLANAR. OTHERWISE O. A VALUE OF		
C		0 IS ASSIGNED INITIALLY.		
C	NVUFT	THE EQUIVALENT OF NVUFH EXCEPT	1	
C		For the taivk surface.		
C	PHI	SOLAR FLUX PER UNIT TIME AND AREA. I		
C	RH	THE RADIUS OF THE HEATER IN THE		
C		LATERAL DIRECTION.		
C	RS	the radius of the shields.	NSHLDS	
C	RSH	THE RATIO OF THE RADIUS IN THE AXIAL 1		
C		DIRECTICN TO THE RADIUS IN THE		
C		LATERAL DIRECTION FOR A NONPLANAR HEATER.		
C		NEED NOT BE SPECIfIED IF THE HEATER		
c		IS PLANAR (NVUFH=0).		
C	RST	THE EQUIVALENT OF RSH EXCEPT 1		
C		FOR THE TANK.		
c	RT	THE RADIUS OF THE TANK IN THE l		
C		LATERAL DIRECTION.		
C	SIGMA	STEFAN-BOLTZMAN CONSTANT. THE UNITS 1		
C				
C		UNITS OF ALL OTHER DIMENSIONED		

INPUT - EFN SOURCE STATEMENT - IFN(S) -

C
R

SHIELD CR HEATER. 3 IF A NONPLANAR TANK SEES A NONPLANAR HEATER.
THE NUMEER OF ANNULI DN EACH SURFACE. 1
VIEW FACTGRS FROM ANNULI ON THE
TANK TO ANNULI ON THE HEATER.

THE SET OF DATA FOR A GIVEN CONFIG- 1
1 G
URATION WHICH IS STORED ON TAPE 1
CAN BE FUR SEVERAL DIFFERENT NUMBERS
OF ANNULI. AT THE END OF EACH SET OF DATA FN IS SET EQUAL TO 1
SET EQUAL TO 1 at THE END OF THE
1
LAST SET OF DATA. THERE IS A MAXIMUM
OF 30 SETS OF DATA. IF IT IS DESIRED
TO READ IN ADDITIONAL DATA FOR NONPLANAR
SOURCES, FL IS SET EQUAL TO 1.0 JLST
PRIOR TO EACH RETURN TO TBVUF.
THE RATIO OF THE RADIUS IN THE AXIAL $1 \quad$ E,H
DIRECTICN TO THE RADIUS IN THE LATERAL DIRECTICN FOR THE NONPLANAR HEATER. THE EQUIVALENT OF RMHD EXCEPT FOR 1 THE TANK.
THE SPACING RATIO (L/R) BETWEEN THE 1 NONPLANAR SURFACE AND THE SURFACE NEXT TO IT.

EXPLAINATION OF CODES
coce
A
WHEN THERE IS SOLAR RADIATION PRESENT ONLY NSHLDS VALUES OF THESE VARIABLES NEED BE READ IN. HOWEVER, SINCE THE numbering begins with the heater, the value stored in the SECOND LOCATION REPRESENTS THE PROPERTY BETWEEN THE FIRST AND SECOND SHIELDS.
B If the values for these variables are the same across a SURFACE, TYEN DENOTING THE SECOND VALUE AS ZERO CAUSES the progran to assign the first value to all of the values ror the variable
C KEYS RELATE THE PROPERTIES OF AN ELEMENT OR SHIELD TO THE CONSTANTS GIVING THAT PRUPERTY. THUS THE ENTRY NET(3)=4 INCICATES THAT THE EMISSIVITY OF THE THIRD ANNULUS OF THE TANK IS DETERMINED BY THE VALUES IN TBEMS4. IF ALL OF THE anNuli on a surface have the same key for a variable, ASSIGNING A VALUE OF O TO THE SECOND ANNULUS CAUSES THE PROGRAM TO ASSIGN THE VALUE FOR THE FIRST ANNULUS TO ALL OF ANNULI ON THE SURFACE.
D THE POLYNONIALS ARE IN ASCENDING ORDER SO THAT THE FIRST COEFFICIENT IS A CONSTANT WHILE THE FOURTH COEFFICIENT IS mult iplied by the temperature cubed.
E THE VIEW FACTOR DATA CONSISTS OF BETWEEN 1 AND 30 SETS OF DATA. EACH SET IS FOR A DIFFERENT SPACING RATIO OR SHAPE OF THE NONPLANAR HEATER OF TANK. WITHIN A SET OF DATA INFORMATICN CAN BE PROVIDED FOR DIFFERING NUMBERS OF ANNULI FOR EACH SET OF DATA THERE IS A SUBSET FOR EACH NUMBER OF ANNULI. EACH SUBSET CONTAINS THE AREAS OF EACH ANNULUS ON THE NONPLANAR SURFACE AND THE SURFACE ADJACENT TO IT, AS WELL AS THE VIEW FACTORS BETWEEN ANNULI.

```
IVPUT - EFN SOURCE STATEMENT - IFN(S) -
```


6 FORMAT(19 H CONDUCTIVITY KEYS=,5I5)
16 WRITE(6,4) (RS(I), I=1, NSHLDS)
4 FORMAT (16H SHIELD RADIUS $=, 5 E 12.4)$
NX=NSHLDS+1
$N S=1$
IF (SULAR .NE. 0.0) $N S=2$
IF (NS .GT. NX) GO TO 21
WRITE(6,22) 1 I , D(I), ARES(I), ABSR(I), ES(I) , TS(I).
$1 \quad I=N S, N X I$
22 FORMATI//36X,44HPROPERTIES OF SURROUNDINGS BETWEEN SURFACES /76H
1 SPACING DISTANCE AREA ABSORPTIVITY EMISSIVITY TEMP
2ERATURE /(16,3F13.3,F15.3,F13.3))
21 DO $23 \mathrm{~K}=1,6$
NF $(K)=$ NRNGS
IF 1 K .LE. 3 .AND. SOLAR .NE. O.0 1 GO TO 23
GO TC ($31,32,33,34,35,36), \mathrm{K}$
31 IF (NEH(2).EO. 0) NF(1)=1
GD TO 23
32 IF (NAH(2) .EQ. 0) NF (2) $=1$
GO TO 23
33 IF (TH(2).EQ. C.O $) \operatorname{NF}(3)=1$
GO TC 23
34 IF (NET(2) EQ. 0) $\operatorname{NF}(4)=1$
GO TC 23
35 IF (NAT(2) EQ. 0) NF (5) $=1$
GO TC 23
36 IF (TY(2).EQ. 0.0) $\operatorname{VF}(6)=1$
23 CONTINUE
IF 1 SULAR .NE. 0.0 , GO TO 27
$N L=N F(1)$
WRITE(6,24) DNE(1), (NEH(I),I=1,N1)
N1=NF(2)
24 FORMAT(12X, A6,2013)
WRITE(6,24) DNA(1), (NAH(I),I=1,N1)
$N I=N F(3)$
WRITE(6,25) DTEM(1) , (TH(I), I=1,N1)
25 FORMAT ($12 \mathrm{X}, \mathrm{A}, 10 \mathrm{~F} 11.3 / 18 \mathrm{X}, 10 \mathrm{~F} 11.3$)
27 NX=NSHLOS*2
IF 1 NX .EQ. 0) GO 1028
DO $26 \quad V=1$, NX
NI = NRNGS
IF $(\operatorname{NE}(2, N) . E Q .0 \quad 1 N 1=1$
WRITE(6,24) DNE(N+1), (NE(I,N),I=1,N1)
NI = NRNGS
IF (NA(2,N) EQ. 0) $N 1=1$
WRITE $(6,24)$ DNA $(N+1),(N A(I, N), I=1, N 1)$
26 CONTINUE
$28 \mathrm{NI}=\mathrm{NF}(4)$
WRITE(G.24) DNE(12), (NET(I),I=1,N1)
NI=NF(5)
WRITE(6,24) DNA(12), (NAT(I), I=1,N1)
$\mathrm{Nl}=\mathrm{NF}(6)$
WRITE(6,25$)$ DTEM(2), (TT(I),I $=1, N 1)$
RETURN

```
INPUT - EFN SOURCE STATEMENT - IFN(S) -
```

C
$2 \operatorname{READ}(5$, INPUT2) IF (LIST .EQ. O) RETURN WRITE 6,5$)$
5 FORMAT (IHI, $42 X, 3$ CHLISTING OF VIEW FACTOR DATA WRITE (0,OUTPU2) WRITE(6,50) DAHS, (AHS(J),J=1,NR1)
50 FORMAT $(6 X, A G$, LOF 11.4$)$
WRITE (6,50) DATS , (ATS(J), J=1,NR1) WRITE 6,53)
53 FORMAT $12 \mathrm{X}, 30 \mathrm{H}$ VIEW FACTORS BETWEEN ANNULI) NR $2=N R 1 * * 2$ WRITE(6,51) (F(N),N=1,NR2)
51 FORMAT(LOE12.4) RETURN
ENC

```
    DIMENSION ES(10), ABSR(10), REFS(10), TS(10), ARES(10)
    EQUIVALENCE
1 (CVCOND,CVK), (CVEMS, CVX), (CVABS, CVY)
    DIMENSION RS(9), STHICK(7), NCOND(7), D(8),
1 TH(20), TT(20), CVCOND(4,10), CVABS(4,10),
2 CVEMS(4,10), NEH(20), NET(20), NAH(20), NAT(20)
3 CVX(40), CVY(40), CVK(20), NE(20,10), NA(20,10)
    DIMENSION NEI(20C), NAl(200)
    EQUIVALENCE (NEI, NE ), (NA1, NA )
    COMMON / BULL/ EMS(20,9,2), AB(20,9,2) , REF(20,9,2)
    COMMCN/NEW/ FSSHTT(6), FSSTTH(6), FSNHTT(20,6), FSNTTH(20,6),
1
                                    FNNHTT(20,20,6), FNNTTH(20,20,6), AREA(20,7),
                        FNSHTY(20,6), FNSTYH(20,6), R(20,7), AREAT(7) ,
                        FNHTSR(20,6), FNTTSR(20,6), FSRTNH(20,6),
                                FSRTNT(20,6) , FSRSR(6)
    COMMON / EAS / AT, AH, QOA, T(20,10), F13, F14, F23,F24
    COMMON /CONDT/ COND(20,10), RES(20,10)
    COMMUN / KSLV / TO(20,10), LOOK , LCOND , ICOND , NCALC , TMAX
    COMMON /T3/ QOA2 , QSUR , QOAS
    DIMENSION RORS(20)
    CONMCN C(1000)
    EQUIVALENCE
I(C(1),ABSR ), (C(11),ARES ), (C(21),D,
2(C(31),ES ),(C(41),IVCOND), (C(42), ICONDR),
3(C(43), ITMAX ), (C(51),NAH ), (C(71),NAT ),
4(C(91),NA) , (C(291),NEH) , (C(311),NET ),
5(C(331),NE ), (C(531),NCOND ), (C(541),NCASE ),
6(C(542),NELIPS) , (C(543),NRADS ), (C(544),NRNGS ),
7(C(545),NSHLDS), (C(546),NCALCR), (C(547),NVUFH),
8(C(548),NVUFT ), (C(549),PHI ), (C(550),PI),
9(C(551),RS ), (C(561),RSH) , (C(562),RST) ),
A(C(563),RH) , (C(564),RT),
B(C(566),SIGMA ),(C(567),TOL ), (C(568),WI,
C(C(571),SOLABS), (C(591),STHICK) , (C(601),CVABS) ,
D(C(641),CVCOND) , (C(681),CVEMS ), (C(721),TH ),
E(C(741),TS ), (C(751),IT) ), (C(771),REFS )
    COMMON/ELIP2/FN,FL, RMHO, RHTD, XLOR, MXS , ATS(LO),
l
                                AHS(10), F(10,10), LIST
INITIALIZE DATA AND GIVE INPUT VARIABLES THEIR ASSIGNED VALUES
```

```
00 510 I=1,200
```

00 510 I=1,200
NE1(I)=0
NE1(I)=0
NA1(I)=0
NA1(I)=0
IF (I .GT. 40) GO TO 510
IF (I .GT. 40) GO TO 510
CVX(I) = 0.0
CVX(I) = 0.0
CVY(I) = 0.0
CVY(I) = 0.0
IF (I .GT. 20,GO TO 510

```
IF (I .GT. 20,GO TO 510
```

```
SHIELD - EFN SOURCE STATEMENT - IFN(S) -
```

```
            CVK(I) = 0.0
            NET(I)=0
            NEH(I)=0
            NAT(I)=0
            NAH(I)=0
            TH(1)=0.0
            TT(I)=0.0
            IFI I .GT. 10 ) GO TO 510
            D(I) =0.0
            IS(I)=0.0
            ARES(I)=1.0
            ES(I)=1.0
            ABSR(I)=1.0
    510 CONTINUE
            TOL = 0.01
            NI =0
            NRADS = 1
            NVUFT =0
            NVUFH=0
            SOLAR =0.0
            IVCOND=1
            ICCNCR=1
            NCASE=1
            WI=0.4
            NELIPS=0
            LIST=0
            ITMAX=200
            NCALCR=1
            PI = 3.14159
            SIGMA = 0.1713E-08
    1000 WRITE (6,100)
    100 FORMAT (lHI)
C
C REAU INPUT DATA
    106 CALL INPUT (1)
        IF (NELIPS.EQ. O .AND. (NVUFT .NE. O .OR. NVUFH.NE. O ) )
        1 CALL TBVUF(O)
            WRITE(6,107)
    107 FORMAT(42X,18HLISTING OF OUTPUT )
    NELIPS=1
    TOLX = TOL
    IFI ICUNDR .NE. C I ICOND=ICONDR
    IF (IVCOND .EQ. 0 , IVCOND=1
    IF I ICONDR.EQ. O, ICOND=IVCUND
    NCALC=NCALCR
    ICASE=O
    SDT=L.OE10
    ITCOND=1
    W=1.0
    LW=O
    LOCK=1
    WX=WI
    TENPH=TH(1)
    TEMPT=TT(1)
    IF (NI.EQ.O) WRITE (6,100)
```

```
SHIELD - EFN SOURCE STATEMENT - IFN(S) -
```

```
    506 NI = 1
    DO 501 L=1,2
C
C STORE DATA FOR EMISSIVITY KEYS AND TEMPERATURES
C
    DO 501 M=1,5
    JJ=2*M +L-2
    DO 501 K=1,8
    IF ( JJ.EQ. 1 ) GO TO 520
    IF ( K-7 ) 502, 517, 518
    520 GO TO (511, 512, 513, 514, 515, 516, 517, 518, , K
    511 NS=TH(2)
    GO TO 519
    512 NS=TT(2)
    GO TC 519
    513 NS=NET(2)
    GO TO b19
    514 NS=NEH(2)
    GO TU 519
    515 NS=NAT(2)
    GO TG 519
    516 NS=NAH(2)
    GO TO 519
    517 NS=NE(2,JJ)
    GO TC 519
    518 NS=NA(2,JJ)
    519 DO 521 N=2,20
        IF (NS .NE. O ) GO TO 502
    GO TO (531, 532, 533, 534, 535,536, 537, 538, , K
    531 TH(N)=TH(1)
    GO TO 521
    532 TT(N)=TT(1)
    GO TO 521
    5 3 3 \text { NET(N)=NET(1)}
    GO TO b21
    534 NEH(N)=NEH(1)
    GO TU 521
    535 NAT(N)=NAT(1)
    GO TO 521
    536 NAH(N)=NAH(1)
    GO TO 521
    537 NE(N,JJ)=NE(1,JJ)
    GO TO 52l
    538 NA(N,JJ)=NA(l,JJ)
    521 CONTINUE
    5 0 2 ~ C O N T I N U E ~
    5O1 CONTINUE
        DO 540 N=1,NRNGS
        T(N,l)=TH(N)
        T(N,NSHLCS+2)=TT(N)
    540 CONTINUE
C
C
    DETERMINE SURFACE PROPERTIES OF HEATER AND TANK
    DO 503 N=1,NRNGS
    J=NEH(N)
```

```
            SHIELO - EFN SOURCE STATEMENT - IFN(S) -
```

 \(\operatorname{EMS}(N, 1,2)=\operatorname{CVEMS}(1, J)+(\operatorname{CVEMS}(2, J)+\operatorname{TH}(N) *(\operatorname{CVEMS}(3, j)+\)
 1
 \(\operatorname{CVEMS}(4, J) * T H(N))) \neq T H(N)\)
 \(J=N A H(N)\)
 \(A B(N, 2,2)=\operatorname{CVABS}(1, J)+(\operatorname{CVABS}(2, J)+\operatorname{TH}(N) *(\operatorname{CVABS}(3, J)+\)
 1 CVABS(4,J)*TH(N))) *TH(N)
 \(\operatorname{REF}(N, 1,2)=1.0-A B(N, 1,2)\)
 \(J=\) NET(N)
 EMS (N,NSHLDS + 2,1) = CVEMS(1,J) \(+1 \operatorname{CVEMS}(2, J)+\operatorname{TT}(N) *(\operatorname{CVEMS}(3, J)\)
 1
 \(+\operatorname{CVENS}(4, J) * T(N), 1 * T T(N)\)
 \(J=N A T(N)\)
 \(A B(N, N S H L D S+2,1)=\operatorname{CVABS}(1, J)+(\operatorname{CVABS}(2, J)+\operatorname{TT}(N) *(\operatorname{CVABS}(3, J)+\)
 \(1 \quad \operatorname{CVABS}(4, J) * T T(N) \quad 1 * T T(N)\)
 \(\operatorname{REF}(N, i+S H L D S+2,1)=1,0-A B(N, N S H L D S+2,1)\)
 503 CONTINUE
 DO \(541 \mathrm{M}=1,10\)
 \(\operatorname{REFS}(M)=1.0-A B S R(M)\)
 541 CONTINUE
 C
CALCULATE VIEW FACTURS BETWEEN PAIRS OF SURFACES
CALL VUFACI
IF (NSHLDS .EO. 0) GO TO 10
IF (ICONDR .NE. O) GO TO 400

 \(N F=\) NRNGS -1
 DO \(600 \mathrm{M}=1\), NSHLDS
 RESK=SIGMA/STHICK(M)/2.0/PI
 DO \(601 \mathrm{~N}=1\),NF
 \(I F(N . E Q .1) \operatorname{RES}(N, M)=R E S K * A L O G((R(2, M+1)+R(1, M+1)) / R(1, M+1))\)
 \(\operatorname{IF}(N-G T, 1) \operatorname{RES}(N, M)=R E S K * A L O G((R(N+1, M+1)+R(N, M+1)) /\)
 1
 \((R(N, M+1++R(N-1, M+1)))\)
 601 CONTINUE
 600 CONTINUE
 C
c
C
400 IF (ICASE .GT. C) GO TO 20
IF (SULAR .EQ. O.0) TEMPX = TEMPH
IF (SOLAR .NE. O.O) TEMPX $=500.0$
$T(1,2)=$ TEMPX $-($ TEMPX TEMPT)/FLOAT(NSHLDS +1$)$
IF (NSHLDS .EQ. 1) GO TO 20
NSF = NSHLDS + 1
DO $15 \mathrm{M}=3$, NSF
$T(1, M)=T(1, M-1)-(T E M P X-T(1,2))$
15 CUNTINUE

C
c
c
c
calculate surface properties and thermal cenductivities for SHIELDS

20 DO $21 \mathrm{M}=1$, NSHLES
$J K=N C O N D(M)$
$K=N+1$
DO $21 \mathrm{~L}=1,2$
$J J=2 * M+L-2$

```
                SHIELD - EFN SDURCE STATEMENT - IFN(S) -
            OO 21 N=1,20
            IF (LOOK.NE. 1 .AND. ICASE .NE. O (GO TO 17
            T(N,K)=T(1,K)
            TO(N,K)=T(N,K)
    17 IF (N .GT. NRNGS ) GO TO 21
        J=NE (N,JJ)
        EMS (N,K,L)=CVEMS (1,J)+CVEMS (2,J)*T(N,K)+CVEMS (3,J)*T(N,K)**2
            1 +CVEMS (4,J)*T(N,K)**3
            J = NA(N,JJ)
            AB(N,K,L)=CVABS (1,J)+CVABS(2,J)*T(N,K)+CVABS (3,J)*T(N,K)**2
            1 +CVABS (4,J)*T(N,K)**3
            REF(N,K,L) = 1.0 - AB(N,K,L)
            IF(N.EQ.NRNGS.OR.ICOND.NE.OI GO TO 21
            TMS = (T(N,K) +T(N+1,K) )/2.0
            COND(N,M)=CVCOND(1,JK)+CVCOND(2,JK)*TMS+CVCOND(3,JK)*TMS**2+
            l CVCOND(4,JK)*TMS**3
        21 CONTINUE
            TMAX=0.0
C
C
    201 CALL SHCLC
            IF ( TMAX .NE. O.O ) GO TO 7
    202 DO 210 M = 1,NSHLDS
            K=M+1
            DO 210 N = 1,NRNGS
            IF (ICOND.EQ. 2 ) T(N,K)=T(1,K)
    210 CONTINUE
C
C
C
    TEST TO SEE IF TEMPERATURES HAVE CONVERGED
    SDTX=0.0
    PASS=.TRUE.
    DO 6 M = 1,NSHLDS
    K=M+1
    NF = NRNGS
    IFI ICOND .EQ. 2 , NF = 1
    DO 6 N = 1,NF
    TEST = ABS(TO(N,K) - T(N,K) )
    IF I TEST.GT. TOLX I PASS=.FALSE.
    SDTX=SDTX + TEST
    6 \text { COINTINUE}
    IF I PASS .AND. .TRUE. I GO TO g
    ICASE=1
    LOOK=LOOK+1
    IF ( LOOK .GT. ITMAX ) GO TO 14
    IF (ICOND .NE. C ) GO TO 8
    IF ( SOTX .GT. SET ) GO TO 13
    SDT=SDTX
    GO TC }
13 SDT=1.OE10
    LW=LW+1
    IF (LW.EQ. 8 ) GO TO 7
    ICOND=I CONDL
    W=1.0
    ICASE=0
```

```
SHIELD - EFN SOURCE STATEMENT - IFN(S) -
```

```
        GO TO 400
    8 DO L M=1,NSHLDS
        K=N+1
        DO 2 N=1,NRNGS
        IF I ICOND .EQ. 2 . AND. N -GT. 1 I GO TO 2
        T(N,K)=TO(N,K) -W*(TO(N,K)-T(N,K) )
        TO(N,K)=T(N,K)
        2 CONTINUE
        1 CONTINUE
        GO TO 20
    7 GO TO (22,23,24,25),ITCOND
    22 ICOND=IVCOND
    GO TO 11
    23 ICCND=3-IVCOND
        GO TO 11
    24 ICOND=3-IVCOND
    GO TO 11
    25 WRITE(6,101) NCALC,ICOND
    101 FORMAT(28H CASE ABANDONED WITH NCALC=,I3,6X,6HICOND=,I3)
    19M=NSHLDS +1
        WRITE(6,109) (( TO(N,K),N=1,NRNGS),K=2,M)
    109 FORMAT(3OH PRFVIOUS TEMPERATURE VALUES /\1OF12.3) )
    NCASE=2
    ICASE=0
    GO TO 10
    11 ITCOND=ITCOND+1
        ICASE=0
        W=1.0
        NCALC=1-NCALC
        LW=0
        WRITE(6,12) NCALC, ICOND
    L2 FORMAT(44H CASE DIVERGING, CHANGING NCALC AND ICOND , 12X,
        1 GHNCALC=,I1,12X,6HICONO=,I1)
        GO TC 400
    14 WRITE(6,18)
    18 FORMAT(36H EXCESSIVE NUMBER OF ITERATIONS,
        GO TO 19
    9 IF I ICOND .EQ. ICONDR I GO TO 10
        IF (LW.EQ. O) GO TO 26
        W=WX/2.0
        ICASE=1
        ICCNC=I CONDR
        GO TO 20
    26 ICONIDL=I COND
        ICCND=I CONDR
        W=WI
        ICASE=1
        GO TO 20
    dETERMINE HEAT TRANSFER RATE FUR TANK
    10 CALL QDOT
    WRITE DUTPUT
    IF (NSHLDS .NE. 0 ) GO TO 105
```

WRITE(6.108) SOLAR , QOA , QOA2, QOAS

SOLAR SAME VARIABLE AS IN INPUT LIST QUA HEAT TRANSFER RATE PER UNIT AREA TC SOURCE DESIGNATED AS THE TANK.
QOA2 HEAT TRANSFER RATE PER UNIT AREA TO SURFACE OPPOSITE TO THE TANK.
QOAS HEAT TRANSFER RATE PER UNIT AREA TO THE SURROUNDINGS BETWEEN THE TANK AND THE OPPOSITE SURFACE.
LOOK THE NUMBER OF ITERATIONS
TOLX THE MAXIMUM DIFFERENCE BETWEEN EACH ESTIMATED AND CALCULATED TEMPERATURE FOR THE SHIELDS.
M THE SHIELD NUMBER.
I THE TEMPERATURE OF EACH ANNULUS OF EACH SHIELD. R(N) THE RADIAL DISTANCE TU THE OUTER EDGE OF THE NTH ANNULUS. RORS R(N) DIVIDED BY THE RADIUS OF THE SHIELD (RS).

108 FORMAT (LH /12H SOLAR =,F3.1.6X,6H OOA =,E12.4,6X,6HQOA2 =,
1E12.4.6X,6HQOAS =,E12.41
110 FORMAT(1HL)
GO TC 106
105 WRITE(6,102) LOOK, SOLAR, QOA, TOLX
102 FQRMATI///17H NU. ITERATIONS $=, 14,6 \mathrm{X}, 8 \mathrm{H}$ SOLAR $=, F 3.0,10 \mathrm{X}$,
17 H QOAT $=, \mathrm{E} 12.4,10 X, 6 \mathrm{H}$ TOLX=,F7.5)
WRITE(6,110)
DO $16 \mathrm{M}=1$, NSHLDS
$K=M+1$
DO $204 \mathrm{~N}=1$, NRNGS
$\operatorname{RORS}(N)=R(N, M+1) / R(N R N G S, M+1)$
204 CONTINUE
WRITE $(6,103) M, T(1, K), R(1, K), R O R S(1)$
103 FORNAT(//48H TEMP R R M R \quad R N)/RS
1 16,3F12.3)
IF (NRNGS EQ. 1) GO TO 16
WRITE(6,104) ($T(N, K), R(N, K), R C R S(N), N=2, N R N G S)$
104 FORMAT(F18.3,2F12.3)
16 CONTINUE
IFINCASF .NE. 1) GO TO 1000
NCASE $=2$
TOLX $=$ TOLX/2.0
$I C A S E=1$
LOCK $=2$
ITCOND=1
WRITE (6,100)
GU TU 20
STOP
ERROR MESSAGE NUMBER 1
END

SUBRCUI INE TBVUF（JR）
THIS ROUTINE REACS IN AND STORES DATA FOR VIEW FACTORS AND AREAS OF NCNPLANAR SURFACES．

A MAXIMUM OF 10 ANNULI CAN BE USED WHEN THERE ARE NCNPLANAR SURFACES，AND THE NUMBER OF ANNULI USED SHOULD CORRESPOND TO THE NUNBER UF ANNULI FQR WHICH DATA HAS BEEN STORED．

COMMON／ELIPT／M ，XOR ，MXI
COMMON／NEW／FSSHTI（6），FSSTTH（6），FSNHTT（20，6），FSNTTH（20，6），
1
2
3
4 FSRTNT $(20,6)$ ，FSRSR（6）
DIMENSION XT（30），MX（30），RMHS（30），RMTS（30），NRG（10．30）
DIMENSION FT（1000），FX（10，10，10）
DIMENSIUN ASTORE $(10,10,2), \operatorname{ASY}(200)$
EQUIVALENCE（ FT，FX）
EQUIVALENCE（ASY，ASTORE）
LOGICAL PASS
COMMON C（1000）
EQUIVALENCE
$1(C(1), A B S R),(C(11), A R E S),(C(21), D$,
$2(C(31), E S)$ ，（C（4i），IVCOND），（C（42），ICONDR），
$3(C(43), I T M A X),(C(51), N A H)$ ，（C（71），NAT ），
$4(C(91), N A)$ ，（C（291），NEH ）（C（311），NET），
$5(C(331), N E)$ ，（C（531），NCOND ），（C（541），NCASE ），
6（C（542），NELIPS），（C（543），NRADS ），（C（544），NRNGS ），
$7(C(545), N S H L D S),(C(546), N C A L C R),(C(547), N V U F H)$ ），
8（C（548），NVUFT），（C（549），PHI），（C（550），PI），
9（C（551），RS ），（C（561），RSH ），（C（562），RST ），
A（C（563），RH ），（C（564），RT），（C（565），SOLAR），
$B(C(566), S I G M A)$ ，（C（567），TUL ）（C（568），WI），
$C(C(571), S O L A B S),(C(591), S T H I C K),(C(601), C V A B S)$ ，
D（C（o4l），CVCOND），（C（681），CVEMS ），（C（721），TH，
E（C（741），TS），（C（751），TT），（C（771），REFS）
COMMON／ELIP2／F＇V，FL，RMHD，RMTD，XLOR，MXS ，ATS（LO），
1 AHS（LO），F（100），LIST，NRI
IF（ JR •NE．O ）GO IU 10
REWIND 1
I＝1
$12 \mathrm{FN}=0.0$
$F L=0.0$

READ VIEW FACTOR DATA．
CALL INPUT 12 ）
CONVERT THE VIEW FACTORS WHICH ARE STORED SERIALLY INTO THE PROPER

TBVUF - EFN SOURCE STATEMENT - IFN(S) -

```
    C ARRAY FORM. THE FIRST VIEW FACTOR IS THE ONE BETWEEN THE INNERMOST
    C ANNULUS ON THE SURFACE CLOSER TO THE TANK TO THE INNERMOST ANNULUS
10 L=0
    DO 13 K=1, I
    PASS = .TRUE.
    IF ( ( MXI .EQ. 1 .OR. MX1 .EQ. 3 ) .AND.
    1 ABS(RSH-RMHS(K) ).GT. 0.05*RSH ) PASS=.FALSE.
    IF ( I MX1 .EQ. 2 .OR. MX1 .EQ. 3 ) .AND.
    l ABS(RST-RMTS(K) ).GT. 0.05*RST ) PASS=.FALSE.
    IF ( ABS(XOR-XT(K)).GT. 0.05*XOR ) PASS=.FALSE.
    IF ( NRNGS .NE. NRG(NRVGS,K) ) PASS=.FALSE.
    IF ( PASS .AND. .TRUE. ) L=K
13 CONTINUE
    IF ( L .EQ. O .OR. NRNGS .GT. 10 1 GO TO 14
    REWIND 1
    READ VIEW FACTORS FROM TAPE
    DO 15 K=1,L
    READ(1) XLDR , MXS , (FT(J),J=1,1000), ( ASY(J),J=1,200)
15 CONTINUE
```

```
            TBVUF - EFN SOURCE STATEMENT - IFN(S) -
C
C STORE VIEW FACTORS AND AREAS IN CORE
C
    AREAT}(M)=0.
        AREAT (M+1)=0.0
        DU 17 N=1,NRNGS
        DO 16 NN=1,NRNGS
        FNNTTH(NN,N,M)=FX(NN,N,NRNGS)
    16 CONTINUE
        AREA (N,M)=ASTORE (N,NRNGS,1)
        AREA(N,M+1)=ASTORE(N,NRNGS,2)
        AREAT(M)=AREAT(M) + AREA(N,M)
        AREAT(M+1)= AREAT(M+1) + AREA(N,M+1)
    17 CONTINUE
    READJUST RADII OF PLANAR SURFACES TO AGREE WITH INPUT dATA
    IFI NSHLDS .EQ. 0, GO TO 18
    IF (M.EQ. 1 ) R(N,2)=SQRT(AREA(N,2)/PI)
    IF (M.EQ. NSHLDS+1 ) R(N,M)=SQRT(AREA(N,M)/PI)
18 RETURN
14 WRITE(6,20)
20 FORMAT(42H NO SPACING ENTRY IN TABLE )
    ASTOP=SQRT (-2.0)
    RETURN
    END
```

```
$IBFTC VUFACI DECK
    SUBROUTINE VUFACI
C
C THIS ROUTINE DETERMINES VIEW FACTORS BETWEEN ANNULI AND BETWEN
C
    WHCLE SURFACES.
C
    DIMENSION ES(10), ABSR(10), REFS(10), TS(10), ARES(10)
    COMMDN / ELIPT / M , XOR , MXL
    DINENSION RS(10) , D(11)
    COMMCNN/NEW/ FSSHTT(6), FSSTTH(6), FSNHTT(20,6) , FSNTTH(20,6) ,
    1 FNNHTT(20,20,6) , FNNTTH(20,20,6), ARFA(20,7),
    2 FNSHTT(20,6) , FNSTTH(20,6), R(20,7) , AREAT(7) ,
    3 FNHTSR(20,6), FNTTSR(20,6), FSRTNH(20,6),
    4 FSRTNT(20,6) , FSKSR(6)
    COMMGN / EAS / AT, AH, QOA, T(20,10), F13,F14,F23,F24
    CONMON C(100O)
    EQUIVALENCE
1(C(1), ABSR ), (C(11),ARES ), (C(21),D ),
2(C(31),ES ),(C(41),IVCOND), (C(42),ICONDR),
3(C(43), ITMAX), (C(51) \NAH ), (C(71),NAT ),
4(C(91),NA ), (C(291),NEH ), (C(311),NET ),
5(C(331),NE ), (C(531),NCOND ), (C(541),NCASE ),
6(C(542),NELIPS) , (C(543),NRAOS) , (C(544),NRNGS) ,
7(C(545),NSHLDS) , (C(546),NCALCR) , (C(547),NVUFH),
8(C(548),NVUFT), (C(549),PHI ), (C(550),PI, ,
9(C(551),RS ), (C(561),RSH) , (C(562),RST,
A(C(563),RH ),(C(564),RT ),(C(565),SOLAR),
B(C(566),SIGMA) , (C(567),TOL ) , (C(568),WI ) ,
C(C(571),SOLABS), (C(591),STHICK), (C(601),CVABS),
D(C(641),CVCOND),(C(681),CVEMS ), (C(721),TH, (C),
E(C(741),TS ),(C(751),TT), (C(771),REFS)
C
    OETERMINE THE RACII OF EACH ANNULI OF EACH SURFACE
    FN=NRNGS
    IF ( NRADS .NE. O ) FN=SQRT(FN)
    NSP=NSHLDS +2
    OO 101 J=1,NSP
    SUNA=0.0
    DO 102 N=1,NRNGS
    FNI=N
    IF ( NRADS .NE. O I FNI=SQRT(FNI)
    IF ( J .NE. 1 ) GO TO 120
    IF ( SULAR .NE. 0.0 ) GO TO 101
    R(N,J)=RH*FNI/FN
    IF I NVUFH .EQ. O I GO TO 121
    GO TC 130
120 IF ( J.EQ. NSP ) GO TO 122
    R(N,J)=RS(J-1)*FNI/FN
    IF (J .NE.NSP-1 .OR. J .NE. 2 ) GO TO 121
    IF (J.EQ.NSP-1 .AND. NVUFT .EQ. O ) GO TO 121
```

```
                VUFAC1 - EFN SOURCE STATEMENT - IFNIS3 -
    IF ( J .EQ.2 .ANC. NVUFH .EQ.O ) GO TO 121
    GO TO 130
    121 IF (N.EQ. 1 ) AREA(1,J)=PI*R(1,J)**2
    IF (N -NE. 1 ) AREA(N,J)=PI#(R(N,J)**2 - R(N-1,J)**2)
    GO TG 130
    122 R(N,J)=RT*FNI/FN
    IF (NVUFT .EQ. C ) GO TO 121
    130 SUMA=SUMA + AREA (N,J)
    102 CONTINUE.
    calculate the area of the planar surfaces
    IF ( SOLAR .NE. O.O .OR. J .NE. I ) GO TO 131
    AH=SUMA
    AREAT(1)=AH
    GO TO 101
    131 AREAT(J)= SUMA
    IF (J.EQ.NSP ) AT=AREAT(J)
    101 CUNTINUE
    MF=NSHLDS+1
    DO 103 M=1,MF
    IF (M.EQ. 1 .AND. SULAR .NE. 0.0, GO TO 103
C
C
C
    DETERMIVE IF NON PLANAR SURFACES ARE INVDLVED.
    IF (M .NE. 1 .AND . M .NE. MF ) GO TO 300
    IF (NSHLDS .NE. O ) GO TO 301
    IF ( NVUFT .EQ. O .AND. NVUFH.EQ. 0 ) GO TO 300
    IF ( NVUFT .NE. O .AND. NVUFH .NE. O ) MXI=3
    IF I NVUFH .NE. O .AND. NVUFT .EQ. O ) MXI=1
    IF ( NVUFT .NE. C .AND. NVUFH . [0. O ) MXI=2
    GO TO 302
301 IF ( M .NE. 1 ) GO TO 303
    IF ( NVUFH .EQ. C ) GO TO 300
    MXI=L
    GO TO 302
303 IF (NVUFT .EQ. O ) GO TO 300
    MXl=2
C
C EXTRACT DATA FOR VIFW FACTORS FROM STORAGE.
302 IF (M .EQ. 1 ) MT = I
    IF ( M .EQ. MF) MT=MF
    XOR=C(MT)/R(NRNGS,MT+1)
    CALL TBVUF(1)
    DO 105 N=1,NRNGS
    SUMHL=0.0
    DO 132 NN=1,NRNGS
    FNNHTT(N,NN,M)=FNNTTH(NN,N,M)*AREA(NN,M+I)/AREA(N,N)
    SUMHI= SUMH1 + FNNHTT(N,NN,M)
132 CONT INUE
    FNSHTT (N,M)=SUMHI
    FSNTTH(N,M)=FNSHTT(N,M)*AREA(N,M)/AREAT(M+1)
    FNHTSR(N,M)=1.0-FNSHTT(N,M)
    FSRTNH(N,M)=FNHTSR(N,M)*AREA(N,M)/ARES(M)
105 CONTINUE
```

```
VUFAC1 - EFN SOURCE STATEMENT - IFNISI -
```

```
C
C CAlCulate the view factors from an anNulus to a whole shield.
C
    112 DO 133 N=1,NRNGS
        SUNTl=0.0
        DC 134 NN=1,NRNGS
        SUMTL=SUMT1 + FNNTTH(N,NN,M)
    134 CONTINUE
        FNSTTH(N,M)=SUMT 1
        FSNHTT(N,M)=FNSTTH(N,M)*AREA(N,M+1)/AREAT(M)
        FNTTSR(N,M) = 1.0 - FNSTTH(N,M)
        FSRTNT(N,M)= FNTTSR(N,M)*AREA(N,M+1)/ARES(M)
    133 CONTINUE
    GO TC 304
C
C Calculate the view factors between planar anNuli.
300 DO 106 N=1,NRNGS
    IF (N.EQ. 1 ) GO TO 107
    CALL SUBVF ( 2, R(NRNGS,M+1), 0.0,R(N-1,M),R(N,N), D(M) )
    FSNTTH(N,M)=F14
    FNSHTT(N,M)=FSNTTH(N,M)*AREAT(M+1)/AREA(N,M)
    GO TO 108
    107 CALL SUBVF (1, R(NRNGS,M+1),0.0, R(1,M), O.0,D(M) )
    FSNTTH(1,M)=F13
    FNSHTT(1,M)=FSNTTH(1,M)*AREAT(M+1)/AREA(1,M)
    108 FNHTSR(N,M)=1.0 - FNSHTT(N,M)
    FSRTNH(N,M)=FNHTSR(N,M)*AREA(N,M)/ARES(M)
    DO 109 NN=1,NRNGS
        IF (N .EQ. 1 ) GO TO 110
    IF (NV .EQ. 1 ) GO TO 111
    CALL SUBVF (4,R(NN-1,M+1),R(NN,M+1),R(N-1,M),R(N,M), D(M))
    FNNTTH(NN,N,M)=F24
    FNNHTT(N,NN,M)=FNNTTH(NN,N,M)*AREA(NN,M+1)/AREA(N,N)
    GO TO 109
    111 CALL SUBVF (2,R(1,M+1), 0.0,R(N-1,M),R(N,M), D(M) )
    FNNTTH(1,N,M)=F14
    FNNHTT(N,1,M)=FNNTTH(1,N,M)*AREA(1,M+1)/AREA(N,M)
    GO TU 109
110 IF (NN .EQ. 1 ) GO TO 113
    CALL SURVF ( 3, R(NN-1,M+1),R(NN,M+1), R(1,M), 0.0, D(M) )
    FNNTTH(NN,1,M) = F23
    FNNHTT(1,NN,M)=FNNTTH(NN,1,M)#AREA(NN,M+1)/AREA(1,N)
    GO TU 109
    113CALL SUBVF(1,R(1,M+1),0.0,R(1,M),0.0,D(M) )
    FNNTTH(1,1,M)=F13
    FNNHTT(1,1,M)=FNNTTH(1,1,M)*AREA(1,M+1)/AREA(1,M)
109 CONTINUE
106 CONTINUE
    GO TO 112
C
C Calculate view facturs between whole surfaces.
C
304 SUMSRI=0.0
    SUNSR2=0.0
    SUNT3=0.0
```

```
VUFAC1 - EFN SUURCE STATEMENT - IFN(S) -
```

SUMH3 $=0.0$
DO $114 \mathrm{~N}=1$, NRNGS
SUMSRL = SUMSR1 + FSRTNH (N, M)
SUMSR2=SUMSR2 + FSPTNT (N, M)
SUMT $3=$ SUMT $3+$ FSNTTH (N, M)
SUNH3=SUMH3 + FSNHTT(N,M)
114 CONTINUE
FSRSR(M) $=1.0-$ SUMSR1-SUMSR2
FSSTTH(M) $=$ SUMT 3
FSSHTT $(M)=$ SUMH3
103 CONTINUE
RETURN
ENL
\$IBFTC SUBVF DECK
SUBROUTINE SUBVF(IJ,R1A,R2A,R3A,R4A,ALA)
CONMUN / EAS / AT, AH, QOA, T(20,10), F13, F14, F23, F24
DOUBLE PRECISIUN R1,R2,R3,R4,AL,C1,C2,C3,C4,C5,C6,C7,C8,C9
Rl=R1A
$R 2=R 2 A$
$R 3=R 3 A$
$R 4=R 4 A$
$A L=A L A$
GO TO (1,2,3,4),IJ
C
$1 \mathrm{C} 1=(1 .+(\mathrm{R} 3 * * 2+\mathrm{AL} * * 2) / R 1 * * 2) * * 2-4 * *(R 3 * * 2) / R 1 * * 2$
F13 = . $5 *(1 .+(R 3 * * 2+A L * * 2) / R 1 * * 2-S Q R T(C 1))$
RETURN
C
C C

2 $\mathrm{C} 2=(1 .+(R 4 * * 2+A L * * 2) / R 1 * * 2) * * 2-4 * *(R 4 * * 2) / R 1 * * 2$
$\mathrm{C} 3=(1 .+(R 3 * * 2+A L * * 2) / R 1 * * 2) * * 2-4 * *(R 3 * * 2) / R 1 * * 2$
Fl4 =. 5* ((R4**2-R3**2)/R1**2-SQRT(C2)+SQRT(C3))
RETURN
C
C
C
$3 \mathrm{C} 4=(\mathrm{R} 2 * * 2+\mathrm{R} 3 * * 2+A L * * 2) * * 2-(2 . * R 2 * R 3) * * 2$
$C 5=(R 1 * * 2+R 3 * * 2+N L * * 2) * * 2-(2 . * R 1 * R 3) * * 2$
F23 $=(.5 /(R 2 * * 2-R 1 * * 2)) *(R 2 * * 2-\operatorname{SQRT}(C 4)+\operatorname{SQRT}(C 5)-R 1 * * 2)$
RETURN
C
C
CALCULATE THE VIEW FACTOR BETWEEN TWO ANNULI
C
$4 C 6=(R 2 * * 2+R 3 * * 2+A L * * 2) * * 2-(2 * * 2 * R 3) * * 2$
$\mathrm{C} 7=(\mathrm{R} 2 * * 2+\mathrm{R} 4 * * 2+A \mathrm{~L} * * 2) * * 2-(2 . * R 2 * R 4) * * 2$
$C 8=(R 1 * * 2+R 4 * * 2+A L * * 2) * * 2-(2 . * R 1 * R 4) * * 2$
$\mathrm{C} 9=(\mathrm{R} 1 * * 2+\mathrm{R} 3 * * 2+A L * * 2) * * 2-(2 * * R 1 * R 3) * * 2$
$\mathrm{F} 24=(.5 /(\mathrm{R} 2 * * 2-R 1 * * 2)) *(\operatorname{SQRT}(\mathrm{C} 6)-\operatorname{SQRT}(C 7)+\operatorname{SQRT}(C 8)-\operatorname{SQRT}(C 9))$ RETURN
ENC

SUBROUTINE SHCLC

THIS ROUTINE CALCULATES THE RADIAL TEMPERATURE DISTRIBUTION OF A SHIELD ASSUMING THAT THE TEMPERATURES OF THE ADJACENT SURFACES ARE KNCWN

DIMENSION ES（LO），$A B S R(10), \operatorname{REFS}(10), T S(10), ~ A R E S(10)$
COMMON／T2／A（4l，41），Q（41）
EQUIVALENCE（A（1），B）
DIMENSION B（41，41）
DIMENSION D（20，20），DI（20，20），DUMMY（20）
COMMDN／CONDT／COND（20，10）RES（20，10）
COMMON／NEW／FSSHTT（6），FSSTTH（6），FSNHTT（20，6），FSNTTH（20，6），
1
FNNHTT（20，20，6），FNNTTH（20，20，6），AREA（20，7）， FNSHTT（20，6），FNSTTH（20，6），R（20，7），AREAT（7），
$\operatorname{FNH} \operatorname{TSR}(20,6), \operatorname{FNTTSR}(20,6), \operatorname{FSRTNH}(20,6)$ ， FSRTNT $(20,6), \operatorname{FSRSR}(6)$
COMMON／BULL／EMS $(20,9,2), \operatorname{AB}(20,9,2), \operatorname{REF}(20,9,2)$
COMMON／EAS／AT，AH，QOA，T（20，10），F13，F14，F23，F24
CONMON／KSLV／TO（20，10），LOOK，LCOND，ICOND，NCALC，TMAX
COMMCN C（1000）
EQUIVALENCE

	$\triangle B S R$ ）	，（C） 11 ）	ARES ）		，DIS	
$2(C 131)$	，ES	（C）（41）	－IVCONDI	（C（42）	CONDRI	
（43）	，ITM	（C） 51$)$	，NAH	（C171）	NAT	
1）	，NA	，（C）291）	，NEH	，1C（311）	，NET	
$5(\mathrm{C}(331)$	NE	（C） 53	，NCOND	C 15	NCAS	
（542）	NELIPS）	（C）	，NRAOS	，1C154	RNG	
C（54	NSHLOSI	（C） 54	，NCALCR）	－1C：54	VUFH	
C（543）	NVUFT	（C） 54	，PHI	，（C） 550 ）	PI	
$9(C)$	RS	C（56	，RSH	C	S	
A（C） 563 ）	RH	，（C） 564	，RT	1 C	SOL	
B（C）	SIGMA	－（C） 56	），TOL	（	WI	
C（C） 57	OLABSI	－（C159	，STHICK）	$(60$	CVAB	
D（C）641）	CVCONDI	$(68$	，CVEMS	C 1721		
（C）（741）		（C）75	，TT	1 C 17	EFS 1	

DO $1 M=1$ ，NSHLDS
SUMGT $=0.0$
SUMQX $=0.0$
IF（ M ．NE． 1 ．UR．SOLAR •EQ．O．O ）GO TO 15
Calculate heat transfer due to solar flux．
DO $17 \mathrm{~N}=1$ ，NRNGS
IF（ N ．EQ． 1 ） $\mathrm{G}(1)=P H I * P I * R(1,2) * * 2 * S O L A B S / S I G M A$
IF（ N－NE． $1 \quad Q(N)=P H I * P I *(R(N, 2) * * 2-R(N-1,2) * * 2) * S O L A B S / S I G M A$
IF（ICOND ．EQ． 2 I GO TO 7
DO 18 NN＝ 1 ，NRNGS
$D(N, N N)=0.0$
$\operatorname{IF}(N . E Q . N N) \quad C(N, N N)=-E M S(N N, 2,1)$

```
SHCLC - EFN SOURCE STATEMENT - IFN(S) -
```

18 CONTINUE
GO TO 17
7 SUMQX $=\operatorname{SUMQX-EMS}(N N, 2,1) * \operatorname{AREA}(N N, 2)$
17 CONTINUE
GO TO 16

15 CALL COEF(M,B)
IF (ICOND .EQ. 2) GO TO 11
DU $30 \quad N=1$, NRNGS
SUNG=0.0
$L=N+N R N G S$
DO 21 NN=1,NRNGS
SUMQ $=\operatorname{SUMQ}+B(N N, L) \neq T(N N, M) \neq 4 \% E M S(N N, M, 2) \neq A R E A(N N, M)$
$K=N N+N R N G S$
DK $=0.0$
IF (N.EQ. $N N$) $D K=1.0$
$D(N, N N)=(B(K, L)-D K) * E M S(N N, M+1,1)$
21 CONTINUE
$Q(N)=S U M Q+B(2 * N R N G S+1, L) * T S(M) * * 4 * E S(M) * A R E S(M)$
30 CONTINUE
GO TC 16
11 SUMGT $=0.0$
SUMQX $=0.0$
DO $12 \quad \mathrm{~V}=1$, NRNGS
$L=N+N R N G S$
$S U M Q=0.0$
SUM $1=0.0$
DO 13 NN=1, NRNGS
$K=N N+N R N G S$
SUM $1=\operatorname{SUM} 1+B(K, L) * E M S(N N, M+1,1) * \operatorname{AREA}(N N, M+1)$
SUMQ $=S U M Q+B(N N, L) * E M S(N N, M, 2) * \operatorname{AREA}(N N, M) * T(N N, N) * * 4$
13 CONTINUE
SUMQX = SUMQX + SUM 1
$Q(N)=S U M Q+B(2 * N R N G S+1, L) * T S(M) * * 4 * E S(M) * A R E S(M)$
SUMQT=SUMQT-Q(N)
12 CONTINUE
calculate heat transfer from surfaces closer to tank.
16 CALL COEF($M+L$, A)
IF 1 ICOND.EQ. 2) GO TO 2
IF (NCALC.EQ. 0 - OR. ICOND .NE. 0 I GO TC 3
DO $4 N=1$,NRNGS
SUNQ $=0.0$
DO $5 \mathrm{NN}=1$, NRNGS
$K=N N+N R N G S$
$S U M Q=S U M Q+A(K, N) * E M S(N N, M+2,1) * T(N N, M+2) * * 4 * A R F A(N N, M+2)$
$D K=0.0$
IF (N.EQ. NN) $D K=1.0$
$D(N, N N)=1(A(N N, N)-D K) \neq E M S(N N, M+1,21+D(N, N N) 1 *$ 1 AREA(NN,M+1)*T(NN,M+1)**3
IF (N.NE. NN) GO TO 6
IF (N.NE. $1, D(N, N N)=D(N, N N)-\operatorname{COND}(N-1, M) / R E S(N-1, M)$
IF (N. NE. NRNGS $1 \operatorname{D(N,NN)=D(N,NN)-\operatorname {COND}(N,M)/RES(N,M)~}$

```
SHCLC - EFN SOURCE STATEMENT - IFN(SI -
```

GO TO 5
6 IF (N.EQ. NN+1) D(N,NN) $=D(N, N N)+\operatorname{COND}(N-1, M) / R E S(N-1, M)$
IF (N. EQ. $N N-1$) $D(N, N N)=D(N, N N)+C O N D(N, M) / R E S(N, M)$
5 CONTINUE
$Q(N)=-Q(N)-S U M Q-A(2 * N R N G S+1, N) * T S(M+1) * * 4 * E S(M+1) * A R E S(M+1)$
4 CONTINUE
GO TO 9
3 DU 8 N $=1$, NRNGS
$S U M Q=0.0$
DO 10 NN =1, NRNGS
$K=$ NN + NRNGS
SUMQ $=$ SUMQ + A(K,N)*T(NN,M+2)**4*EMS(NN,M+2,1)*AREA(NN,M+2)
DK $=0.0$
IF (N .EQ. NN) $D K=1.0$
$D(N, N N)=(A(N N, N)-D K) \neq E M S(N N, M+1,2)+D(N, N N)$
IF I ICOND.NE. C , GO TO 10
IF (N . NE. NN) GO TO 28
IF (N. NE. 1) C(N,NN) $=D(N, N N)-C O N D(N-1, M) / T(N, M+1) * * 3 / \operatorname{RES}(N-1, M)$
IF (N - NE. NRNGS) $I(N, N N)=D(N, N N)-C O N D(N, M) / T(N, M+1) \neq * 3 / R E S(N, M)$
GO TO 10
$28 \operatorname{IF}(N . E Q . N N+1) D(N, N N)=D(N, N N)+\operatorname{COND}(N-1, M) / T(N N, M+1) * * 3 / R E S(N-1, M)$
$\operatorname{IF}(N \cdot E Q . N N-1) \quad D(N, N N)=D(N, N N)+C O N D(N, M) / T(N N, M+1) \neq 3 / R E S(N, M)$
10 CONTINUE
$Q(N)=-Q(N)-S U M Q-A(2 * N R N G S+1, N) * T S(M+1) * * 4 * E S(N+1) * A R E S(M+1)$
8 CONTINUE
9 IF (NRINGS.NE. 1) GO TO 14
DI(1,1$)=1.0 / 0(1,1)$
GO TO 19
14 CALL FACTORI D, DUNMY, NRNGS, 20,
CALL INVERTI D, DUMMY, NRNGS, 20 , DI)
19 DO $22 N=1$, NRNGS
SUM $=0.0$
DO 23 NN $=1$, NRNGS
SUM $=$ SUM + DI(N,NN)*Q(NN)
23 CUNTINUE
IF (NCALC.EQ. C .OR. ICOND.NE. O) GO TO 24
IF ($\triangle B S(S U M)$.GT. 1.OEO4) TMAX $=1.0$
IF (TMAX .NE. 0.0) RETURN
IF (SUM .LT. O.O) SUM $=0.8 * T(N, M+1)$
$T(N, M+1)=S U M$
GO TO 22
24 IF (SUM.GT. 1.OE15 .OR. SUM .LT. O.O) TMAX = 1.0
IF (TMAX .NE. 0.0) RETURN
$T(N, M+1)=(S U M / A R E A(N, M+1)) * * 0.25$
22 CONTINUE
GO TC 1
calculate shield temperature for infinitely conducting shield.
2 DO $25 N=1$,NRNGS
SUMZ $=0.0$
SUMQ $=0.0$
DO 26 N $N=1$, NRNGS
$K=N N+N R N G S$
SUM2 $=$ SUM2 $+A(N N, N) * E M S(N N, M+1,2) * A R E A(N N, M+1)$
SUMQ $=$ SUMQ $+A(K, N) * T(N N, M+2) * * 4 * E M S(N N, M+2,1) * A R E A(N N, M+2)$

```
SHCLC - EFN SOURCE STATEMENT - IFN(S) -
```

26 CUNT INUE
$Q(N)=S U M Q+A(2 * N R N G S+1, N) * T S(M+1) * * 4 * E S(M+1) * A R E S(M+1)$
SUMQX $=\operatorname{SUMQX}+\operatorname{SUM} 2-(E M S(N, M+1,1)+E M S(N, M+1,2)) * A R E A(N, M+1)$
SUMQT $=$ SUMQT -Q(N)
25 CONTINJE
$T(1, M+1)=(S U M Q T / S U M Q X) * * 0.25$
DO $27 \mathrm{~N}=1$,NRNGS
$T(N, M+1)=T(1, M+1)$
27 CONTINUE
1 CONTINUE
RETURN
END

SUbrlut ine coef (mm , B)

ANE ITSELF
DO 1 NN=1,NRNGS
$Y(N, N N)=0.0$
IF (N .EQ. NN) GU TO 2
$A(N, N N)=0.0$
GO TC 1
$2 A(N, \wedge N)=-1.0$
1 CONTINUE USED TU FIND the heat transfer.

2

DIMENSION B(41,41)
CONMON C(l000)
EQUIVALENCE
$M=N M$
ND IM=41
NS = NRNCS +1
NF $=2$ \#NRNGS
DU $4 \mathrm{~N}=1$, NRNGS and the other surface
this subroutine cetermines the value of the coefficients (b)

DIMENSION ES(10), ABSR(10), REFS(10), TS(10), AKES(10)
COMMON/NEW/ FSSHTT(6), FSSTTH(6), FSNHTT(20,6), FSNTTH(20,6), FNSHTT(20,6), FNSTTH $(20,6), \operatorname{R}(20,7), \operatorname{AREAT}(7)$,
FNHTSR $(20,6), \operatorname{FNTTSR}(20,6), \operatorname{FSR} \operatorname{TNH}(20,6)$, FSRTNT(20,6) , FSRSR(6)
CCMMCN / BULL/ EMS(20,9,2), $A B(20,9,2)$, $\operatorname{REF}(20,9,2)$
DIMENSION A(41,41), Y(41,41), AI(41,41), DUMMY(41)

1(C(1), ABSR) , (C(11), ARES), (C(21), D),
2(C(31), ES), (C(41), IVCOND), (C(42), ICONDR),
$3(C(43)$, ITMAX) , (C(51), NAH), (C(71), NAT),
4(C(91), NA) , (C(291),NEH), (C(311),NET),
$5(C(331), N E)$, (C(531), NCONO) , (C(541), NCASE) ,
6(C(542), NELIPS) , (C(543),NRADS) , (C(544),NRNGS)
7(C(545),NSHLDS) , (C(546),NCALCR) , (C(547),NVUFH)
8(C(548),NVUFT) , (C(549), PHI) , (C(550),PI),
9(C(551),RS), (C(561),RSH) , (C(562).RST),
A(C(563),RH), (C(564),RT) , (C(565), SOLAR) ,
B(C(566),SIGMA) , (C(567),TOL) , (C(568),WI),
C(C(571),SOLABS) , (C(591),STHICK), (C(601),CVABS),
D(C(641),CVCOND), (C(681), CVEMS) , (C(721),TH) .
E(C(741),TS) , (C(751),TT), (C(771),REFS)
calculate the valuts of the matrices a and y between une surface
calculate the values of the matrices a and y between one surface

```
        DO }3\mathrm{ NN=NS,NF
        Nl=NN-NRNGS
        A(N,NN)=REF(Nl,M+1,1)*FNNHTT(N,N1,M)
        Y(N,NN)= -AB(NL,M+1,1)*FNNHTT(N,NL,M)
    3 CONTINUE
    4 \text { CONTINUE}
        DO }5N=NS,N
    CALCULATE THE valuES OF THE mATRICES A AND Y betwEEN THE OTHER
    SURFACE AND THE CRIGINAL SURFACE
    Nl=N-NRNGS
    DO 6 NN=1,NRNGS
    A(N,NN)=REF(NN,M,2)*FNNTTH(N1,NN,M)
    Y(N,NN)= -AB(NN,N,2)*FNNTTH(N1,NN,M)
    6 \text { CONTINUE}
    CALCULATE THE VAlUES OF THE MATRICES A AND Y BETWEEN THE OTHER
    SURFACE AND ITSELF
    DO }7\mathrm{ NN=NS,NF
    Y(N,NN)=0.0
    IF(N.EQ. NN ) GO TO 8
    A(N,AN)=0.0
    GO TO 7
    8 A(N,NN)=-1.0
    7 CONTINUE
    5 CONTINUE
    Calculate the values of the matrices a and y between the surffaces
    AND THE SURROUNDINGS.
    DO 9 N=1,NF
    IF (N .GT. NRNGS) GO TO 10
    A(NF+1,N)= REF(N,M,2)*FSRTNH(N,M)
    Y(NF+1,N)=-AB(N,M,2)*FSRTNH(N,M)
    GO TO 9
    10N1=N-NRNGS
        A(NF+1,N)=REF(NL,M+1,l)*FSRTNT(N1,M)
        Y(NF+1,N)= -AB(N1,M+1,1)*FSRTNT(N1,M)
    9 CONTINUE
    DO 11 N=1,NF
    IF (N .GT. NRNGS ) GO TO 12
    A(N,NF+1)=REFS(M)*FNHTSR(N,M)
    Y(N,NF+1)= - ABSR(M)*FNHTSR(N,M)
    GO TO 11
    12NL=N-NRNGS
        A(N,NF+1)=REFS(M)*FNTTSR(N1,M)
        Y(N,NF+1)= - ABSR(M)*FNTTSR(NI,M)
    11 CONTINUE
        A(NF+1,NF+1)=REFS(M)*FSRSR(M) - 1.0
        Y(NF+1,NF+1)=-ABSR(M)*FSRSR(M)
        NFZ=NF+1
    DETERMINE THE INVERSE OF THE MATRIX A
```

```
            COEF - EFN SOURCE STATEMENT - IFN(S) -
    CALL FACTOR (A , OUMMY, NF+1, NDIM)
    CALL INVERT (A , DUMMY, NF+1 , NDIM, AI )
```

```
Compute the values uf the absorption Coefficients ( \(B\) ) ( \(B=A I * Y\) )
DO \(13 \mathrm{I}=1, \mathrm{NF} Z\)
DO \(13 \mathrm{~J}=1, \mathrm{NFZ}\)
\(\operatorname{SUN}=0.0\)
DO \(14 \mathrm{~K}=1\), NFZ
SUM = SUM + AI (I,K)*Y(K,J)
14 CONTINUE
B(I,J)=SUM
13 CONTINJE
RETURN
END
```

SUBRCUTINE QDOT SURRCUNDING SURFACES

DIMENSION ES(10), ABSR(10), REFS(10), TS(10), ARES(10) COMMON / EAS / AT , AH , QOA , T(20,10), F13, F14, F23, F24 CCMMCN/NEW/ FSSHTT(6), FSSTTH(6), FSNHTT(20,6) , FSNTTH(20,6) ,
1 FNNHTT(20,20,6), FNNTTH $(20,20,6)$, AREA $(20,7)$,
2 FNSHTT(20,6) , FNSTTH(20,6), R(20,7) , AREATI7),
3
4 FSRTNT(20,6), FSRSR(6)
COMMON / BULL/ EMS $(20,9,2)$, $A B(20,9,2), \operatorname{REF}(20,9,2)$
COMMON /T3/ QOA2 , QSUR , QOAS
COMMCN / T2 / B(41,41), Q(41)
COMMON C(1000)
EQUIVALENCE
1(C(1), $A B S R$) , (C(11), ARES), (C(21), D), 2(C(31), ES), (C(41), IVCOND), (C(42), ICONDR) , 3(C(43), ITMAX) , (C(51), NAH), (C(71), NAT) , 4(C(91), NA) , (C(291),NEH) , (C(311),NET) , 5(C(331),NE) , (C(531),NCOND) , (C(541),NCASE) ,
6(C(542),NELIPS) , (C(543),NRADS), (C(544),NRNGS) ,
$7(C(545), N S H L D S),(C(546), N C A L C R),(C(547), N V U F H)$,
7(C(545),NSHLDS) , (C(546),NSTEP) , (C(547),NVUFH) ,
8(C(548),NVUFT), (C(549),PHI) , (C(550),PI) ,
9(C(551),RS) , (C(561),RSH) (C(562),RST).
A(C(563),RH) , (C(564),RT) , (C(565), SOLAR),
B(C(566).SIGMA) , (C(567),TOL) , (C(568),WI),
$C(C(571), S O L A B S),(C(591), S T H I C K),(C(601), C V A B S)$,
D(C(641), CVCOND) , (C(681),CVEMS) , (C(721),TH) ,
E(C(741),TS), (C(751),TT), (C(771),REFS)
$M=$ NSHLDS +1
IF (M .NE. 1 .OR. SOLAR .EQ. 0.0) GO TO 9
calculate the heat fravsfer due to solar flux.
QSUM=0.0
DO $8 \mathrm{~N}=1$, NRNGS
IF (N .EQ. 1) $G(N)=P H I * P I * R(1,2) * * 2 * S O L A B S$
IF (N. NE. 1) G(N)=PHI*PI*(R(N,2)**2-R(N-1,2)**2)*SOLABS
$Q(N)=Q(N) / S I G M A-\operatorname{EMS}(N, 2,1) * A R E A(N, 2) * T(N, 2) * * 4$
QSUM=QSUM + Q(N)
8 CONTINUE
QUA $=$ QSUM/AREAT(2)*SIGMA
QOAS $=0.0$
QSUR $=0.0$
QOAZ $=0.0$
RETURN
9 CALL COEF (M , E)

```
        QDOT - EFN SOURCE STATEMENT - IFN(S) -
    NS=NRNGS + 1
    NF=2*NRNGS
    NZ=NF+1
```

```
    CALCulate the heat transfer to THE TANK. Q(J+NRNGS) IS thE HEAT
    TRANSFERED TO THE J TH ELEMENT ON THE TANK
    QSUM=0.0
    DO 13 N=NS,NF
    SBE=0.0
    OO 14 NN=1,NF
    IF( NN.GT. NRNGS ) GO TO 15
    SBE=SBE + B(NN,N)*T(NN,M)**4*EMS(NN,M,2)*AREA(NN,M)
    GO TO 14
15N1=NN-NRNGS
    SBE = SBE + B(NN,N)*T(NL,M+1)**4*EMS(N1,M+1,1)*AREA(N1,M+1)
14 CONTINUE
    SBE=SBE + B(NF+1,N)*TS(M)**4*ES(M)*ARES(M)
    NL=N-NRNGS
    Q(N) = SBE - T(N1,M+1)**4*EMS(N1,M+1,1)*AREA(N1,M+1)
    QSUM=QSUM+Q(N)
13 CONTINUE
    QOA=GSUM/AREAT(M+I)*SIGMA
    calculate the heat transfer ro the surface adjacent to the tank.
    QSUM=0.0
    NF=2*NRNGS
    DO 10 N=1,NRNGS
    SBE=0.0
    DO 1L VN=1,NF
    IF ( NN.GT. NRNGS ) GO TO 12
    SBE=SBE + B(NN,N)*T(NN,M)**4*EMS(NN,M,2)*AREA(NN,M)
    GO TC 11
12NI=NN-NRNGS
    SBE=SBE + B(NN,V)*T(N1,M+1)**4*EMS(N1,M+1,1)*ARFA(N1,M+1)
11 CONTINUE
    SBE=SBE + B(NF+1,N)*TS(M)**4*ES(M)*ARES(M)
    Q(N)=SBE -T(N,M)**4*EMS(N,M,2)*ARFA(N,M)
    QSUM=QSUM + Q(N)
1O CONTINUE
CALCULATE THE HEAT TRANSFER TO THE SURROUNDINGS.
ADVC=AREAT(M)
IF { M .EQ. 1.AND. SOLAR .NE. 0.0, ADVD=AREAT(M+1)
QOAZ=QSUM/ADVD*SIGMA
QSUR=0.0
DC 17 N=1,NF
IF (N.GT. NRNGS ) GO TO 16
QSUR = QSUR + B(N,NF+1)*T(N,M)**4*EMS(N,M,2)*AREA(N;M)
GO TO 17
16NL=N-NRNGS
    QSUR=QSUR+B(N,NF+1)*T(N1,M+1)**4*EMS(N1,M+1,1)*AREA(N1,M+1)
17 CONTINUE
    QSUR = QSUR + ( E(NF+1,NF+1)-1.0 )*TS(M)**4*ES(M)*ARES(M)
```

Quur - brin suukce statemeint - ifinis) -
GSUK $=Q$ SUK~SL UIA
WUAS = WSUK / AKLS(11)
kETUKN
ENU

```
$IBFTC FACTOR DECK
```



```
FACTOR - EFN SOURCE STATEMENT - IFN(S) -
```

 WRITE(6,141)
 141 FORMAT(/ \(53 H\) SUBROUTINE FACTUR HAS ENCOUNTERED A SINGULAR MATRIX.)
 CALL EXIT
 150 ASSIGN 10 TO ONE
 GO TO 40
 160 DO \(170 \quad L=2, N\)
 \(170 \mathrm{~A}(1, L)=A(1, L) / M A X\)
 ASSIGN 70 TO TWO
 GO TO 95
 180 IF(I.EQ.N)RETURN
 GO TO 65
 ENC
 ERROR MESSAGE NUMBER 1
ERROR MESSAGE NUMBER 2
ERROR MESSAGE NUMBER 3
\$IBFTC INVERT DECK

```
    SUBRGUTINE INVERT(A,ROW,ORDER,DIM,D)
C DETERMINE THE INVERSE OF A FROM THE TWO TRIANGULAR FACTORS OF A
C
    INTEGER ROW,ONE,CIM,ORDER
    DIMENSION A(DIM,CIM),ROW(DIM),D(DIM,DIM)
    DOUBLE PRECISION T,ZERO
    DATA ZERO/O.ODO/
    N=CRDER
    ASSIGN 60 TO ONE
    I=N
    5 IPl=[ +1
    IM I= I-1
    DO 30 M=1,I
    L=IP1-M
    T=ZERO
    GO TC DNE, (10,60)
    10 LP1=L+1
    DO 20 K=LP1,N
    20T=T+A(K,L)*D(I,K)
    30 D(I,L)=(FLOAT(L/I)-T)/A(L,L)
    IF(I.EQ.1)GO TO 70
    DO 50 M=1,IMI
    L=I-M
    T=ZERD
    LPL=L+1
        DC 40 K=LP1,N
    40 T=T+A(L,K)*D(K,I)
    50 D(L,I)=-T
        I= IMI
        GO TC 5
    60 ASSIGN 1O TO ONE
    GO TC 30
    70 I=N-1
    80 K=ROW(I)
        DO 90 L=1,N
        S=C(L,I)
        D(L,I)=D(L,K)
    90D(L,K)=S
        IF(I.EQ.I)RETURN
        I=I-l
    GO TO 80
    END
ERROR MESSAGE NUMBER 1
```

LISTING OF INPUT
scut Pul

M	TEMP	R (N)	R(N)/RS
1	772.855	0.224	0.224
	772.292	0.316	0.316
	771.660	0.387	0.387
	771.002	0.447	0.447
	770.325	0.500	0.500
	769.630	0.548	0.548
	768.918	0.592	0.592
	768.188	0.632	0.632
	767.440	0.671	0.671
	766.672	0.707	0.707
	765.882	0.742	0.742
	765.069	0.775	0.775
	764.231	0.006	0.806
	763.363	0.837	0.837
	762.462	0.866	0.866
	761.525	0.894	0.894
	760.548	0.922	0.922
	759.530	0.749	0.949
	758.486	0.975	0.975
	757.460	1.000	1.00 C
M	TEMP	$\mathrm{R}(\mathrm{N})$	R(N)/RS
2	443.449	0.224	0.224
	440.095	0.316	0.316
	436.257	0.387	0.387
	432.164	0.447	0.447
	427.846	0.500	0.500
	423.298	0.548	0.548
	418.505	0.592	0.592
	413.443	0.632	0.632
	408.081	0.671	0.671
	402.378	0.707	0.707
	396.284	0.142	0.742
	189.737	9. 9775	0.775
	382.650	0.306	0.806
	374.913	0.837	0.837
	366.367	0.866	0.866
	356.787	1.894	0.894
	345.835	0.922	0.922
	333.038	0.949	0.949
	317.852	0.975	0.975
	300.015	1.000	1,000

M	IEMP	R(N)	R(N)/RS
1	772.855	0.224	0.224
	772.292	0.316	0.316
	771.660	0.387	0.387
	771.002	0.447	0.447
	770.325	0.500	0.500
	769.630	0.548	0.548
	768.918	0.592	0.592
	768.188	0.632	0.632
	767.440	0.671	0.671
	766.672	0.707	0.707
	765.882	0.742	0.742
	765.069	0.775	0.775
	764.231	0.806	0.806
	763.363	0.837	0.837
	762.462	0.866	0.866
	761.525	0.894	0.894
	760.548	0.922	0.922
	759.530	0.949	0.949
	758.486	0.975	0.975
	757.460	1.000	1.000
M	TEMP	R(N)	R(N)/RS
2	443.449	0.224	0.224
	440.095	0.316	0.316
	436.257	0.387	0.387
	432.164	0.447	0.447
	427.846	0.500	0.500
	423.298	0.548	0.548
	418.505	0.592	0.592
	413.443	0.632	0.632
	408.081	0.671	0.671
	402.378	0.707	0.707
	396.284	0.742	0.742
	389.737	0.775	0.775
	382.650	0.806	0.806
	374.913	0.837	0.837
	366.367	0.866	0.866
	356.787	0.894	0.894
	345.835	0.922	0.922
	333.038	0.949	0.949
	317.852	0.975	0.975
	300.015	1.000	1.000

REFERENCES

1. Smolak, George R.; Knoll, Richard H.; and Wallner, Lewis E.: Analysis of Thermal-Protection Systems for Space-Vehicle Cryogenic-Propellant Tanks. NASA TR R-130, 1962.
2. Jones, L. R.; and Barry, D. G.: Lightweight Inflatable Shadow Shields for Cryogenic Space Vehicles. J. Spacecraft Rockets, vol. 3, no. 5, May 1966, pp. 722728.
3. Nichols, Lester D.: Effect of Shield Position and Absorptivity on Temperature Distribution of a Body Shielded from Solar Radiation in Space. NASA TN D-578, 1961.
4. Nothwang, George J.; Arvesen, John C.; and Hamaker, Frank M.: Analysis of Solar-Radiation Shields for Temperature Control of Space Vehicles Subjected to Large Changes in Solar Energy. NASA TN D-1209, 1962.
5. Arvesen, John C.; and Hamaker, Frank M. : Effectiveness of Radiation Shields for Thermal Control of Vehicles on the Sunlit Side of the Moon. NASA TN D-2130, 1964.
6. Sparrow, E. M.; and Gregg, J. L.: Radiant Interchange Between Circular Disks Having Arbitrarily Different Temperatures. J. Heat Transfer, vol. 83, no. 4, Nov. 1961, pp. 494-502.
7. Knoll, R. H.; Bartoo, E. R.; and Boyle, R. J.: Shadow Shield Experimental Studies. Presented at the Conference on Long-Term Cryo-Propellant Storage in Space, George C. Marshall Space Flight Center, Oct. 12-13, 1966.
8. Bonneville, Jacques M.: Design and Optimization of Space Thermal Protection for Cryogens-Analytic Techniques and Results. Rep. ADL-65958-02-01, Arthur D. Little, Inc., (NASA CR-54190), Dec. 18, 1964.
9. Perlmutter, M.; and Siegel, R.: Effect of Specularly Reflecting Gray Surface on Thermal Radiation Through a Tube and From Its Heated Wall. J. Heat Transfer, vol. 85, no. 1, Feb. 1963, pp. 55-62.
10. Gebhart, B.: Unified Treatment for Thermal Radiation Transfer Processes-Gray, Diffuse Radiators and Absorbers. Paper No. 57-A -34, ASME, 1957.
11. Sparrow, E. M.; Eckert, E. R. G.; and Jonsson, V. K.: An Enclosure Theory for Radiative Exchange Between Specularly and Diffusely Reflecting Surfaces. J. Heat Transfer, vol. 84, no. 4, Nov. 1962, pp. 294-300.
12. Anon.: IBM 7090/7094 IBSYS Operating System Version 13, Fortran IV Language. Form C28 6390-2, IBM Data Processing Division.
13. Dummer, R. S.; and Breckenridge, Jr., W. T.: Radiation Configuration Factors Program. Rep. ERR AN-224, General Dynamics/Astronautics, Feb. 1963.
14. Faddeeva, V. N. (Curtis D. Benster, trans.): Computational Methods in Linear Algebra. Dover Publications, 1959.

Figure 1. - Schematic drawing of two possible shadow shield configurations.

Figure 3. - Comparison of analytic and experimental heat-transfer rates.

Figure 4. - Comparison of analytic and experimental temperature distributions for three blackened Mylar shields. Spacing ratio, $\mathrm{L}_{\top} / \mathrm{R}=0.628$.

Figure 5. - Comparison of analytic and experimental temperature distributions for targeted shield system. Spacing ratio, $L_{\uparrow} / R=0.47$; two shields.

Figure 6. - Comparison of analytic and experimental strut temperature distributions.

Figure 7. - Ratio of specular heat-transfer rate to diffuse heat-transfer rate as function of spacing ratio and emissivity. No shields; uniform radiosity.

Figure 8. - Ratio of specular heat-transfer rate to diffuse heat-transfer rate as function of spacing ratio and emissivity. One shield; uniform radiosity.

Figure 9. - Ratio of nonuniform radiosity heat-transfer rate to uniform radiosity heat-transfer rate as function of spacing ratio and emissivity. No shields.

Figure 10. - Ratio of nonuniform radiosity heat-transfer rate to uniform radiosity heat-transfer rate as function of spacing ratio and emissivity. One shield.

Figure 1l. - Heat-transfer rate as function of emissivity for different surface assumptions. No shields.

Figure 12. - Heat-transfer rate as function of emissivity for different surface assumptions. One shield.

Figure 13. - Increase in heat-transfer rate due to specular surfaces as function of spacing ratio and source temperature ratio. Emissivity, 0.02 ; no shields.

Figure 14. - Heat-transfer rate as function of emissivity and spacing ratio for two oblate spheroids. No shields.

Figure 15. - Heat-transfer rate as function of emissivity and spacing ratio for two oblate spheroids. One shield.

(a) Spacing ratio, 0.03.
(b) Spacing ratio, 0.1.

Figure 16. - Effect of number of shields on heat-transfer rate to a plane source at zero temperature.

Figure 16. - Concluded.

Figure 17. - Effect of number of shields on heat-transfer rate to plane source at nonzero temperature.

Figure 18. - Effect of emissivity and source temperature ratio on heat-transfer rate. Spacing ratio, 0.3, two shields.

Figure 19. - Radial temperature distributions for one, two, and three shields. Spacing ratio, 0.1; emissivity, 0.02.

(a) Uniform temperature shields.
(b) Nonconducting shields.

Figure 20. - Effect of targeting on heat-transfer rate for uniform temperature and nonconducting shields.

Figure 2l. - Effect of targeting on radial temperature distributions for nonconducting shields. Spacing ratio, 0.3 , emissivity of nontargeted surfaces, 0.03 .

Figure 22. - Effect of shield conductivity on heat-transfer rate for one, two, and three shields. Spacing ratio, 0.1; emissivity, 0.l.

Figure 23. - Effect of variation in shield position on heat-transfer rate. Spacing ratio, 0.2.

Figure 24. - Heat-transfer rate due to solar flux as function of spacing ratio and emissivity. Two shields.

Figure 25. - Heat-transfer rate to source in absence of solar flux as function of spacing ratio and emissivity. Two shields.

Figure 26. - Total heat-transfer rate through strut as function of internal and external emissivity.

Figure 27. - Effect of external emissivity and length to diameter ratio on strut temperature distribution. End temperature ratio, 10 ; internal emissivity, 0.6 .

Figure 28. - Effect of radiation to conduction parameter on conducted heat-transfer rate for constant end temperature ratios. Internal emissivity, 0 .

Figure 29. - Temperature distributions for constant values of radiation to conduction parameter and end temperature ratios. Internal emissivity, 0.

Figure 30. - Schematic drawing of heat balance for element of shield. Surface being considered, \mathfrak{j}; conducted heat transfer rate, q_{c}; radiant heat transfer rate, q_{r}.

Figure 3l. - Schematic drawing of element numbering used in heat balances. Number of elements on each surface of each system, $\mathrm{n}, 5$; total number of elements in system, $\mathrm{k}, 2 \mathrm{n}+1$.

Figure 32. - Apparent spacing between surfaces due to specular reflectivity. Surfaces 1 and 3 are specularly reflecting and 2 and 4 are windows.

Figure 33. - Schematic drawing of reflected energy for specuiar surfaces.

Figure 34. - Sources of heat transfer to element of strut. Inside diameter of strut, d_{i}; outside diameter of strut, d_{0}; conducted heat-transfer rate toward element, $q_{i n, c}$ radiant heat-transfer rate toward surface, $a_{i n, r}$ heat-transfer rate from surroundings, $\mathrm{q}_{\mathrm{in}, \mathrm{sr}}$; conducted heat-transfer rate away from element, $q_{0 u t}$; radiant heat-transfer rate away from surface, $q_{\text {out, }} ;$ temperature at ends of strut, T_{1} and T_{2}; temperature of end disks, T_{n+1} and T_{n+2}; distance along strut, x.

Figure 35. - Ratio of heat-transfer rate to that for single annulus as function of reciprocal of number of annuli One shield

Figure 36. - Flow chart of subroutine INPUT.

Figure 37. - Flow chart of routine SHIELD.

Figure 38. - Flow chart of subroutine TBVUF.

Figure 39. - Flow chart of subroutine VUFACI.

Figure 40. - Flow chart of subroutine SUBVF.

Figure 41. - Flow chart of subroutine SHCLC.

Figure 42. - Flow chart of subroutine COEF.

Figure 43. - Flow chart of subroutine QDOT.

FIRST CLASS MAIL

```
070 001 58 51 305 68% 604 00903
AIR FORCE WEAPGNS LARGRATORY/AFWL/
KIRTLANO AIR FORCE BASE, NEW MEXICU 87II!
```


POSTMASTER: If Undeliverable '(Section 158

Abstract

"The aeronautical and space activities of the United States shall be conducted so as to conitribute . . .to the expansion. of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

- National Aeronautics and Space Act of 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION
 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

