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In this study the direct-simulation Monte Carlo (DSMC) method is utilized to investigate thermal characteristics

of micro- or nanocavity flow. The rarefied cavity flow shows unconventional behaviors which cannot be predicted

by the Fourier law, the constitutive relation for the continuum heat transfer. Our analysis in this study confirms

some recent observations and shows that the gaseous flow near the top-left corner of the cavity is in a strong

nonequilibrium state even within the early slip regime, Kn = 0.005. As we obtained slip velocity and temperature

jump on the driven lid of the cavity, we reported meaningful discrepancies between the direct and macroscopic

sampling of rarefied flow properties in the DSMC method due to existence of nonequilibrium effects in the

corners of cavity. The existence of unconventional nonequilibrium heat transfer mechanisms in the middle of slip

regime, Kn = 0.05, results in the appearance of cold-to-hot heat transfer in the microcavity. In the current study we

demonstrate that existence of such unconventional heat transfer is strongly dependent on the Reynolds number and

it vanishes in the large values of the lid velocity. As we compared DSMC solution with the results of regularized

13 moments (R13) equations, we showed that the thermal characteristic of the microcavity obtained by the R13

method coincides with the DSMC prediction. Our investigation also includes the analysis of molecular entropy

in the microcavity to explain the heat transfer mechanism with the aid of the second law of thermodynamics. To

this aim, we obtained the two-dimensional velocity distribution functions to report the molecular-based entropy

distribution, and show that the cold-to-hot heat transfer in the cavity is well in accordance with the second

law of thermodynamics and takes place in the direction of increasing entropy. At the end we introduce the

entropy density for the rarefied flow and show that it can accurately illustrate departure from the equilibrium

state.
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I. INTRODUCTION

Micro- or nanoelectromechanical systems (MEMS/NEMS)

are widely utilized in many practical applications including

mechanical engineering and biomedical devices. The study of

gaseous flow in micro- and nanoscales has been an interesting

and appealing topic of research in recent years. It is well known

that the traditional Navier-Stokes (NS) equations fail to predict

the flow features as characteristic length enters microrange

and beyond. Knudsen number, which is defined as the ratio

of the mean free path in the gas to the characteristic length

of the flow domain, Kn = λ/L, is a measure to determine

degrees of gas rarefaction. A well-established classification of

the gaseous flow regimes exists in microfluidics according

to the Knudsen number range [1,2]. According to this

classification, the state of a gaseous flow can be defined in

four different regimes. Gaseous flow at Kn < 0.001 is termed

as continuum regime where the basic NS equations with

no-slip/jump boundary conditions are valid in this regime.

Gaseous flow with Knudsen number ranges of 0.001 < Kn <

0.1 is called slip flow. Special treatments such as applying

velocity slip and temperature jump boundary conditions on

*Corresponding author.

the walls should be considered in the NS equations to capture

slightly rarefied flow features in the slip regime. Transition

regime is termed for gas flows within 0.1 < Kn < 10. In this

regime, the NS equations lose validity and the well-known

first-order shear stress and heat flux approximations fail to

predict flow behavior. Flow is considered as free molecular

if Kn > 10. However, this classification is based mostly on

data obtained from experiments and numerical studies of

isothermal gaseous flows in long microchannels having simple

one-dimensional (1D) geometries. For gaseous flows in 2D

and 3D bounded domains with more complex geometries,

the range of slip flow regime as defined above is question-

able and should be reconsidered for each studied problem

separately.

Different velocity slip models of varying complexity have

been suggested to capture nonequilibrium effects in the slip

regime [3–5]. Extending the lattice Boltzmann equations to

the rarefaction regimes has been another appealing approach

in modeling nonequilibrium phenomena [6–11]. In addition,

high-order moment methods such as R13 and R26 are

alternative powerful approaches in capturing nonequilibrium

phenomena [12,13]. For example, it is reported that the

predicted results of R13 and R26 methods for rarefied Couette

and Poiseuille flows are accurate in early and midtransition

regimes, respectively [13]. Despite the considerable efforts to
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derive higher-order equations, discrete molecular modeling of

direct-simulation Monte Carlo (DSMC) remains a basic tool

to model flow field in all degrees of rarefaction [14].

The driven cavity flow is a model problem with simple 2D

geometry that can be related to many industrial applications

[15]. Previously, the vortex gas flow in a lid driven cavity

has been studied for different regimes by several authors

[16–20]. Recently, the attention of some researchers has been

turned to nonclassical thermal behaviors of lid-driven cavity

flow. Struchtrup et al. [21] used the regularized 13 moments

equation to show that R13 equations are capable of capturing

nonequilibrium thermal phenomena in the early transition

regime inside a microcavity. John et al. [22] utilized the DSMC

technique in the micro-lid-driven cavity in the transition and

free molecular regimes to show the cold-to-hot heat transfer.

They attributed their observations to the nonequilibrium effects

inside the flow field. John et al. [23] also studied the effect of

incomplete surface accommodation on the heat transfer in the

lid driven cavity. They reported that decreasing the thermal

surface accommodation changes the isothermal wall cavity

into the adiabatic wall cavity, and reduces the strength of

sudden expansion in the driven cavity.

In the present study, we have focused on the slip regime

to meaningfully compare and physically interpret the discrep-

ancies between the DSMC and NS thermal solutions. At first

it is aimed at describing the physical reasons for appearance

of unconventional cold-to-hot heat flux, and then we use the

DSMC solution to find the responsible terms for such flux

of energy. In accordance with our physical reasoning, it is

demonstrated that the lid velocity significantly affects the heat

flux direction. In other words, in a fixed Knudsen number the

cod-to-hot heat transfer changes into the conventional Fourier

heat transfer as a consequence of gradual increase in the driven

lid velocity. We also present the solution of regularized 13

moments (R13) equations in the cavity flow to investigate the

capability of more accurate continuum approaches in capturing

nonequilibrium heat transfer phenomenon. Afterwards, the

process of cold-to-hot heat transfer is studied based on the

second law of thermodynamics point of view. Molecular-based

entropy distribution is obtained and it is illustrated that such

direction for flux of energy is indeed in the direction of increas-

ing entropy. Furthermore, the entropy density is introduced as

a tool to specify degrees of rarefaction and depicted to show the

local departure from equilibrium state. According to the best

knowledge of the authors, investigating the details of thermal

properties of cavity flow in the slip regime and providing

the physical reasoning for the unconventional behaviors in

the cavity geometry, as well as providing the entropy-based

explanations for the anomalous heat flux direction, are not

reported elsewhere and will be the focus of the current study.

II. DSMC APPROACH

The DSMC method used in this paper follows the scheme

proposed by Bird [1]. DSMC is a particle method based on the

kinetic theory for simulation of the dilute gases. The method is

carried out by modeling the gas flow using many independent

simulating particles. Each simulating particle is representative

of a large number of real gas molecules in the flow field. The

time step �t in the DSMC method is chosen as small as the

motion of particles and their collisions could be decoupled

at each time step. In order to implement DSMC, flow field

must be divided into computational cells. The size of each

cell should be small enough to result in small changes in

thermodynamic properties across each cell. The cells provide

geometric boundaries and volumes required for sampling the

macroscopic properties. They are also used as a unit where only

molecules located within the same cell at a given time are

allowed for collision. The cells are then divided into subcells

in each direction to facilitate the selection of collision pairs.

In the current study, the previous code of Roohi and

co-workers [24–30] is extended to simulate rarefied flow in

micro- or nanocavity. The variable hard sphere (VHS) collision

model is used to consider accurate variation of viscosity with

temperature. Collision pairs are chosen based on the no time

counter (NTC) method, in which the computational time is

proportional to the number of the simulating particles [1].

Monatomic argon, m = 6.63 × 10−26 Kg and d = 4.17 ×
10−10 m, is considered as the gaseous medium. To satisfy the

cell size limitation, the cell dimensions �x, �y are considered

as 0.1λ. Thirty-two particles are initially set in each cell to

minimize the scattering noise. By considering the full thermal

accommodation coefficient, σT = 1, all walls behave as diffuse

reflectors. In order to minimize the statistical scattering, molec-

ular properties are sampled over a large period of time after the

flow reaches the steady-state condition. These time-averaged

data are then used to obtain the thermodynamic parameters,

such as temperature, density, and pressure. In addition, a

filtering post processor is performed to minimize the scattering

in the predicted results, particularly in temperature. In this

filtering, the sampled macroscopic properties (F ) are averaged

over a pattern of five neighboring cells, as given below:

F̃(N) =
FN +

∑I=Nneighbor

I=1 FI

Nneighbor + 1
. (1)

III. NS EQUATIONS WITH SLIP-JUMP

BOUNDARY CONDITIONS

The compressible NS equations can be derived from

the Chapman-Enskog expansion of the Boltzmann equation.

These equations, namely conservation of mass, momentum,

and total energy, are expressed as [31]

∂ρ

∂t
+ ∇ · [ρV] = 0, (2)

∂(ρV)

∂t
+ ∇ · [V(ρV)] + ∇p + ∇ · τ = 0, (3)

∂(ρE)

∂t
+ ∇ · [V(ρE)] + ∇ · [Vp] + ∇ · (τ · V) + ∇ · q = 0,

(4)

where ρ is the mass density, p is the pressure, E = e + |V2|/2

is the total energy, e is the internal energy per unit mass, q is

the diffusive flux of heat that obtains by Fourier law [31], and

τ is the shear stress tensor that obtains by Stokes law [31].

In order to consider rarefaction effects, the first-order velocity

slip and temperature jump boundary conditions on the walls
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FIG. 1. Geometrical configuration of the micro- or nanocavity.

are applied as follows [32]:

Vg − Vw = −
2 − σu

σu

λ∇n(S · V) −
2 − σu

σu

λ

μ
S · (n · �mc)

−
3

4

μ

ρ

S · ∇T

T
, (5)

Tg − Tw = −
2 − σT

σT

2γ

(γ + 1) Pr
λ∇nT , (6)

where n represents the unit normal vector to the surface and

the subscripts g and w stand for gas adjacent to wall and wall,

respectively. σ u, σ T are the tangential momentum and thermal

energy accommodation coefficients and λ is the mean free

path. Both accommodation coefficients have been considered

as unity to simulate diffuse reflector walls. Second and third

terms on the right-hand side of Eq. (5) consider the effects of

boundary curvature and thermal creeps on the velocity slip,

respectively. For a more detailed description of Eqs. (5) and

(6), please see Ref. [32].

OpenFOAM [33] is used to solve the NS equations in

the micro- or nanolid driven cavity. The OpenFOAM, Open

Field Operation and Manipulation, is a programmable CFD

toolkit licensed under the GNU General Public License. The

OpenFOAM is a finite-volume package designed to solve

systems of differential equations in arbitrary 3D geometries.

We use “rhoCentralFoam” solver to simulate subsonic micro-

or nanocavity flow. RhoCentralFoam is an explicit density-

based solver for simulating the viscous compressible flow of

perfect gases which benefits from a Godunov-like central-

upwind scheme. The space discretization has a second-order

accuracy based on the reconstruction of the primitive variables

of pressure, velocity, and temperature, and the time integration

employs the first-order (forward) Euler scheme [34].

IV. RESULTS AND DISCUSSION

A. Grid and time step independency test and code validation

The microdriven cavity considered in this study is shown

in Fig. 1. Four corners of the cavity are denoted by A, B, C,

and D. The top driven lid moves in the positive x direction at

Uwall = 100 m/s. Cavity flow in early, middle, and border of

the slip regime, i.e., Kn = 0.005, 0.05, and 0.1 is considered

in this study. The temperature of the walls are set equal to the

reference temperature, Tw = T0 = 300 K. Figure 2(a) shows

the vertical velocity and density profiles along the horizontal

and vertical center lines of the cavity obtained by the DSMC

method. In order to perform the grid independency test, three

grids composed of 100 × 100, 200 × 200, and 400 × 400 cells

are considered. In this figure density is nondimensionalized

with respect to a reference density obtained on the driven lid.

It is seen that the results are numerically equivalent for

200 × 200 and 400 × 400 grids; therefore, the grid containing

200 × 200 cells is selected for the reported results of the

DSMC method in this study. For the continuum approach three

grids composed of 70 × 70, 140 × 140, and 210 × 210 cells are

chosen to investigate the mesh dependency study. Figure 2(b)

shows that the results are almost similar for 140 × 140 and

210 × 210 cells; therefore, the grid containing 140 × 140 cells

are selected for the reported results of the continuum approach.

In order to investigate the independency of continuum

results from the considered time step, we consider three

Courant number, Cr = 0.3, Cr = 0.4, and Cr = 0.5 and

compare their results in Fig. 2(c). This figure demonstrates that

the vertical component of velocity vectors along the horizontal

center lines are equivalent and the solution is independent from

(a) (b) (c)

FIG. 2. Study of (a) grid independency for DSMC, (b) grid independency for the NS, and (c) time step independency for the NS solution.
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FIG. 3. Comparison of nondimensional pressure along four walls

of the cavity, Kn = 0.1.

the chosen time step. We set Cr = 0.5 for the rest of our NS

simulations. In order to validate the NS and the DSMC results

in this study, predicted pressure at Re = 1.5 and Kn = 0.1 is

compared with the reported data of Mizzi et al. [18]. Figure 3

shows the nondimensional pressure, p/p0, where p0 is the

initial pressure of the rarefied flow field, for argon flow along

four walls of the cavity. Small discrepancy between the two

NS results is attributed to the different slip-jump boundary

conditions in the NS equations. It is seen that predicted values

by our DSMC solver are in good agreement with the reported

data of Mizzi et al. [18].

B. Comparison of the DSMC and NS solutions

1. Slip velocity and temperature jump

In this section, it is our aim to investigate the accuracy of the

NS solution in the prediction of velocity slip and temperature

jump on the lid of cavity. Slip velocity and temperature jump in

the DSMC method can be obtained based on either extracting

the macroscopic flow properties in the adjacent cell to the wall

or direct microscopic sampling of the corresponding particle

properties which strike the wall surface. For the latter, which is

more consistent with the definition of slip-jump phenomena,

slip velocity and temperature jump are deduced from Ref. [35]

as follows:

uslip =

∑
(

m
|vp |up

)

∑
(

m
|vp |

) , (7)

Tgas − Twall =
1

3R

∑
(

1
|vp |‖Up‖2

)

−
∑

(

1
|vp |

)

u2
slip

∑
(

1
|vp |

) , (8)

where “p” indicates particle and the summation is taken

over all particles striking the regarding surface. In Eq. (7),

|vp| is the absolute value of normal velocity, ‖Up‖ is the

velocity magnitude, i.e., ‖Up‖ =
√

u2
p + v2

p + w2
p , and R is

the gas constant. Equation (7) expresses that velocity slip is

literally the changes in particle velocity due to the collision

with surface. Equation (8) shows that temperature jump is

proportional to the changes in a fraction of total kinetic

energy. Comparison of the slip velocity along the driven lid

predicted by the NS and the two DSMC approaches (direct or

microscopic sampling and macroscopic sampling) are shown

in Fig. 4. As expected, increasing the Knudsen number results

in increasing the slip velocity along the top wall. Figure 4

reveals that the discrepancy between NS and DSMC results

enlarges near the top corners of the cavity, where nonequilib-

rium effects are dominant. Figure 4 also shows a discrepancy

between macroscopic and microscopic approaches in the

DSMC solution. Moreover, it is seen that the macroscopic

approach, which accounts for the properties of all particles

lying in the adjacent cell to the surface, predicts a more

continuumlike distribution of slip velocity along the driven

lid of cavity. It should be noted that microscopic distribution is

asymmetric. In other words, due to the direction of lid motion,

slip values are slightly larger at the right corner of the cavity.

Additionally, in contrast to the continuumlike slip velocity,

microscopic slip is finite and does not diverge at the corner.

Figure 5 shows the predicted temperature jump of the

rarefied flow along the driven lid of cavity. At Kn = 0.005

the employed temperature jump boundary condition shows

effectiveness in predicting temperature trend far from the top

corners. Although in the middle of slip regime the departure

(a) (b) (c)

FIG. 4. Comparison of slip velocity along the driven lid from the DSMC and NS solutions at (a) Kn = 0.005, (b) Kn = 0.05, and

(c) Kn = 0.1.
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FIG. 5. Comparison of rarefied flow temperature jump along the driven lid of the cavity from the DSMC and NS solutions at (a) Kn = 0.005,

(b) Kn = 0.05, and (c) Kn = 0.1.

from equilibrium state is quite small, the temperature jump

boundary condition shows total incapability in predicting

temperature trend in Fig. 5(b). According to the continuum

equations, the increase in the temperature is mostly due

to the viscous dissipations. As Knudsen number increases

the velocity gradients in the flow field decreases, which

subsequently reduces flow temperature. Figure 5 also shows

that, similar to the NS solution, the macroscopic approach

in the DSMC method predicts a decrease in the temperature

near the top left corner. Comparison of the two DSMC

solutions indicates that particles near the top-left corner are

in nonequilibrium state. Limited intermolecular collision due

to rapid motion of the driven lid in this region brings about

significant departure from equilibrium state. This leads to a

clear conclusion that the first-order macroscopic slip-jump

boundary conditions lose accuracy close to the corner even

at a very low Kn number of 0.005. This conclusion is

expected because most of the slip-jump boundary conditions

are derived assuming the continuity of velocity distribution

function parallel to the boundary surface. Therefore, extension

of these equations to more complex geometries with strong

curvature or existence of singular points may be erroneous.

2. Heat flux behavior

Figure 6 shows the conductive heat flux lines overlaid on the

temperature contours predicted by NS and DSMC methods. In

an isothermal wall cavity, the viscous dissipation is the main

mechanism to change the gas temperature inside the flow field.

Clearly, the viscous dissipation always acts as a heat source

and is dominant where the shear stresses are strong. The shear

stress values are large in proximity of the driven lid near the

top right corner of cavity. Besides the viscous dissipation,

significant pressure variation prevailing near the top corners

of cavity affect the temperature field; see Fig. 3. In addition

to all, the nonequilibrium effects which are in turn dominant

at the top corners of cavity influence the thermal field. The

interplay between these phenomena determines the thermal

characteristic of the rarefied flow inside the cavity.

In the early slip regime, as shown in Figs. 6(a) and 6(d),

predicted distribution of temperature obtained by the NS

equations are in approximate agreement with the molecular

approach. Both methods predict almost similar range of

temperature variation in the flow field. In addition, the shapes

of temperature contours are quite similar. The predicted

direction of conductive heat flux by the DSMC is from hot

to cold regions over the entire domain except for a small

area near the top right corner. Temperature distribution in

the middle slip regime obtained by the NS equations is

shown in Fig. 6(b). Maximum viscous dissipation occurs

where the largest velocity gradients exist. As a result, the

proximity of the top right corner, where the maximum

shear stress occurs, is predicted as the hottest region by the

NS equations. Figure 6(e) shows the temperature contour

from the DSMC results at Kn = 0.05. It is seen that the

maximum temperature for the DSMC solution is greater than

the predicted value by the continuum approach. Moreover,

reduction in flow temperature near the left wall shows that the

sudden expansion of rarefied flow in this region dominates

the existing heat transfer mechanisms. Surprisingly, in the

middle of slip regime, the conductive heat flux lines are from

the colder to the hotter regions in the upper half of the cavity.

The assumed constitutive law of Fourier heat conduction,

q = −k∇T , incorporated in the NS equations, cannot predict

such direction for transfer of heat. Conductive heat flux vector

in the DSMC method is obtained by the following molecular

dynamic relations:

qx = 1
2
[ρ(‖Up||2up − ‖Up‖2u0) − 2pxxu0 − 2pxyv0], (9)

qy = 1
2
[ρ(‖Up‖2vp − ‖Up‖2v0) − 2pxyu0 − 2pyyv0], (10)

where pi,j = ρc′
p,ic

′
p,j is the pressure tensor, cp,i is the ith

component of the microscopic velocity vector, and c′
p =

cp − c0. Figure 6(e) reveals that, in a simple two-dimensional

cavity flow, even in the middle slip regime, the direction of

heat flux cannot be predicted by the NS equations. Figure 6(c)

shows conductive heat flux lines obtained by the NS solution

at Kn = 0.1. Temperature distribution is very similar to

the previous case; however, the maximum temperature is

decreased. Smaller shear stress at Kn = 0.1 in comparison

with Kn = 0.05 decreases viscous dissipation, the dominant

heat generation mechanism in the NS equation, which in turn

reduces the maximum temperature in the flow field. Figure 6(f)

shows the conductive heat flux lines in the cavity from the

DSMC solution at Kn = 0.1. The conductive heat flux lines
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FIG. 6. (Color online) Conductive heat flux lines overlaid on the temperature contour; top row: NS; bottom row: DSMC; (a) and

(d) Kn = 0.005, (b) and (e) Kn = 0.05, and (c) and (f) Kn = 0.1.

and temperature contours are quite similar to the previous test

case; however, the minimum temperature is decreased by one

degree that demonstrates stronger nonequilibrium effects in

the top left corner of the cavity.

The sharp corners in the cavity geometry generate a bend

in the velocity profile near the top corners, and consequently

the second derivative of velocity increases in this region. The

interplay between temperature gradient and second derivative

of velocity determines the direction of conductive heat flux

in the cavity. Small variation in the flow temperature, due to

relatively small lid velocity, results in domination of heat flux

related to the second derivative of velocity, cold-to-hot, over

the conventional Fourier heat flux. On the other hand, as the

Knudsen number decreases the intermolecular collision takes

place more frequently and, consequently, the diffusive heat

flux (corresponding to the temperature gradient) overcomes

the heat flux due to the second derivatives of velocity. In

accordance with the current observations, a weakly nonlinear

form of the Boltzmann equation attributes higher-order heat

flux terms to the second derivative of velocity; see Ref. [36].

We also investigate the conductive heat flux lines in

two other conditions to describe the criteria in which the

330
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FIG. 7. (Color online) Heat flux lines overlaid on the temperature contour for (a) Uwall = 200 m/s and (b) Uwall = 400 m/s.
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FIG. 8. (Color online) Components of heat flux vectors overlaid on the temperature contour for the DSMC solution at Kn = 0.05, (a) first

term, (b) second term, and (c) third term.

cold-to-hot heat flux remains dominant. Figures 7(a) and 7(b)

show the conductive heat flux lines obtained by the DSMC

method at Kn = 0.05 when the lid velocity is assumed to

be at U = 200 m/s and U = 400 m/s, respectively. It is

seen that increasing the lid velocity results in reappearance

of a region with hot-to-cold energy transfer near the top right

corner. Comparison of Fig. 6(e) with Fig. 7 shows that as the

lid velocity increases, the flow field encounters wider range

of temperature variations. Due to domination of temperature

gradient over the second derivative of velocity, the region

with the conventional hot-to-cold heat flux extends. Therefore,

cold-to-hot heat flux phenomenon in the microcavity is limited

to low Reynolds–low Mach number conditions.

In order to provide a numerical explanation for the

anomalous direction of energy via the DSMC method, the

components of conductive heat flux vector reported in Eqs. (9)

and (10) at Kn = 0.05 are shown in Fig. 8. The obtained heat

flux lines by the first terms on the right-hand side of Eqs. (9)

and (10) are shown in Fig. 8(a). It is seen that the corresponding

heat flux lines to the first terms are quite similar to the velocity

streamlines in the cavity. Heat flux lines, obtained by the

second terms on the right-hand side of Eqs. (9) and (10), are

shown in Fig. 8(b). These terms are basically in the opposite

direction of the horizontal velocity component in the entire

domain. Comparison of Figs. 8(a) and 8(b) shows that the

interplay between the first and the second terms of the heat

flux equations determines the heat flux direction particularly

in the upper half of the cavity. The effects of the third terms

on the heat flux lines are shown in Fig. 8(c), which is also

in the opposite direction of the vertical velocity component

throughout the temperature field.

Clearly, the simple constitutive law of Fourier heat conduc-

tion in the NS equations fails to predict thermal characteristics

of the flow even in the middle slip regime. As a result, we

intended to find the capability of the extended continuum-

based methods in capturing nonequilibrium heat transfer

phenomena. We present the solution of the full R13 equations

for the driven cavity flow at Kn = 0.05. Description of the R13

governing equations is given in Ref. [37].

Figure 9(a) shows the conductive heat flux lines overlaid

on the temperature distribution predicted by the R13 method.

It is seen that the full R13 equations can capture cold-to-hot
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FIG. 9. (Color online) (a) Heat flux lines obtained using full R13 equations; (b) comparison of vertical heat flux and temperature profile

along Y/L = 0.8 and X/L = 0.8 line from the DSMC and R13 solutions.
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FIG. 10. (Color online) Velocity distribution functions at the top left corner of the cavity for Kn = 0.05, (a) fx,y , and (b) fz.

heat flux phenomenon in the middle of slip regime. This figure

also illustrates that the predicted temperature distribution by

the regularized 13 moment method are similar to the DSMC

solution in Fig. 6. Figure 9(b) shows the comparison of

nondimensional vertical heat flux and temperature profile

along Y/L = 0.8 and X/L = 0.8, respectively. In this figure,

heat flux is nondimensionalized by its maximum positive value

along the horizontal line. It is well observed that the predicted

temperature by the R13 methods is in good agreement with

the DSMC solution. Although the heat flux profile exhibits

a small error in the magnitude, the heat flux direction is

correctly predicted. It is expected that employing higher

moment methods, i.e., R26, provide closer agreement with

DSMC solution [13].

3. Entropy distribution

In this section we focus on the entropy distribution in the

flow field. Entropy can provide useful information about the

direction of existing processes in the cavity such as conductive

heat flux. It is well known that each process develops in

the direction of increasing entropy [38]. According to the

molecular gas dynamics theory, the transport equation for the

entropy is expressed by [39]

∂

∂t
S(r,t) = −∇ · [Js(r,t) + SV] + σent(r,t), (11)

where S represents the local entropy, Js is the flux of entropy

by the molecular velocities, and σent shows the production of

entropy in the flow field. The molecular velocity distribution

functions are utilized to obtain entropy in the molecular gas

dynamics. In fact, the local departure from the equilibrium

Maxwellian distribution function determines the variation of

entropy in the flow field. According to the molecular gas

dynamics theory, entropy is expressed as [40]

S = kBoltz

∑

bins

Fbin(c) {1 − ln [Fbin (c)]}�c, (12)

where kBoltz is the Boltzmann constant, �c is the width of

velocity bin, and Fbin(c) is the local three-dimensional velocity

distribution function. Since obtaining the three-dimensional

velocity distribution function is numerically expensive, and

sometimes impossible, we divided the F (c) function to a

planar, fx,y , and a one-dimensional normal to the flow field

distribution function, fz. It is worth noting that such an

assumption is permitted as long as the particles encounter

Maxwellian distribution function normal to the microcavity:

F (c) = fx,y · fz. (13)

Figure 10 shows the velocity distribution function in the top left

corner of the cavity. As was expected, the fz is very similar

to the equilibrium Maxwellian distribution, which confirms

FIG. 11. (Color online) Distribution of entropy in the cavity predicted by the DSMC at (a) Kn = 0.005, (b) Kn = 0.05, and (c) Kn = 0.1.
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FIG. 12. (Color online) Distribution of entropy in the cavity predicted by the continuum approach at (a) Kn = 0.005, (b) Kn = 0.05, and

(c) Kn = 0.1.

the validity of our assumption. By considering the specified

velocity distribution functions, the molecular entropy is then

expressed as

S = kBoltz

∑

bin

[1−fx,y · fzln(fx,y · fz)�cx,y�cz]. (14)

Figure 11 shows the entropy distribution obtained by the

DSMC method. This figure demonstrates that, in all degrees of

rarefaction, entropy increases in the direction of flow. More-

over, as the nonequilibrium effect enlarges, the rarefied flow

encounters wider range of entropy variation. In other words,

more pronounced departure from the equilibrium velocity

distribution function brings about a higher level of entropy in

the rarefied flow. This figure also illustrates that the shape of

entropy distribution in the cavity is similar to the temperature

contour; see Fig. 6. Temperature in the molecular dynamic

theory is the variance of molecular velocity. The variance of

this value shows the disorder in the molecular velocity and the

departure from the equilibrium distribution which coincides

with the very definition of entropy. In accordance with the

second law of thermodynamics, Fig. 11 also shows that the

conductive heat flux lines are in the direction of increasing

entropy in the flow field. Although cold-to-hot heat transfer in

the cavity seems unconventional, it is totally in the direction

of increasing entropy in the flow field.

In the current study we also used the continuum approach

to investigate the entropy distribution in the microcavity. The

transport equation of the entropy in the continuum approach

is expressed as [39]

∂

∂t
S(r,t) = −∇ ·

[

q

T
+ SV

]

+ σent(r,t), (15)

where q represents the Fourier heat flux in the flow field. Com-

paring Eq. (11) with Eq. (15) reveals that, in the continuum

approach,
q
T

replaces the flux of entropy by means of molecular

velocities in the DSMC method. The entropy defined for

the reversible processes in the macroscopic approach can

be obtained based on the local pressure and density, and is

expressed as [41]

S = ρs = ρ ln

(

P

ργ

)

, (16)

where γ is the gas specific heat ratio. Figure 12 shows the

entropy distribution obtained by continuum approach in the

Knudsen regimes. In this figure the entropy is nondimension-

alized with respect to the initial entropy, S0, in the flow field.

This figure illustrates that, similar to the molecular method, the

continuum approach predicts that maximum entropy is located

near the top right corner of the cavity. In addition, increasing

the Knudsen number leads to a wider range of entropy variation

in the flow field.

FIG. 13. (Color online) Entropy flux overlaid on the temperature distribution obtained by the DSMC method at (a) Kn = 0.005,

(b) Kn = 0.05, and (c) Kn = 0.1.

056305-9



ALIREZA MOHAMMADZADEH et al. PHYSICAL REVIEW E 85, 056305 (2012)

FIG. 14. (Color online) Distribution of the entropy density obtained by the DSMC method at (a) Kn = 0.005, (b) Kn = 0.05, and

(c) Kn = 0.1.

At this stage we aim to obtain the entropy flux, J, in

the DSMC method. Entropy flux is the transfer of entropy

via motion of molecules. Entropy flux in the molecular gas

dynamics theory is obtained by [40]

J = kBoltz

∑

bin

cbinFbin(c){1 − ln[Fbin(c)]}�c. (17)

Considering the velocity distribution functions in Eq. (13),

the entropy flux is then expressed as

Jx = kBoltz

∑

bin

[cxfx,y�cx,y − cxfx,y · ln(fx,y)�cx,y

− cxfx,y · fz · ln(fz)�cx,y · �cz], (18)

Jy = kBoltz

∑

bin

[cyfx,y�cx,y − cyfx,y · ln(fx,y)�cx,y

− cyfx,y · fz · ln(fz)�cx,y · �cz]. (19)

Figure 13 shows the entropy flux in the microcavity

obtained by the DSMC method. The entropy flux can provide

some information about the direction of heat in the cavity

as well. Comparison of Eqs. (15) and (11) shows that, in

the equilibrium thermodynamics, the entropy flux is in the

direction of conductive heat transfer. In the nonequilibrium

thermodynamics theory, the entropy flux can be obtained

by [40]

J =
q

T
+ T −1

∑

xkψk, (20)

where xk is the generalized potentials conjugate to the

nonconserved variables denoted by ψk . This equation reveals

that only in the absence of nonequilibrium effects is the entropy

flux vector in the direction of the heat flux vector. Existence

of nonequilibrium effects, particularly near the top walls of

microcavity, leads to the appearance of a different direction

for entropy flux and heat flux vectors.

We now aim to introduce the entropy density, s = S
ρ·kBoltz

,

as a tool to determine the nonequilibrium effects. Figure 14

shows the distribution of entropy density in the flow field

obtained from the DSMC method. It is seen that in the

entire slip regime the maximum entropy density occurs near

the top-left corner of the cavity. Although the rarefied flow

encounters the maximum entropy in the top right corner, the

entropy density is maximized near the top left corner. Recalling

Fig. 5(a), this is the same location in which the rarefied flow

experience the maximum nonequilibrium (rarefaction) state.

This figure demonstrates that the entropy density, and not the

entropy, should be utilized to determine the departure from

equilibrium state. As the entropy value is divided by the flow

density, it can meaningfully show the local departure from

the equilibrium for each molecule in the flow field. In other

words, the entropy density, which shows the departure from

the equilibrium distribution for each molecule, can determine

the local degrees of rarefaction in the flow field.

V. CONCLUSION

In the current study, we utilized DSMC technique in a

micro- or nanolid-driven cavity in the slip regime to show that

the well accepted extension of the NS equations accompanied

with the slip-jump boundary conditions is not promising, and

conventional border of slip regime, Kn < 0.1, is not accurate

for the cavity flow. We observed and confirmed the unconven-

tional cold-to-hot heat transfer, and attributed such phenomena

to the sharp bends in the velocity profiles which take place

near the top corners of the cavity. The small variation of the

flow temperature in the cavity, due to the relatively small lid

velocity, results in dominance of cold-to-hot heat transfer, i.e.,

heat transfer corresponding to the second derivative of velocity

field, over the conventional Fourier heat flux. Our simulation

indicates that increasing the wall velocity increases the tem-

perature variations in the flow field, and subsequently results in

reappearance of hot-to-cold heat transfer. We obtained velocity

distribution functions and investigated the molecular-based

entropy in the rarefied cavity flow. Our findings demonstrate

that such unconventional direction for the heat flux is in

accordance with the second law of thermodynamics, and takes

place from lower to higher entropy in the microcavity. In

addition, we obtain the entropy flux vector and show that

existence of nonequilibrium effects in the microcavity leads

to appearance of different direction for entropy flux and heat

flux vectors. We introduced the entropy density as a tool to

determine nonequilibrium effects, and detected the top-left

corner of the cavity as the location of highest nonequilibrium

state, where the maximum entropy density occurs.
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