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We address the out-of-equilibrium dynamics arising from quantum-quench (QQ) protocols (in-
stantaneous changes of the Hamiltonian parameters) in many-body systems within their quantum
critical regime and in contact with (homogeneously coupled) thermal baths. We consider two classes
of QQ protocols. In one of them the thermal bath is used to prepare the initial finite-temperature
Gibbs state; then, after quenching, the thermal bath is removed and the dynamics of the system is
unitary. We also address a more complex QQ protocol where the thermal bath is not removed after
quenching, thus the quantum evolution is also driven by the interaction with the bath, which may
be described by appropriate master equations for the density matrix of the system, where a further
relevant time scale, or inverse decay rate, characterizes the system-bath coupling. Under these QQ
protocols, the critical system develops out-of-equilibrium scaling behaviors, which extend those for
isolated critical systems, by introducing further scaling variables proportional to the temperature
of the thermal bath and the decay rate of the system-bath interactions. These out-of-equilibrium
scaling behaviors are checked by analyzing QQ protocols within fermionic Kitaev wires, or equiv-
alently quantum Ising chains, supplemented with a particular modelization of thermal bath that
guarantees the asymptotic thermalization within the Lindblad master equation for the dynamics of
open systems.

I. INTRODUCTION

Thanks to the recent experimental progress in the re-
alization and control of the dynamics of quantum many-
body systems, see e.g. Refs. [1, 2], the out-of-equilibrium
quantum dynamics of many-body systems has become
an important theoretical issue. In particular, out-of-
equilibrium phenomena have been addressed within the
critical regimes of many-body systems at continuous
quantum transitions (CQTs) [3–5], where collective be-
haviors give rise to zero-temperature singularities in the
equilibrium low-energy properties of the system, and the
universal critical behaviors are determined by a limited
number of relevant features, such as the global symme-
try, the symmetry-breaking pattern, dimensionality, etc..
Within critical regimes and in the appropriate thermody-
namic or finite-size scaling (FSS) limits, one can achieve
a complete characterization of the complex dynamics of
many-body systems by controlling a limited number of
renormalization-group (RG) perturbations. The univer-
sal scaling behaviors at CQTs extend beyond the equilib-
rium conditions [5]. Indeed dynamic protocols entailing
out-of-equilibrium evolutions develop scaling behaviors
as well, in the appropriate limits, related to the univer-
sality class of the CQT. For example, out-of-equilibrium
scaling behaviors emerge when analyzing the quantum
evolutions arising from a quantum quench (QQ), see e.g.
Refs. [5–11], or from slow changes of the Hamiltonian pa-
rameters across the transition point, such as the proto-
cols associated with the so-called quantum Kibble-Zurek
problem, see e.g. Refs. [5, 12–23].

These out-of-equilibrium issues have been mostly ad-
dressed within isolated many-body systems, unitarily

driven by their Hamiltonian and the Schrödinger equa-
tion. In this paper we extend such studies to inves-
tigate how the interaction with a thermal bath, cou-
pled homogeneously to the system, affects the out-of-
equilibrium dynamics of many-body systems within the
critical regime of a zero-temperature quantum transition,
such as that arising from a QQ or a slow crossing of the
quantum critical regime.

The role of the temperature within the equilibrium
critical behavior at a CQT is generally associated with
one of the relevant RG perturbations at the stable fixed
point of the RG flow controlling the quantum critical-
ity [3–5, 24]. Therefore, the quantum scaling behav-
ior can be only observed in the zero-temperature limit.
More precisely, the quantum scaling limit requires that
the zero-temperature critical point is approached keeping
the ratio T/∆ fixed, where ∆ is the gap at the quantum
critical point, which is generally power-law suppressed.
For example, in the FSS limit the gap is suppressed as
∆ ∼ L−z at the critical point, where L is the size of the
system and z > 0 is the universal dynamic exponent as-
sociated with universality class of the CQT. Within the
equilibrium critical regime the temperature enters the
asymptotic FSS laws through a further dependence of the
scaling functions on the scaling variable Ξ ≡ TLz ∼ T/∆.

The role of the temperature becomes less definite when
we consider out-of-equilibrium behaviors, because the
temperature of the system is an equilibrium concept.
However, one may consider the effects of thermal baths
in contact with the system during its out-of-equilibrium
dynamics. The main feature of a thermal bath is that
it eventually drives the system toward thermalization at
its temperature T , in the large-time limit of the evolu-
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tion of the system in contact with the thermal bath. The
thermalization process must somehow introduce a further
time scale τ in the problem, characterizing the approach
of the system to the thermal state when it is put in con-
tact with the thermal bath. Such time scale is expected
to play an inportant role in the out-of-equilibrium dy-
namics of the system in contact with the thermal bath.
In this paper we investigate these issues within the sim-
plest dynamic protocols giving rise to out-of-equilibrium
behaviors, i.e. those entailing instantaneous QQs of the
Hamiltonian parameters starting from equilibrium ther-
mal conditions.

A quench protocol is generally performed by suddenly
varying a parameter within a family of Hamiltonians,
such as

Ĥ(w) = Ĥc + wĤp, (1)

where Ĥc and Ĥp are independent of the parameter w,

and [Ĥc, Ĥp] 6= 0. In a standard QQ protocol for closed
systems, one usually starts from the ground state |Φ0, wi〉
of the Hamiltonian Ĥ(wi) associated with an initial value
wi of the parameter w, with corresponding density ma-
trix ρi = |Φ0, wi〉〈Φ0, wi|. At a given time, t = 0 say, the
Hamiltonian parameter is suddenly changed from wi to
w 6= wi, and the subsequent quantum evolution is sup-
posed to be unitarily driven by the Hamiltonian Ĥ(w),

that is |Ψ(t)〉 = e−iĤ(w)t|Φ0, wi〉 (hereafter we set ~ = 1).
Several interesting issues have been investigated within
QQ dynamic protocols. They include the long-time re-
laxation and the consequent spreading of quantum cor-
relations and entanglement, the statistics of the work,
localization effects due to the mutual interplay of inter-
actions and disorder, dynamical phase transitions, the
dynamic scaling close to quantum transitions, effects of
dissipation or of measurements due to interactions with
an environment (see, e.g., Refs. [5, 9, 25–78]).

To focus on the out-of-equilibrium dynamics close to
a quantum transition, we assume that the Hamiltonian
Ĥc in Eq. (1) is critical, thus w = wc = 0 represents a
quantum critical point. We recall that the critical behav-
ior around the CQT point wc = 0 is characterized by a
diverging length scale ξ ∼ |w|−ν of the quantum critical
modes, and the power-law suppression ∆ ∼ ξ−z of the
gap. The out-of-equilibrium dynamics at CQTs devel-
ops scaling behaviors controlled by the universality class
of the quantum transition, for example when the Hamil-
tonian parameters are slowly varied across the critical
regime [5, 21, 23], and in the case of soft QQ protocols
when both the initial and final values of the quenching
parameters are such to maintain the system within the
critical regime [5, 9, 59]. In particular, soft QQs require
that the energy scale of the QQ [i.e. the difference of the

energy 〈Ψ(t)|Ĥ(w)|Ψ(t)〉 of the evolving state |Ψ(t)〉 for

t > 0 and the ground state of Ĥ(w)] is sufficiently small,
i.e. comparable with the energy gap ∆ ∼ L−z of the
spectrum at the transition point in finite-size systems.

To study the effects of a thermal bath in the out-of-

equilibrium behavior arising from a QQ within the criti-
cal regime, we consider two protocols where the thermal
baths are involved in different ways:

(i) Within the first protocol the thermal bath is used to
prepare the system in a finite-temperature Gibbs state,
described by the thermal density matrix (hereafter we set
the Boltzmann constant kB = 1)

ρt(wi, T ) =
∑
n

e−En(wi)/T |Φn, wi〉〈Φn, wi|, (2)

where |Φn, wi〉 are the eigenstates of Ĥ(wi). Then the
quantum evolution after the quench of the Hamiltonian
parameters at t = 0 is unitary and driven by the Hamilto-
nian Ĥ(w) only, i.e., the thermal bath is removed during
the quantum evolution for t > 0. Therefore, the evolu-
tion of the density matrix is driven by the equation

∂tρ(t) = −i[Ĥ(w), ρ(t)], ρ(t = 0) = ρt(wi, T ). (3)

(ii) In the second protocol the starting point is the
same, i.e. the Gibbs state (2), but the thermal bath
is not removed after quenching. Therefore, the out-of-
equilibrium quantum evolution for t > 0 is not unitary
anymore, but it is also driven by the interaction with
the thermal bath. Under some conditions, discussed in
Refs. [5, 79–84], the nonunitary evolution arising from
the thermal baths can be described by a Lindbald mas-
ter equation governing the time evolution of the density
matrix of the system, which can be written as

∂tρ = L[ρ] ≡ −i
[
Ĥ(w), ρ

]
+ γ DT [ρ], (4)

where L is a Liouvillian superoperator, and DT is a dis-
sipative driving whose strength is controlled by the ho-
mogeneous coupling γ, playing the role of the decay rate
(inverse time scale) associated with the interactions be-
tween the system and the bath. The operator DT is as-
sumed to be such that the Lindbald master equation (4)
drives the system toward an equilibrium Gibbs state at
temperature T in the large-time limit.

We argue that, for both types of protocols and
sufficiently small temperatures of the thermal baths,
the out-of-equilibrium time evolution within the criti-
cal regime develop a nontrivial out-of-equilibrium FSS
(OFSS) limit, with peculiar scaling behaviors, similar to
those arising for closed systems. The effects of the ther-
mal baths can be taken into account by appropriate ex-
tensions of the out-of-equilibrium zero-temperature scal-
ing laws describing soft quantum QQs within the critical
regime of isolated systems, already put forward by ear-
lier works [5, 9]. As a theoretical laboratory to check
our extended OFSS laws, we consider the quantum Ising
chain [4], or the equivalent fermionic Kitaev wire [85],
supplemented with a particular modelization of the ther-
mal bath that guarantees the asymptotic thermalization
within the Lindblad formulation of the dynamics of open
systems with quadratic Hamiltonians [84, 86], such as the
fermionic Kitaev wire.
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Our analyses are developed within FSS frameworks,
which generally simplify the study of the universal fea-
tures of critical behaviors, with respect to studies in
the thermodynamic limit. In the FSS limit the gen-
eral requirement of a large length scale ξ of the criti-
cal correlations is not subject to further conditions on
the system size L. It only requires that ξ ∼ L, while
critical behaviors in the thermodynamic limit requires
ξ � L. Therefore much larger systems are necessary to
probe analogous length scales ξ in the thermodynamic
limit. Equilibrium and out-of-equilibrium FSS behaviors
are often observed for systems of moderately large size,
see e.g. Refs. [5, 9, 57, 87, 88]. Thus FSS behaviors
should be more easily accessed by numerical computa-
tions and experiments where the quantum dynamics can
be monitored for a limited number of particles or spins,
such as experiments with quantum simulators in labora-
tories, e.g., by means of trapped ions [89, 90], ultracold
atoms [91, 92], or superconducting qubits [93, 94].

The paper is organized as follows. In Sec. II we present
the fermionic Kitaev wire, equivalent to the quantum
Ising chain, and the model of thermal bath that we use as
theoretical laboratory for our study; we also outline the
QQ protocols that we consider and define the observables
to monitor the quantum evolution after quenching. In
Sec. III we outline the out-of-equilibrium scaling scenar-
ios that are expected to be developed under the dynamic
QQ protocols considered, and support them by numerical
computations for the fermionic Kitaev wires in contact
with the thermalizing bath. Finally, in Sec. IV we sum-
marize, draw our conclusions, and add some remarks on
the extension of this study to the dynamic Kibble-Zurek
protocols slowly crossing quantum critical regimes. The
appendix reports some details on the numerical computa-
tions for the QQ protocols within fermionic Kitaev wires
in contact with a thermal bath.

II. KITAEV FERMIONIC WIRES AND
THERMAL BATHS

A. The fermionic Kitaev chain

We consider fermionic Kitaev wires of L sites with open
boundary conditions, whose quantum unitary dynamics
is driven by the Hamiltonian [85]

ĤK = −J
L−1∑
x=1

(
ĉ†xĉx+1 + ĉ†xĉ

†
x+1 + h.c.

)
− µ

L∑
x=1

n̂x, (5)

where ĉx is the fermionic annihilation operator associated
with the site x of the chain, n̂x ≡ ĉ†xĉx is the particle
density operator. In the following we assume J as the
energy scale, thus we set J = 1.

The Hamiltonian (5) can be mapped into a quantum
Ising chain, by means of the Jordan-Wigner transforma-
tion, see, e.g., Ref. 4. The corresponding spin model is
the quantum Ising chain with open boundary conditions,

i.e.

ĤIs = −
L−1∑
x=1

σ̂(1)
x σ̂

(1)
x+1 − g

L∑
x=1

σ̂(3)
x , (6)

σ̂
(k)
x being the Pauli matrices and g = −µ/2. In the fol-

lowing we prefer to stick with the Kitaev quantum wire,
because the thermal baths and observables that we con-
sider are best defined within the fermionic model. How-
ever, the general scaling scenarios that will emerge apply
to both models.

The Kitaev model undergoes a CQT at µ = µc = −2
(corresponding to g = gc = 1 in the quantum Ising
chain), between a disordered quantum phase for µ < µc
(corresponding to g > 1) and an ordered quantum phase
for |µ| < |µc| (corresponding to |g| < 1). Thus, we define

w = µ− µc = µ+ 2, (7)

so that one can easily see the correspondence between
the Kitaev Hamiltonian (5) and the generic one reported

in Eq. (1), i.e. Ĥc corresponds to the Hamiltonian (5)

for µ = µc, and Ĥp = −
∑L
x=1 n̂x. The continuous tran-

sition at w = wc belongs to the two-dimensional Ising
universality class [4, 5], characterized by the length-scale
critical exponent ν = 1, related to the RG dimension
yw = 1/ν = 1 of the Hamiltonian parameter w. This
implies that, approaching the critical point, the length
scale ξ of the critical quantum fluctuations diverges as
ξ ∼ |w|−ν . The dynamic exponent z = 1 associated with
the unitary quantum dynamics can be obtained from the
power law ∆ ∼ ξ−z of the vanishing gap with increasing
ξ. Moreover, the RG dimension of the fermionic opera-

tors ĉj and ĉ†j at the CQT is yc = 1/2, and that of the

particle density operator n̂x is yn = 1 [4, 5].

B. Modelization of the thermal bath

In our study we consider a modelization of interac-
tion with a thermal bath within the Lindblad master
equation (4), whose asymptotic large-time behavior leads
to a Gibbs density matrix at a given finite temperature
T . In particular, we consider the proposal developed in
Ref. [84] which applies to quantum models described by
quadratic Hamiltonians, such as that of the fermionic Ki-
taev wires. This provides a relatively simple modelization
of a thermal bath leading to thermalization in the large-
time limit of the corresponding Lindblad master equation
for the density matrix of the system.

The Kitaev Hamiltonian (5) with open boundary con-
ditions can be diagonalized in the Nambu field space by
a Bogoliubov transformation, see e.g. Refs. [84, 95, 96],
so that we can rewrite it as

ĤK =

L∑
k=1

ωk b̂
†
k b̂k, (8)
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where ωk are values of the spectrum of the Bogoliubov

eigenoperators b̂k (we are neglecting an irrelevant con-

stant term). Note that both ωk and b̂k depend on the
Hamiltonian parameter µ. The relation between the
fermionic operators ĉx and the Bogoliubov eigenopera-

tors b̂k can be generally written as [84, 95, 96]

ĉx =

L∑
k=1

Axk b̂k +Bxk b̂
†
k, (9)

where A and B are appropriate L×L matrices depending
on µ. Following Refs. [84, 86], we write the dissipator
DT [ρ] in the Lindblad master equation (4) in terms of
the Bogoliubov eigenoperators as

DT [ρ] =
∑
k

[1− f(ωk, T )]
(

2 b̂k ρ b̂
†
k − {b̂

†
k b̂k, ρ}

)
+
∑
k

f(ωk, T )
(

2 b̂†k ρ b̂k − {b̂k b̂
†
k, ρ}

)
, (10)

where

f(ωk, T ) =
(

1 + eωk/T
)−1

. (11)

When using this homogeneous dissipator term, the Lind-
blad master equation (4) ensures the asymptotic large-
time thermalization [84]. Therefore,

lim
t→∞

ρ(t) = ρt(w, T ), (12)

ρt(w, T ) =
∑
n

e−En(w)/T |Φn, w〉〈Φn, w|, (13)

where ρt(w, T ) is the density matrix representing the
thermal state, En(w) and |Φn, w〉 are the eigenvalues

and eigenstates of Ĥ(w). The asymptotic approach to
the thermal distribution is controlled by the decay-rate
parameter γ [84]. Indeed the Liouvillian gap ∆L that
controls the exponential approach to the asymptotic sta-
tionary state of the Lindblad equation is proportional to
the decay rate γ, i.e.

∆L ∼ γ. (14)

The above modelization of thermal baths provides a
useful theoretical laboratory to investigate issues related
to the out-of-equilibrium dynamics in the presence of
thermal baths. Its derivation has been thoroughly dis-
cussed in Ref. [84]. We also mention that it has been
employed in Refs. [86, 97]. Some details of the compu-
tations using the Lindblad master equation (4) with the
dissipator (10) are reported in the appendix.

C. Quantum-quench protocols

As already anticipated in Sec. I, we consider two pro-
tocols, differing for the absence or presence of the contact

with the thermal bath during the quantum evolution af-
ter quenching, giving respectively rise to unitary or dis-
sipative dynamics after quenching. We call them unitary
and dissipative QQ protocols, respectively.

• Unitary QQ protocol: In this simplest QQ proto-
col the role of the thermal bath is limited to that of
preparing the initial Gibbs state ρt(wi, T ) at t = 0,
reported in Eq. (2). This can be obtained by keep-
ing the thermal bath in contact with the system for
a sufficiently long time tth, i.e tth � γ−1. Then at
t = 0 the Hamiltonian parameter is instantaneously
quenched from wi < 0 to w ≥ 0 and the thermal
bath is removed, so that the subsequent time evo-
lution is that of a closed fermionic wire, i.e. it is
unitary and only driven by the Hamiltonian of the
system, cf. Eq. (3).

• Dissipative QQ protocol: The quantum evolution
starts from the same initial Gibbs state ρt(wi, T ),
but the thermal bath is maintained in contact with
the system after the QQ from wi < 0 to w ≥ 0, at
t = 0. Therefore, the quantum evolution for t > 0
is driven by the Lindblad master equation (4) with
the dissipator term (10). Note that this dynamic
protocol entails a further time scale τ = γ−1, char-
acterizing the asymptotic exponential approach to
the large-time stationary Gibbs state associated
with the Hamiltonian Ĥ(w) and temperature T .

D. Observables monitoring the time evolution

To characterize the dynamic properties of the quan-
tum evolution after the QQ at t = 0, we consider the
subtracted particle-density average

ns(t, L) =
1

L
Tr

[
ρ(t)

L∑
x=1

n̂x

]
− nc(L), (15)

where nc(L) is the ground-state energy density of the
Kitaev wire of size L at the critical point wc = 0 (in
the infinite-size limit nc = 1/2 − 1/π [95]). Note that
the particle density operator n̂x and the transverse spin

component σ̂
(3)
x of the quantum Ising chain (6) are triv-

ially related, indeed σ̂
(3)
x = 2n̂x. In the definition of ns,

the subtraction of nc(L) simplifies the scaling behavior
of ns(t, L) within the critical regime, cancelling the lead-
ing analytical behavior [5, 24]. To monitor the spatial
correlations, we also consider

P (x, y, t) = Tr[ρ(t) (ĉ†xĉ
†
y + ĉy ĉx)], (16)

C(x, y, t) = Tr[ρ(t) (ĉ†xĉy + ĉ†y ĉx)]. (17)

Some details on the computation of the above quan-
tities during the time evolution of the QQ protocols are
reported in the appendix.
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III. OUT-OF-EQUILIBRIUM SCALING

We now discuss the out-of-equilibrium behaviors aris-
ing from the QQ protocols outlined in Sec. II C. We
show that they develop OFSS behaviors where the ef-
fects of the thermal baths are taken into account by
appropriate extensions of the out-of-equilibrium zero-
temperature scaling laws describing soft QQs in closed
systems within their critical regime, already put foward
by earlier works [5, 9].
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FIG. 1: The quantum evolution of the subtracted particle
density ns(t), cf. Eq. (15), for the dissipative QQ protocol
entailing a dissipative dynamics after the QQ at t = 0 of the
Hamiltonian parameter w, describing the persistent interac-
tion with the thermal bath, cf. Eqs. (4) and (10). These
curves refer to a system of size L = 60, temperature T = 2 of
the thermal bath, quenching from wi = −0.01 to w = 0, and
various values of the decay rate γ (the case γ = 0 corresponds
to the evolution of the close system). We plot the difference
ns(t, L, T ) − ns,eq(L, T ) which is expected to vanish in the
large-time limit. In this figure and in the following ones, the
unity that we use are such that } = 1, kB = 1, and J = 1.

The OFSS behaviors that we put forward for QQ pro-
tocols considered are verified by numerical computations
for the fermionic Kitaev wire up to relatively large sizes.
See the appendix for details on such calculations.

As a preliminary example of out-of-equilibriun QQ be-
haviors that we want to address, in Fig. 1 we show some
results for the quantum evolution of the subtracted parti-
cle density (15) along the dissipative protocol outlined in
Sec. II C, after quenching a fermionic Kitaev wire of size
L = 60, from wi = −0.01 to w = 0, in the presence of a
thermal bath at a temperature T = 2, and various values
of the decay rate γ. The quantum evolution turns out to
have a significant dependence on the decay-rate param-
eter γ that characterized the interactions between the
system and the thermal bath. Indeed, the curves of the
substracted particle density appear to approach its equi-
librium value ns,eq(w = 0, T = 2) ≈ 0.0004601... (while
at t = 0 we have ns,eq(w = wi, T = 2) ≈ 0.126598...),
faster and faster with increasing γ, actually exponen-
tially as exp(−t/τ) with τ ∼ γ−1, conferming the role

of decay rate of the parameter γ within the Lindblad
master equation, cf. Eq. (14). Analogous results are
obtained for other observables, such as fermionic corre-
lation functions defined in Sec. II D. In the following we
put forward an out-of-equilibrium scaling theory for these
out-of-equilibrium phenomena within the quantum criti-
cal regime.

A. Zero-temperature scaling in quantum quenches

We now provide a brief summary of the out-of-
equilibrium scaling theory for close systems, describing
QQ protocols within the critical regime [5, 9]. The ini-
tial state is the ground state associated with an initial
value wi < 0, and, after the instantaneous quench at
t = 0 from wi to w, the quantum evolution is driven by
the Schrödinger equation.

Out-of-equilibrium scaling laws can be obtained by ex-
tending those valid at equilibrium, allowing for a time de-
pendence essentially controlled by the time scaling vari-
able Θ ∼ t∆, which is obtained by assuming that the
relevant time scale of the critical modes is proportional
to the inverse energy difference ∆ of the lowest states. We
refer to Ref. [5] for a through presentation of the scaling
arguments leading to the asymptotic OFSS behaviors.

Let us consider the out-of-equilibrium evolution (af-
ter quenching) of generic observables, such as the ex-

pectation value O at time t of a local operator Ô(x)

and its fixed-time correlations GO = 〈Ô(x)Ô(y)〉. The
general working hypothesis underlying out-of-equilibrium
FSS frameworks is that the expectation value of Ô(x)
and its correlation functions obey asymptotic homoge-
neous scaling laws [5], such as

O(t,x, L, wi, w) ≈ b−yoO(t/bz,x/b, L/b, bywwi, b
yww), (18)

where b is an arbitrary (large) length scale, yo is the RG

dimension of the local operator Ôx and the RG expo-
nents yw and z are determined by the universality class
of the CQT (they are the RG dimensions of the Hamilto-
nian parameter w and the temperature T , respectively).
Thus both the initial and final values of w, i.e. wi and
w, take the same RG exponent yw, being coupled to the
RG perturbation Ĥp within the Hamiltonian. Note that
we do not assume translation invariance, which is gener-
ally broken by the presence of boundaries, such as those
arising from open boundary conditions.

OFSS can be straightforwardly derived by fixing b = L
in the above homogenous scaling law. Then, we expect
the OFSS of the expectation value O of a generic local
operator Ôx, of its spatial average Ôa = L−d

∑
x Ôx,

and its two-point correlation function GO, develop the
asymptotic OFSS behavior [5, 9]

O(t,x, L, wi, w) ≈ L−yo O(Θ,X,Φi,Φ),

Oa(t, L, wi, w) ≈ L−yo Oa(Θ,Φi,Φ), (19)

GO(t,x1,x2, L, wi, w) ≈ L−2yo GO(Θ,X1,X2,Φi,Φ),
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where the scaling variables appearing in the scaling func-
tions O, Oa, and GO are defined as

Θ ≡ t

Lz
, Xi ≡

xi
L
, Φi ≡ Lyw wi, Φ ≡ Lyw w. (20)

The OFSS limit is obtained in the large-L and large-t
limit keeping the above scaling variables fixed. These
conditions ensure that the system remains within the
universal critical regime during the quantum evolution.
Note that in the scaling law (20) the dynamic features are
essentially encoded in the time dependence of the scaling
variable Θ ∼ t∆. The other features, in particular when
wi = w, are analogous to those arising from equilibrium
FSS at CQTs [5, 24], where the argument Φ = Lyww of
the scaling functions is controlled by the RG dimension
yw of the relevant parameters w at the RG fixed point
associated with the CQT.

The above OFSS equations can be straightforwardly
applied to the observables defined in Sec. II D, after a
quench from wi to w at t = 0, keeping into account
that the RG dimension of the subtracted particle den-
sity is yn = 1, and that of the fermionic operator ĉx
is yc = 1/2. Note that the dominant analytical contri-
butions to the particle density [5, 24] coming from the
analytical background are canceled in the difference ns
defined in Eq. (15), whose leading asymptotic behavior
arises from the quantum critical modes, therefore it is
analogous to that of Oa in Eq. (19), with yo = yn. Analo-
gously one can apply the OFSS in Eq. (19) to observables
and correlation functions constructed with the spin oper-
ators of the quantum spin chain (6). The OFSS functions
are expected to be universal with respect to the micro-
scopic details of the model, apart from nonuniversal mul-
tiplicative rescaling and normalizations of its arguments.
Within isolated fermionc Kitaev wires and quantum Ising
chains, the OFSS arising from soft QQs has been verified
by numerical computations for various boundary condi-
tions, and also along their quantum first-order transition
line [5, 9].

The OFSS limit is expected to be approached with
power-law suppressed corrections. There are various
sources of scaling corrections when approaching the
OFSS. Of course, they include those that are already
present at equilibrium. In particular, the irrelevant RG
perturbations are sources of scaling corrections for the
asymptotic behavior of the free-energy density [5, 99]. In
the case of one-dimensional quantum systems undergo-
ing CQTs belonging to the two-dimensional Ising uni-
versality class, the leading scaling corrections from ir-
relevant RG perturbations are suppressed as L−ω with
ω = 2 [24, 98]. However, other contributions may be-
come more relevant [5, 24, 99], such as those arising from
the presence of analytical backgrounds, from the pres-
ence of boundaries (which generally gives rise to O(1/L)
corrections), and, in the case of correlation functions,
from RG mixings of the source fields [this for exam-
ple happens in the case of the correlation functions of
the fermionic field ĉx, for which corrections are O(1/L)].

These scaling corrections have been confirmed by numer-
ical results [5, 24]. Therefore, we expect that the asymp-
totic OFSS of fermionic Kitaev wires and quantum Ising
chains with open boundary conditions is generally ap-
proached with O(1/L) corrections.

B. OFSS along the unitary QQ protocol

For the simplest unitary protocol reported in Sec. II C,
where the quantum evolution is that of the isolated
fermionic wire, the request that the dynamics remains
within the critical regime implies that the temperature of
the initial Gibbs state must be appropriately suppressed
in the large-L OFSS limit, to obtain a nontrivial out-of-
equilibrium critical limit. This is analogous to what hap-
pens within the equilibrium FSS, where one introduces
the scaling variable [3–5]

Ξ ≡ LzT, (21)

to allow for a nonzero temperature in the FSS of the ob-
servables. Therefore, like equilibrium FSS, we conjecture
that the temperature of the initial Gibbs state enters the
OFSS associated with the unitary QQ protocol by adding
a further dependence on Ξ in the scaling functions (19).
In other words, a nontrivial asymptotic OFSS limit is
expected to be realized in the large-L and large-t limits
keeping also Ξ fixed, beside the scaling variables already
defined in Eq. (20). Therefore, we expect that the OFSS
of standard QQ protocols starting from ground states, cf.
Eq. (19), changes into

O(t,x, L, wi, w, T ) ≈ L−yo O(Θ,X,Φi,Φ,Ξ), (22)

and analogously for its spatial average Oa and the corre-
lation function GO.

The numerical analysis for the fermionic Kitaev wire
under the unitary protocol fully support to this OFSS,
obtained by extending the QQ FSS behaviors of closed
systems starting from an initial ground state. This is
clearly demonstrated by the curves reported in Fig. 2,
associated with the quantum evolutions of the sub-
tracted particle density ns(t) and the fermionic correla-
tion P (x, y, t) (the other fermionic correlation C(x, y, t)
develops an analogous OFSS).

C. OFSS along the dissipative QQ protocol

We now discuss the dynamics arising from the dissi-
pative protocol outlined in Sec. II C, when the quantum
evolution after quenching is described by the Lindblad
master equation (4) with the thermal-like dissipator (10),
to modelize the interaction with a thermal bath charac-
terized by a temperature T (which does not change after
quenching) and decay rate γ.

We expect that the temperature T of the thermal bath
must be rescaled as in the case of the unitary QQ pro-
tocol, i.e. we must consider again the associated scaling
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FIG. 2: OFSS behavior of the subtracted particle den-
sity (bottom) and the fermionic correlation function P (x =
L/3, y = 2L/3, t), cf. Eq. (16), arising from the unitary QQ
protocol, for various lattice sizes L, at fixed Ξ = LzT = 1,
Φi = Lywwi = −1 and Φ = Lyww = 0, versus the time scaling
variable Θ = t/Lz. These computations nicely support the
OFSS behaviors reported in Eq. (22). The inset of the bottom
figure shows that the approach to the OFSS limit is consistent
with O(1/L) corrections. Analogous results are obtained for
other values of the scaling variables.

variable Ξ already defined in Eq. (21). However, since the
QQ moves the system out-of-equilibrium, also the decay
rate γ, and corresponding time scale τ = γ−1, associated
with the interactions with the thermal bath is expected
to play a relevant role to establish a corresponding non-
trivial OFSS limit. This was already noted in Ref. [97] in
the analysis of dynamic protocols entailing the variation
of the temperature at the critical point.

When keeping τ constant in the FSS limit where the
scaling variable Θ = t/Lz is kept fixed, in the large-L
limit we have eventually that

t = ΘLz � τ, (23)

which is the condition ensuring thermalization for any
finite value Θ > 0. Therefore, when keeping τ fixed,
the quantum evolution is not expected to develop a non-
trivial OFSS limit. Indeed, in the large-L limit, the
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FIG. 3: Equilibrium FSS of the subtracted particle density
ns,eq at the critical point w = 0, versus the rescaled tempera-
ture Ξ = LzT . With increasing L, the data show the expected
convergence to the equilibrium FSS reported in Eq. (24) with
yn = 1.
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FIG. 4: Quantum evolution of the subtracted particle density
arising from the dissipative QQ protocol, when rescaling all
quantities involved in the quench protocol, except for the de-
cay rate γ. With increasing L, the curves appear to approach
the equilibrium FSS value at finite temperature (where the
temperature dependence enters through the scaling variable
Ξ = LzT ) faster and faster, reflecting a nonuniform conver-
gence for any Θ > 0. The dashed line shows the equilibrium
value of ns for Φ = 0 and Ξ = 1, which is asymptotically
approached by the various curves.

system turns out to suddenly approach an equilibrium
Gibbs state (associated with the Hamiltonian parameter
w and temperature T ) with respect to the rescaled time
Θ, without any further relevant evolution of the system
for any Θ > 0. Therefore, if the temperature is rescaled
by keeping Ξ = LzT fixed, we must recover the equi-
librium FSS behavior in the presence of a thermal bath
at temperature T , such as that associated with the sub-
tracted particle density [5, 24]

ns,eq(w,L, T ) ≈ L−ynN (Φ,Ξ), (24)
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where Φ = Lyww, and the temperature dependence en-
ters through the associated scaling variable Ξ = LzT .
In Fig. 3 we show some equilibrium data at the critical
point w = Φ = 0, versus Ξ, showing the approach to the
asymptotic large-L equilibrium FSS (24). The realiza-
tion of the equilibrium FSS within the QQ protocol at
fixed γ is demonstrated by the plots reported in Fig. 4,
which show the somewhat trivial convergence toward the
equilibrium FSS for any finite Θ > 0.

The above results suggest that also the the decay rate
γ of the system-bath interactions must be rescaled to
observe a nontrivial OFSS limit as a function of the
time scaling variable Θ, to create the conditions for a
balanced competition between the critical Hamiltonian
driving and the interactions with the thermal bath. As
already put forward in the case of other homogeneous dis-
sipative terms in the Lindblad equation [5, 55, 100–102],
for example associated with particle-decay or particle-
pumping dissipative mechanisms, a nontrivial OFSS limit
is obtained by rescaling the decay rate of the dissipative
term, so that the scaling variable

Γ ≡ Lzγ ∼ γ/∆ (25)

is kept fixed in the OFSS limit, where ∆ is the energy
difference of the lowest eigenstates of Ĥ(w) at the criti-
cal point w = wc = 0. Then an OFSS behavior emerges
from the nontrivial competition between the critical uni-
tary dynamics and the dissipative driving arising from
the thermal bath.

In conclusion, on the basis of the above scaling argu-
ments, the OFSS arising from the dissipative QQ proto-
cols in the presence of a thermal bath is expected to be
given by

Oa(t, L, wi, w, T, γ) ≈ L−yo Oa(Θ,Φi,Φ,Ξ,Γ), (26)

and

GO(t,x1,x2, L, wi, w, T, γ) ≈ (27)

L−2yo GO(Θ,X1,X2,Φi,Φ,Ξ,Γ).

In the large-Γ limit the above OFFS behaviors at fixed
Ξ is expected to approach the corresponding equilibrium
FSS, faster and faster in terms of Θ, matching the be-
havior at finite γ. Moreover, we also expect that the
equilibrium FSS is also approached in the large-Θ limit
at fixed Γ and Ξ, independently of Γ, but faster and faster
with increasing Γ.

Again, the numerical results for the particle density
ns(t) and correlation functions P and C fully support
the above OFSS equations, i.e. Eq. (26) for ns(t) with
yo = yn = 1, and Eq. (27) for P and C with yo = yc =
1/2. Some results are reported in Fig. 5. We also stress
that analogous results are expected for other observables,
for example the correlation functions of the spin operator
of the equivalent formulation provided by the quantum
Ising chains.
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FIG. 5: Quantum evolutions along the dissipative protocol,
fully supporting the OFSS reported in Eqs. (26) and (27). We
report curves for Lns (bottom), LP (x = L/3, y = 2L/3, t)
(middle), and C(x = L/3, y = 2L/3, t) (top), for various val-
ues of L, at fixed Φi = −1, Φ = 0, Ξ = 1, and two values
of Γ = Lzγ, i.e. Γ = 1, 10 (except for the top figure where
we only report data for Γ = 10 to ensure a good readability).
The inset of the top figure shows that the OFSS is approached
with O(1/L) corrections. Analogous results are obtained for
other values of the scaling variables.
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IV. CONCLUSIONS

We have reported a study of the effects of thermal
baths to the out-of-equilibrium dynamics of many-body
systems within their quantum critical regime close to a
zero-temperature CQT. In particular, we analyze the out-
of-equilibrium quantum evolution arising from QQs of
the Hamiltonian parameters within two different proto-
cols involving a thermal bath coupled homogeneously to
the system. Within the first protocol, named unitary QQ
protocol, the thermal bath is used to prepare the system
at t = 0 in a finite-temperature Gibbs state, then the dy-
namics after quenching of the Hamiltonian parameters is
assumed unitary, i.e., the thermal bath is removed during
the quantum evolution for t > 0. The second protocol,
named dissipative QQ protocol, starts from the same ini-
tial condition, but the thermal bath is not removed after
quenching, and the quantum evolution for t > 0 is as-
sumed to be described by the Lindblad master equation
(4). The dissipative term of the Lindblad equation is sup-
posed to simulate a thermal bath, such that the many-
body system is driven to a large-time finite-temperature
Gibbs state. This dissipative protocol is characterized by
a further time scale τ = γ−1, related to the decay rate of
the interactions between the system and the bath.

Within OFSS frameworks, we argue that, when the
thermal baths are associated with a sufficiently small
temperature, their effects can be taken into account by
appropriate extensions of the zero-temperature out-of-
equilibrium scaling laws describing soft QQs of isolated
systems within the critical regime. For the unitary QQ
protocol, where the thermal bath only determines the ini-
tial Gibbs state and the evolution is unitary, a nontrivial
OFFS limit is simply obtained by rescaling the temper-
ature as T ∼ L−z, similarly to equilibrium FSS. Along
the dissipative QQ protocol, where the thermal bath is
not removed after quenching, the dynamics is more com-
plicated, and the decay rate γ plays a relevant role. In-
deed, in addition to the rescaling of the temperature T
associated with thermal bath, one also needs to rescale
γ as γ ∼ L−z to obtain a nontrivial OFSS. Otherwise,
when keeping γ fixed, the dynamics converges toward
the equilibrium FSS at finite temperature, which hap-
pens suddenly after quenching with respect to the time
scale tc ∼ Lz of the critical regime. Therefore the scaling
behavior when keeping γ fixed becomes somehow trivial,
reproducing the equilibrium FSS for any rescaled time
Θ = L−zt > 0 in the large-L limit.

Our scaling arguments are supported by numerical re-
sults with the paradigmatic fermionic Kitaev model, or
equivalently quantum Ising chain, at its CQT separating
quantum disordered and ordered phases. We consider a
particular modelization of the thermal bath that guaran-
tees the asymptotic thermalization within the Lindblad
formulation of the dynamics of open systems. However,
we note that the scaling arguments used to arrive at the
OFSS laws for critical QQs are general, and therefore
we expect that the emerging out-of-equilibrium scenar-

ios also apply to many-body systems at generic CQTs in
contact with homogenous thermal baths, in any dimen-
sion.

We finally remark that the out-of-equilibrium scal-
ing arguments we put forward, leading to the OFSS of
QQs in the presence of a thermal bath, can be extended
to other protocols giving rise to out-of-equilibrium dy-
namics. Another interesting class of dynamic protocols
entails slow variations of the Hamiltonian parameters
across the critical regime of a quantum transition, such
as those associated with the quantum Kibble-Zurek (KZ)
problem (see e.g. Refs. [5, 12–23]). In standard KZ proto-
cols starting from the ground state for an initial param-
eter wi < 0, the out-of-equilibrium quantum evolution
arises from the linear time dependence of one Hamilto-
nian parameter, w(t) = t/ts in Eq. (1), where ts is the
time scale of the KZ protocol. Since w(t) crosses the
critical point at t = 0, the system passes through the
quantum critical regime, moving it away from equilib-
rium even in the large-ts limit, and developing a peculiar
out-of-equilibrium scaling behaviors. In particular, the
interplay between the size L of the system and the time
scale ts of the protocol develops OFSS behaviors [5, 23]
when ts → ∞ and L → ∞, keeping the scaling vari-

ables Ωt ≡ t/tκs = t/t
z/(yw+z)
s and Υ ≡ ts/L

yw+z (thus

Ωt = t/t
1/2
s and Υ = ts/L

2 for the fermionic Kitaev wire
or quantum Ising chain) fixed.

KZ-like protocols can be also extended to systems in-
teracting with a thermal bath, such as that outlined in
Sec. II B, starting from a Gibbs state for an initial wi < 0
and the temperature T of the thermal bath. Then we
may consider a time evolution driven by the Lindblad
master equation (4), with a time-dependent Hamiltonian

Ĥ[w(t)] and the dissipator term (10), where also the Bo-
goliubov operators are assumed to be time dependent to
adapt themselves to the time dependence of w. Anal-
ogously to the OFSS of QQs in contact with thermal
baths, to define a nontrivial OFSS limit in KZ proto-
cols, we expect that both the temperature T and the
decay rate γ associated with the bath must be rescaled,
as T ∼ L−z and γ ∼ L−z. If only the temperature of
the thermal bath is rescaled as T ∼ L−z, while γ > 0 is
kept fixed, the time interval associated with a variation
of Ωt in the KZ scaling limit, i.e. ∆Ωt ∼ tκs∆Ωt, becomes
eventually much larger than the time scale τ ∼ γ−1 of the
interaction with the thermal bath. Since τ/∆Ωt → 0 in
the KZ limit, the system effectively thermalizes at each
rescaled time Ωt. Therefore, in the KZ limit the quan-
tum evolution is expected to pass through equilibrium
finite-temperature states, thus effectively resulting into
adiabatic evolutions reproducing the equilibrium finite-
temperature FSS as a function of Lyww(t). Therefore,
like dissipative QQ protocols, the observation of a non-
trivial OFSS in KZ protocols requires the simultaneous
rescaling of the time scale τ associated with the interac-
tion with the thermal bath. The necessary rescaling of
the decay rate γ of the dissipative term in the Lindblad
master equation has been also put forward for KZ pro-
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tocols in the presence of other dissipative mechanisms,
such as those related to particle decay or pumping [100].
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Appendix A: Details on the computations

In this section we provide some details of the compu-
tations for the fermionic Kitaev wire in the presence of a
thermal bath.

1. Asymptotic thermal states

The dynamics of the system in contact with the ther-
mal bath described by the Lindblad master equation (4)
with the dissipator term (10) leads to thermal states,
such as those described by the density matrix reported
in Eq. (13). To compute the correlation functions of the
fermionic operators ĉx in thermal states of the Hamilto-
nian Ĥ(w), one can use the relation with the Bogoliubov

eigenoperators b̂k, cf. Eq. (9), and the thermal correla-

tions of the Bogoliubov operators b̂k, i.e.

〈b†kbq〉 ≡ Tr[ρt(w, T )b†kbq] =
δkq

1 + eωk/T
, (A1)

corresponding to the standard Fermi-Dirac distribution
function. Note also that the other correlations 〈bkbq〉 and

〈b†kb†q〉 vanish. Then the correlation functions of the orig-
inal fermionic field ĉx can be straightforwadly obtained
from Eq. (9).

2. Computations for the unitary protocol

In the unitary QQ protocol, one starts from a Gibbs
state associated with the Hamiltonian parameter wi and
the temperature T , then at t = 0 one instantaneously
changes wi → w and removes the contact with the ther-
mal bath. Therefore the quantum evolution is unitary,
described by the Schrödinger equation (3). One may eas-
ily obtain closed equations for the evolution of the corre-
lation functions C and P defined in Eqs. (16) and (17).

We introduce the correlations

Cx,y = Tr
[
ρ(t)ĉ†xĉy

]
, Px,y = Tr

[
ρ(t)ĉ†xĉ

†
y

]
, (A2)

whose quantum evolution can be written as

dCx,y
dt

= i
[
Cx,y+1 − Cx−1,y + Cx,y−1 − Cx+1,y

]
−

−i
(
P†
y,x−1 −P†

y,x+1

)
+i
(
Px,y−1 −Px,y+1

)
, (A3)

dPx,y

dt
= −i

[
Px,y+1 + Px+1,y + Px,y−1 + Px−1,y

]
−

− 2 i µPx,y − i
(
δx−1, y − δx+1, y

)
−

− i
(
Cx,y−1 − Cy,x−1 − Cx,y+1 + Cy,x+1

)
. (A4)

The initial conditions are easily obtained by the relations
with the thermal correlations of the Bogoliubov opera-
tors associated with the initial Gibbs state. Then the
fermionic correlation function are obtained by

C(x, y, t) = 2 ReCx,y(t), P (x, y, t) = 2 RePx,y(t). (A5)

The above differential equations are solved using the four-
order Runge-Kutta method. The particle density is ob-

tained from the data of Cx,x = Tr
[
ρ(t)ĉ†xĉx

]
.

3. Computations for the dissipative protocol

For the dissipative QQ protocol, where the thermal
bath is kept in contact with the system, the evolution is
driven by the Lindblad master equation (4), which can
be equivalently written in terms of the time dependence
of Heisenberg operators ÔH(t), i.e. [84, 86]:

∂tÔH(t) = i
[
Ĥ(w), ÔH(t)

]
+ γD̂T [ÔH(t)], (A6)

where

D̂T [ÔH(t)] =
∑
k

f(ωk)

[
2b̂†kÔH(t)b̂k −

{
ÔH(t), b̂k b̂

†
k

}]
+
∑
k

(1− f(ωk))

[
2b̂kÔH(t)b̂†k −

{
ÔH(t), b̂†k b̂k

}]
, (A7)

where b̂k are the Bogoliubov operators associated with
the Hamiltonian Ĥ(w).

The initial state at t = 0 is the Gibbs state for the
Hamiltonian parameter wi. This state corresponds to the
steady state solution of the Eq. (A6) with Ĥ(wi). Then,
the change of the Hamiltonian parameter to w 6= wi leads
to a change of the Bogoliubov operators diagonalizing the
Hamiltonian. We call {b′k} the operators which diagonal-

izes Ĥ(w),

Ĥ(w) =

L∑
k=1

ω′k b̂
′†
k b̂
′
k, (A8)

where {ω′k} is the Bogoliubov spectrum associated with

Ĥ(w). To evaluate the correlations of the Bogoliubov
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operatore {b′k}, one can solve the Eq. (A6) for couples of
operators {b′k}, obtaining [84]

〈b′†k b
′
k〉 = (1− e−2γt)f(ω′k) + e−2γt 〈b′†k b

′
k〉0 ,

〈b′†k b
′
q〉 = ei(ω

′
k−ω

′
q)t−2γt 〈b′†k b

′
q〉0 ,

〈b′†k b
′†
q 〉 = ei(ω

′
k+ω′

q)t−2γt 〈b′†k b
′†
q 〉0 ,

〈b′kb′q〉 = e−i(ω
′
k+ω′

q)t−2γt 〈b′kb′q〉0 . (A9)

The initial values 〈b′†k b′q〉0 of the correlations is com-
puted on the initial Gibbs state associated with wi,
and it can be obtained using the relations between {bk}
to {b′k}. This relation can be formally derived as fol-
lows [84]. Introducing the fermionic Nambu field C† =

(ĉ†1, ..., ĉ
†
L, ĉ1, ..., ĉL), their relations with the Bogoliubov

operators B(w)† = (b̂†1, ..., b̂
†
L, b̂1, ..., b̂L) corresponding to

the Hamiltonian ĤK(w) are obtained by a unitary trans-
formation, C = T(w)B(w). See e.g. Ref. [84] for more

details. Therefore one can formally derive the relation

between the Bogoliubov operators b̂′k and b̂k, correspond-
ing to the Hamiltonian parameters wi and w respectively,
from the general relation

B(w2) = T(w2)†T(w1)B(w1). (A10)

Finally, to compute the time-dependent observables
defined in Sec. II D, one can use the relations between
the fermionic correlation functions associated with ĉx and
those of the Bogoliubov operators b̂k, such as

C(x, y) =

L∑
k,q=1

[
A∗xkAyq 〈b

†
kbq〉+B∗xkByq 〈bkb†q〉

+A∗xkByq 〈b
†
kb
†
q〉+B∗xkAyq 〈bkbq〉

]
(A11)

where A and B are the matrices entering Eq. (9).
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