Thermal behaviour and kinetics of coal/biomass blends during co-combustion

María Victoria Gil, D. Casal, Covadonga Pevida, J.J. Pis ...+1 more authors

Institutions: Spanish National Research Council

Published on: 01 Jul 2010 - Bioresource Technology (Elsevier)

Topics: Coal combustion products, Coal, Biomass, Combustion and Energy value of coal

Related papers:

- Kinetic Parameters from Thermogravimetric Data
- Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).
- Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres.
- Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis
- Thermogravimetric studies of the behavior of wheat straw with added coal during combustion.
Thermal behaviour and kinetics of coal/biomass blends during co-combustion

M.V. Gil, D. Casal, C. Pevida, J.J. Pis, F. Rubiera*

Instituto Nacional del Carbón, CSIC, Apartado 73, 33080 Oviedo, Spain

Abstract

The thermal characteristics and kinetics of coal, biomass (pine sawdust) and their blends were evaluated under combustion conditions using a non-isothermal thermogravimetric method (TGA). Biomass was blended with coal in the range of 5-80 wt% to evaluate their co-combustion behaviour. No significant interactions were detected between the coal and biomass, since no deviations from their expected behaviour were observed in these experiments. Biomass combustion takes place in two steps: between 200-360 °C the volatiles are released and burned, and at 360-490 °C char combustion takes place. In contrast, coal is characterized by only one combustion stage at 315-615 °C. The coal/biomass blends presented three combustion steps, corresponding to the sum of the biomass and coal individual stages. Several solid-state mechanisms were tested by the Coats-Redfern method in order to find out the mechanisms responsible for the oxidation of the samples. The kinetic parameters were determined assuming single separate reactions for each stage of thermal conversion. The combustion process of coal consists of one reaction, whereas, in the case of the biomass and coal/biomass blends, this process consists of two or three independent reactions, respectively. The results showed that the chemical first order reaction is the most effective mechanism for the first step of

* Corresponding author. Tel.: +34 985 118 975; Fax: +34 985 297 662.

E-mail address: frubiera@incar.csic.es (F. Rubiera)
biomass oxidation and for coal combustion. However, diffusion mechanisms were found to be responsible for the second step of biomass combustion.

Keywords: Biomass; Coal; Co-combustion; TG; Kinetics

1. **Introduction**

Recent awareness of CO$_2$ emissions has resulted in a shift from less environmentally friendly fossil fuels to renewable and sustainable energy alternatives. Among these, biomass is considered to be one of the few viable replacement options (Munir et al., 2009). Biomass can be grown in a sustainable way through a cyclical process of fixation and release of CO$_2$, thereby mitigating global warming problems (McKendry, 2002). Biomass fixes CO$_2$ in the form of lignocellulosics during photosynthesis, and the CO$_2$ emitted from the combustion of these materials makes no net contribution to the accumulation of CO$_2$ in the atmosphere or to the greenhouse effect.

Many technologies have been studied in recent years for their possible use with biomass, such as combustion, pyrolysis, gasification, liquefaction, etc. Co-combustion is also one of the most promising options for application with renewable fuels. There are several reasons to blend biomass with coal or with other types of fuel prior to burning. The co-combustion of coal/biomass blends will help to reduce the consumption of fossil fuels. Sometimes biofuel products are mixed with coal to achieve better control of the burning process (Wang et al., 2009). In co-combustion processes, a volatile matter content greater than 35% is sought in order to provide a stable flame (Biagini et al., 2002), which could be attained by using biomass. The ash deposition and fouling problems on hot surfaces, which are commonly encountered in the combustion of
biomass can be reduced or altogether eliminated by burning coal/biomass blends (Haykiri-Acma and Yaman, 2008). Furthermore, existing coal-fuelled power plants may continue to be used with very few modifications (Biagini et al., 2002), and as a final argument, the co-utilization of biomass or waste in existing coal-fired plants is likely to result in a number of environmental, technical and economical benefits (Kastanaki and Vamvuka, 2006).

Thermogravimetric analysis (TGA) is one of the most common techniques used to rapidly investigate and compare thermal events and kinetics during the combustion and pyrolysis of solid raw materials, such as coal, woods, etc. (Pis et al., 1996; Rubiera et al., 1997; Haykiri-Açma, 2003; Skodras et al., 2007; Wang et al., 2009). It is able to measure the mass loss of a sample as a function of time and temperature. The temperatures at which combustion or decomposition reactions in the sample start can also be followed by TGA. Moreover, quantitative methods can be applied to TGA curves in order to obtain kinetic parameters, and the kinetics of the thermal events can be determined by applying the Arrhenius equation to the separate slopes of constant mass loss (Zhou et al., 2006; Shen et al., 2009; Wang et al., 2009).

Cumming and McLaughlin (1982) indicated that the information obtained from TGA combustion profiles can be used for an initial evaluation of the combustion behaviour at industrial scale. TGA techniques operate at different conditions to those encountered in a pulverised coal combustor. Other bench equipment such as drop tube furnaces and entrained flow reactors simulate more closely the combustion conditions of industrial pf combustors. However, since the pilot- and full-scale tests are costly to operate, the above techniques can help in the understanding of coal combustion behaviour. Although extrapolation to other devices at larger scale cannot be performed directly,
thermogravimetric analysis is very useful from a fundamental viewpoint, and for comparison between samples (Arenillas et al., 2004; Rubiera et al., 2002).

A knowledge of the thermal characteristics of biomass and of biomass combustion kinetics is essential for understanding and modelling combustion in furnaces at industrial scale, both in the case of co-firing with coal or alone (Munir et al., 2009). Such a knowledge is also necessary for the design and operation of conversion systems (Cai et al., 2008). According to Shen et al. (2009), a good understanding of the decomposition of biomass during thermochemical conversion is important for developing an efficient processing technology. Most studies related to the kinetics of biomass decomposition are focused on pyrolysing these materials under inert atmospheres. However, the most recent research has been directed towards the study of biomass decomposition in oxidative environments (Safi et al., 2004; Shen et al., 2009; Yorulmaz and Atimtay, 2009), a subject about which information is still scarce.

The aim of this work is to compare the thermal properties and kinetic behaviour of coal, pine sawdust and their blends in an oxidative atmosphere using a thermogravimetric analyzer in order to investigate the combustion characteristics of coal/biomass blends.

2. Materials and methods

2.1. Experimental setup

The feedstock materials used in this work were a high-volatile bituminous coal and pine sawdust. The samples were collected from the Aboño Power Plant located in Asturias (Spain), where co-combustion trials are currently being conducted. Ultimate and proximate analyses together with the heating values of the coal and pine samples are presented in Table 1. Different mixtures of both materials were prepared. These
included 5, 10, 20, 50 and 80 wt% of pine sawdust (5P95C, 10P90C, 20P80C, 50P50C and 80P20C, respectively). The raw materials are named 100C (coal) and 100P (pine sawdust). First, the samples were ground and sieved in order to obtain a particle size fraction of 75-150 µm. The coal/pine mixtures were mixed in appropriate proportions and manually homogenised.

The techniques employed in this study were thermogravimetric analysis (TG) and derivative thermogravimetry (DTG). Non-isothermal TGA was performed using a Setaram TAG24 analyser. The analyses were carried out under a 50 cm3 min$^{-1}$ air flow at a heating rate of 15 °C min$^{-1}$ from room temperature to 1000 °C. Approximately 5 mg of sample was used for each experiment and it was dispersed flatly on a crucible, which had a flat bottom 8 mm in diameter and 3 mm in depth. A small amount of sample and a slow heating rate were used to avoid heat transfer limitations and to minimize mass transfer effects. Duplicate experiments for each test were performed in order to test the reproducibility of the results. The mass loss (TG) and derivative curves (DTG) of the samples were represented as a function of temperature.

In order to find out whether interactions between the components of the blends occurred, the theoretical DTG curves of the blends were calculated as the sum of the decomposition curves of each individual component. Thus:

$$\frac{dm}{dt} = x_1 \frac{dm}{dt}_{\text{coal}} + x_2 \frac{dm}{dt}_{\text{biomass}}$$

where $\frac{dm}{dt}_{\text{coal}}$ and $\frac{dm}{dt}_{\text{biomass}}$ are the mass loss rates of the individual fuels and x_1, x_2 are the proportions of coal and biomass in the blend, respectively.
2.2. Kinetic analysis

The thermal devolatilisation curve is usually obtained as a sum of the contributions of the corresponding individual components (Heikkinen et al., 2004). However, combustion is a more complex process, since the presence of oxygen generates a variety of additional phenomena (Skodras et al., 2007). These include the appearance of gas-phase reactions between the volatiles released at low temperatures and oxygen, and the combustion of the char generated in the early stages of the solids degradation (Bilbao et al., 1997).

A two-stage reaction kinetics scheme consisting of two independent reactions is proposed for the thermal decomposition of the biomass under an oxidative atmosphere (Liu et al., 2002; Shen et al., 2009), represented by the DTG curves. The kinetic scheme includes the two separate reactions:

\[\text{A (solid)} \rightarrow \text{B (char)} + \text{C}1 \text{ (gas)} \quad \text{(first stage)} \]

\[\text{B (char)} \rightarrow \text{C}2 \text{ (gas)} + \text{D (ash)} \quad \text{(second stage)} \]

The approach used in the present work to calculate the kinetic parameters was based on the Arrhenius equation, which has been used by other researchers in order to obtain kinetic parameters of thermal events under combustion conditions (Munir et al., 2009; Shen et al., 2009; Wang et al., 2009; Yorulmaz and Atimtay, 2009). These two separate reactions are thought to be governed by the first-order Arrhenius law and so, the kinetics of the reaction is described as:

\[\frac{dx}{dt} = k f(x) \]

\[k = A \exp(-E/RT) \]

where \(f(x) \) represents the hypothetical model of the reaction mechanism, \(k \) is the reaction rate, \(A \) the pre-exponential factor (min\(^{-1}\)), \(E \) the activation energy (kJ mol\(^{-1}\)), \(R \) the gas
constant (8.314 J K\(^{-1}\) mol\(^{-1}\)), \(T\) the absolute temperature (K), \(t\) the time (min) and \(x\) the loss in mass fraction or mass conversion ratio, which can be calculated by the following relationship:

\[
x = \frac{(m_0 - m_t)}{(m_0 - m_f)}
\]

(3)

where \(m_0\) is the initial mass of the sample, \(m_t\) the mass of the sample at time \(t\) and \(m_f\) the final mass of the sample.

For a constant heating rate \(\beta\) (K min\(^{-1}\)) during combustion, \(\beta = \frac{dT}{dt}\), Eq. (1) can be transformed into:

\[
dx/f(x) = \left(\frac{k}{\beta}\right) dT
\]

(4)

Integrating Eq. (4) gives:

\[
g(x) = \int_0^x dx/ f(x) = A/ \beta \int_{T_0}^T \exp\left(-\frac{E}{RT}\right) dT
\]

(5)

where \(g(x)\) is the integral function of conversion.

Eq. (5) is integrated by using the Coats-Redfern method (Coats and Redfern, 1964), yielding:

\[
\ln\left[\frac{g(x)}{T^2}\right] = \ln\left[\frac{AR}{\beta E(1-2RT/E)}\right] - \frac{E}{RT}
\]

(6)

Since it can be demonstrated that for most values of \(E\) and for the temperature range of combustion, the expression \(\ln\left[AR/\beta E(1-2RT/E)\right]\) in Eq. (6) is essentially constant (Zhou et al., 2006), if \(\ln\left[g(x)/T^2\right]\) is plotted versus \(1/T\), a straight line should be obtained. Moreover, if the correct \(g(x)\) is used, the plot of \(\ln\left[g(x)/T^2\right]\) against \(1/T\) should give a straight line with a high correlation coefficient of linear regression analysis, from which the values of \(E\) and \(A\) can be derived. The activation energy, \(E\), can be calculated from the slope of the line, \(-E/RT\); and by taking the temperature at which \(m_t = (m_0 + m_f)/2\) as the intercept term of Eq. (6), the pre-exponential factor \(A\) can also be calculated (Zhou et al., 2006).
The function $g(x)$, or $f(x)$, depends on the mechanism controlling the reaction and the size and shape of the reacting particles. Table 2 shows the expressions of $g(x)$ for the basic model functions usually employed for the kinetic study of solid state reactions. By means of these functions it was possible to estimate the reaction mechanisms governing the process of thermal oxidation of the samples from the TG curves. The form of $g(x)$ that gives a straight line with the highest correlation coefficient will be considered the function of the model that best represents the kinetics of mass loss for each separate reaction.

In most dynamic studies that use TGA, the first-order chemical reaction assumption (O1 model) is the most frequently used. In addition to this reaction mechanism, other chemical reactions (O2 and O3 models), boundary controlled reactions (R2 and R3 models) and diffusion mechanisms (D1, D2, D3 and D4 models) are commonly applied to describe the combustion reactions of biomass.

3. Results and discussion

3.1. Thermal characteristics of the samples under air atmosphere

The biomass, pine sawdust (100P), has less fixed carbon and more volatiles than the coal, 100C, and it also has a lower ash content and a negligible sulphur content (Table 1). These characteristics favour clean combustion conditions (Vamvuka et al., 2003b). The nitrogen content in the biomass is low, and therefore, emissions of nitrogen oxides from this element will probably be minimal. In comparison with coal, biomass contains a higher proportion of oxygen and hydrogen and less carbon (Table 1), which reduces its heating value because the amount of energy contained in carbon-oxygen and carbon-hydrogen bonds is lower than in carbon-carbon bonds (Munir et al., 2009). However,
the higher oxygen content in the biomass indicates that it will have a higher thermal reactivity than coal (Haykiri-Acma and Yaman, 2008).

Biomass typically has a volatile matter/fixed carbon (VM/FC) ratio of > 4.0, while the VM/FC ratio for coal is almost always < 1.0 (Tillman, 2000). In this work, the VM/FC ratio for the biomass is approximately 5.0 and for the coal 0.5. Thus, for biomass fuels, the predominant form of combustion will take place via the gas-phase oxidation of the volatile species (Wang et al, 2009).

The experimental DTG curves for the coal and pine sawdust samples and their blends, under air atmosphere, are shown in Fig. 1. In this figure, the curves of the blends are situated between those of the individual fuels. Before ignition, some increase in mass may occur due to the chemisorption of oxygen (Haykiri-Acma and Yaman, 2008), as can be observed from the negative values of the DTG curves of coal sample (100C) and the samples with a high percentage of coal (5P95C, 10P90C and 20P80C).

From the DTG curves (Fig. 1), it can be seen that an initial mass loss (stage A) occurred between the temperatures of 25 ºC and 105 ºC for all samples, due to moisture evaporation. After that, two-step mass losses (stages B and C) took place in biomass sample, 100P, compared to only a one-step mass loss (stage D) for coal sample, 100C. Stage B would be due to the release of volatiles and their combustion, and stage C would be due to the char oxidation. However, all the coal/biomass blends displayed three step mass losses (stages B, C and D). In the case of the blends, the first two mass losses, stages B and C, were mainly due to the burning of biomass, whereas the last one (stage D) was mostly due to the combustion of coal. However, part of the mass loss is due to the coal because the second peak of the biomass (stage C) and the peak of the
coal (stage D) clearly overlap. Similarly, some of the mass loss of stage D is due to the biomass.

Table 3 shows the temperature ranges for the three different regions of mass loss after the initial loss of moisture during the combustion of the samples, the mass loss produced in each of these regions and the final residue after combustion. The initial temperature in stage B and the final temperature in stage D were taken as the temperature values at which the rate of mass loss was 0.005 \(\text{\% s}^{-1} \) (Rubiera et al., 1999). The coal (100C) starts to devolatilise at a higher temperature compared to the biomass (100P), 316 °C and 196 °C respectively. Stages C and D occur in a range of temperatures that are similar in all the samples, which suggests that the blending process does not affect the combustion behaviour of the individual components. However, the initial temperature of stage B decreased as the percentage of biomass increased, suggesting that combustion was brought forward due to the formation of volatiles from the biomass. Indeed, the biomass has a much higher volatile matter content than the coal (Table 1), which causes it to burn at lower temperatures.

The mass loss from biomass (100P) is higher than in other samples in stage B, in the 200-350 °C temperature range (Table 3). However, in stage D, above approximately 480 °C, the mass loss from the biomass is over and the mass loss from coal (100C) is now higher than from the blends. The mass losses corresponding to the blends lie between those of the individual fuels. The mass loss in stage B increases with the biomass content due to the much higher volatile matter content of the biomass (Table 1). Similarly, the mass loss in stage D increases as the coal content of the blend increases, due to the higher amount of char in the coal.
In the case of the biomass, the mass loss in stage B is due to oxidative degradation—i.e. volatiles are released and then burned—, whereas the mass loss in stage C is due to the combustion of char. Haykırlı-Açma (2003) described this first stage as the burning region in which volatiles are released and burned. Zheng and Koziński (2000) reported that biomass combustion consisted of two main steps, the first characterised by the devolatilization process and burning of the released light organic volatiles, and the second resulting from the oxidation of char. Liu et al. (2002) added that the first DTG peak in air is largely due to the pyrolysis of hemicellulose and cellulose, but also partly due to that of lignin, while the second DTG peak is largely caused by oxidation.

Table 4 shows the peak temperatures and the maximum rates of mass loss for the three stages after the initial loss of moisture during the combustion of all the samples. The maximum rate of mass loss is considered directly proportional to the reactivity of the sample (Zheng and Koziński, 2000). In stage B, the maximum mass loss rate increases with the percentage of biomass present in the blend, which suggests that the higher the amount of biomass in the blend, the faster the rate of mass loss between 200-350 °C or, in other words, the higher the reactivity of the samples in this range. This indicates that a greater number of volatiles are formed and that they ignite at these temperatures due to the presence of biomass in the blends. In stage C, this is not the case because of the overlapping of the C and D stages. However, for biomass (100P), the maximum rate of mass loss in stage C is lower than that of stage B, a finding also reported by Ghaly et al. (1993) for straw samples. In stage D, which is due to the presence of coal, the maximum rate of mass loss increases with the rise in the percentage of coal in the blend, indicating that the higher the amount of coal in the blend, the faster the mass loss in the 350-
600 °C temperature range. This is due to the fact that coal has a higher carbon content (Table 1).

The temperature value at the maximum rate of mass loss is usually considered inversely proportional to the reactivity and combustibility of the sample (Haykıri-Açma, 2003). In relation to the B and D stages, no significant variation is observed between the different samples (Table 4). However, in the C region, a decrease in the peak temperature can be observed with the increase in the percentage of pine sawdust in the blend, reflecting the higher reactivity of the biomass.

3.2. Interactions between the components of the blends

No significant deviations were observed between the experimental and theoretical DTG curves of the coal/sawdust blends, as can be seen in Fig. 1. Therefore, according to the DTG results, no interactions between the components of the blends occurred, reflecting the additive behaviour of the coal/biomass blends and the absence of synergetic effects during the combustion process. Several authors, however, have observed interactions between the components of coal/biomass blends (Zhou et al., 2006; Skodiras et al., 2007), while others have reported the additive behaviour of coal and biomass blends (Biagini et al., 2002; Kastanaki et al., 2002; Vamvuka et al., 2003a, b; Sadhukhan et al., 2008). It should be pointed out, however, that none of these studies were carried out under combustion conditions but during pyrolysis experiments. Fitzpatrick et al. (2009) studied the co-combustion of coal and pine wood in a fixed bed combustor and they observed synergy in organics emissions from the coal/pine blends, with lower emissions than would be expected on an additive basis. However, it has to be considered that in
fixed bed combustion, the particles are larger and they would be close together and
synergistic effects would be therefore observed.
In this work, the absence of any interaction indicates that the combustion reactions of
biomass or coal are not significantly affected by the presence of coal or biomass
respectively. Each component of the mixture behaves independently and does not
interact with the other materials in the experiments carried out with blends of pine
sawdust and coal under the conditions established in this study.

3.3. Kinetic parameters
Several solid-state mechanisms (Table 2) were tested by the Coats-Redfern method in
order to determine the mechanisms responsible for the oxidation of the samples under
study. The kinetic parameters were determined assuming single separate reactions for a
particular stage of thermal conversion. According to the DTG plot (Fig. 1), a single
reaction could be used to describe the coal (100C) combustion process, whereas for
biomass (100P) and the coal/biomass blends (5P95C to 80P20C), two or three
independent reactions, respectively, are necessary. Thus, Eq. (6) was applied separately
to each of the stages, and the conversion, x, was recalculated for each reaction. The
form of g(x) which gives a straight line with the highest correlation coefficient will be
considered to be the function of the model that best represents the kinetic mass loss for
each separate reaction. Fig. 2 shows the plots of ln[g(x)/T²] against 1/T that gave the
highest correlation coefficient values for all samples. From the slope of each line, the
values of E and A were obtained.
The mechanisms that yielded the highest thermal kinetics correlation coefficient are
shown in Table 5, where R² represents their correlation coefficients. The high
coefficient values indicate that the corresponding reaction model satisfactorily fitted the experimental data. Table 5 also shows the values of activation energy, E, and pre-exponential factor, A, for the three stages (B, C and D) for all the samples, each of which was obtained employing the most suitable model.

The solid-state reaction follows the first-order kinetics model (O1) when the rate-determining step is the chemical reaction. In phase boundary controlled reactions, the reaction is controlled by the movement of an interface at constant velocity and the reaction occurs almost instantaneously, with the result that the surface of each particle is covered with a layer of the product. R_2 is a function used for a circular disc reacting from the edge inward, whereas R_3 is used for a sphere which reacts from the surface inward. This mechanism is sometimes assumed to be the governing conversion model in the combustion of some carbonaceous materials (López-Fonseca et al., 2006). In a diffusion-controlled reaction, D_1 is the function for a one-dimensional diffusion process governed by a parabolic law, with a constant diffusion coefficient. For diffusion in cylinders or spheres, it is necessary that all three dimensions be taken into account. D_2 is the function for a two-dimensional diffusion-controlled process in a cylinder. D_3 is Jander’s equation for diffusion-controlled solid-state reaction kinetics in a sphere, where diffusion in all three directions is all-important. D_4 is Ginstling-Brounshtein’s equation for a diffusion-controlled reaction starting from the outside of a spherical particle (Alshehri et al., 2000). In a diffusion-controlled reaction, numerous chemical reactions or micro-structural changes in solids take place through solid-state diffusion, i.e., the movement and transport of gas molecules in the solid phase (Yorulmaz and Atimtay, 2009).
For stage B, models O2, O3 and D1 showed correlation coefficients between 0.9186 and 0.9890 for all the samples studied (data not shown). On the other hand, models R2, R3, D2, D3 and D4 had higher correlation coefficients, between 0.9879 and 0.9968 (data not shown). However, model O1 showed the highest correlation coefficients for all the samples with values exceeding 0.9973 (Table 5).

For stage C, models O2 and O3 showed correlation coefficients between 0.8738 and 0.9437 for all the samples studied. Model D1 presented even higher correlation coefficients, between 0.9820 and 0.9942, while models O1, R2, R3 and D2 exhibited correlation coefficients between 0.9940 and 0.9978. None of these models or their results have been included in Table 5. However, models D3 and D4 had the highest correlation coefficients, with values higher than 0.9980 (Table 5).

Finally, for stage D, models O2 and O3 showed correlation coefficients between 0.9178 and 0.9511 for all the samples studied (data not shown). Models R2, R3, D1, D2, D3 and D4 displayed correlation coefficients between 0.9427 and 0.9723 for all the samples of coal/biomass blends (data not shown). For the coal sample (100C), all the models, except O2 and O3, presented correlation coefficients higher than 0.99 (data not shown), with model O1 showing the highest value, equal to 0.9986 for this sample (Table 5). Model O1 also presented the highest correlation coefficients for the coal/biomass blends, > 0.9921 (Table 5).

Thus, the results confirm that the chemical first order reaction (O1 model) is the most effective solid-state mechanism for the first step of biomass oxidation (stage B) and for coal combustion (stage D). However, diffusion mechanisms (D3 and D4) were found to be responsible for the second step of biomass combustion (stage C).

15
The use of thermal analysis in order to find the mechanism responsible for the oxidation process may result in more than one equation fitting the experimental results. Therefore, a combination of TG analysis with dynamic and isothermal studies could be employed to determine the exact mechanisms and thermal constants of the oxidation processes (Yorulmaz and Atimtay, 2009).

As regards the kinetic parameters, the pre-exponential factor, \(A \), is more closely related with material structure, whereas the reactivity of samples is determined by the activation energy, \(E \), (Yorulmaz and Atimtay, 2009). The activation energy, \(E \), in the first stage (stage B) of the biomass sample (100P) showed a value equal to 102 kJ mol\(^{-1}\) (Table 5), which is similar to the values recorded by Shen et al. (2009) in the first stage of the oxidation of their biomass samples (104-125 kJ mol\(^{-1}\)). These authors found higher values for \(E \) in the second stage of the oxidation process under low heating rates (150-220 kJ mol\(^{-1}\)). In the present study, the activation energy in stage C for the biomass (100P) was 219-236 kJ mol\(^{-1}\). The \(E \) values observed by Liu et al. (2002) reached 52-99 kJ mol\(^{-1}\) for the first stage of oxidation and 87-202 kJ mol\(^{-1}\) for the second stage with leaf and wood samples. For beech and Douglas fir, Branca and Di Blasi (2004) found global \(E \) values ranging between 106-226 kJ mol\(^{-1}\). Wang et al. (2009) found values of 88-115 kJ mol\(^{-1}\) for the first stage of oxidation and 153-210 kJ mol\(^{-1}\) for the second stage with wheat straw and coal and wheat straw mixtures.

Table 5 shows that for stage B, the calculated values of \(E \) and \(A \) (model O1) for biomass sample (100P) were lower than those calculated for the blends with a coal content of more than 50%, increasing as the coal percentage increased. This shows that the addition of pine sawdust to coal facilitates the volatilization and gaseous phase combustion processes at low temperatures, since lower activation energies are sufficient.
for the processes to develop, which is in agreement with the decrease in the initial temperature of stage B as the percentage of biomass increases. Reactions with a high activation energy require a high temperature or a longer reaction time (Lázaro et al., 1998). The blends with 50 and 80 wt% of biomass (50P50C and 80P20C) presented similar E and A values to that of the pure biomass (100P). Thus, in these cases the presence of coal does not significantly affect combustion during this first stage. When the coal percentage is 80% (20P80C), the influence of coal during stage B is small, since the values of E and A are only slightly higher. But when the percentage of coal is higher than 80% (5P95C and 10P90C), significantly greater values of E and A are observed in this first stage.

For stage D, where only coal is present, the values of E and A (model O1) corresponding to the coal sample (100C) were lower than all the other values (Table 5). However, these values increased with the increase in biomass content. When the percentage of biomass is 5-20% (5P95C, 10P90C and 20P80C), the values of E and A are only slightly higher than those of coal. However, when the percentage of biomass is higher, greater values of E and A are observed.

For stage C, the calculated values of E and A (models D3 and D4) were found to be consistently higher than those of the other stages (Table 5), but fairly similar to each other, both in the case of the biomass and the blends. This indicates that the char combustion stage requires a higher activation energy than the devolatilisation stage.

5. Conclusions

Pine sawdust was subjected to two combustion steps: between 200-360 °C, when the volatiles were released and burned, and between 360-490 °C, when char combustion
occurred. However, coal was subjected to only one combustion step: between 315-615 °C. The coal/biomass blends experienced all three combustion steps. When the biomass percentage in the blend was 50 wt% or more, devolatilisation was the predominant process. No synergistic effect during coal and biomass co-combustion was observed in these experiments. The combustion process of coal consists of one reaction, whereas, for biomass and the coal/biomass blends, the process consists of two or three independent reactions, respectively. The results of the kinetic analysis showed that the O1 mechanism (first-order chemical reaction) was assumed to be the main mechanism responsible for the first stage of biomass oxidation and for coal combustion. On the other hand, D3 and D4 diffusion mechanisms were observed to be the controlling mechanisms in the second stage of biomass combustion.

Acknowledgements

Work carried out with financial support from the Spanish MICINN (Project PS-120000-2006-3, EcoCombos), and co-financed by the European Regional Development Fund, ERDF.

References

Figure captions

Fig. 1. Experimental and calculated DTG curves for biomass (100P), coal (100C) and blends (5P95C to 80P20C) in an air flow of 50 cm3 min$^{-1}$, at a heating rate of 15 ºC min$^{-1}$.

Fig. 2. Plots of $\ln(g(x)/T^2)$ against $1/T$ that gave the highest correlation coefficient values for all samples.
Table 1
Ultimate and proximate analyses and HHV of the samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ultimate analysis (wt%, db)</th>
<th>Proximate analysis (wt%, db)</th>
<th>HHV (MJ/kg, db)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (%)</td>
<td>H (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Coal (100C)</td>
<td>69.3</td>
<td>4.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Pine (100P)</td>
<td>44.1</td>
<td>5.9</td>
<td>0.7</td>
</tr>
</tbody>
</table>

*Calculated by difference; db: dry basis
Table 2
Expressions of \(g(x) \) for the kinetic model functions usually employed for the solid state reactions

<table>
<thead>
<tr>
<th>Mechanism and model</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction order</td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>(-\ln(1-x))</td>
</tr>
<tr>
<td>O2</td>
<td>((1-x)^{1/2})</td>
</tr>
<tr>
<td>O3</td>
<td>((1-x)^{2})</td>
</tr>
<tr>
<td>Phase boundary controlled reaction</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>((1-x)^{1/2})</td>
</tr>
<tr>
<td>R3</td>
<td>((1-x)^{1/3})</td>
</tr>
<tr>
<td>Diffusion</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>(x^2)</td>
</tr>
<tr>
<td>D2</td>
<td>((1-x)\ln(1-x)+x)</td>
</tr>
<tr>
<td>D3</td>
<td>([1-(1-x)^{1/3}]^2)</td>
</tr>
<tr>
<td>D4</td>
<td>(1-2x/3-(1-x)^{2/3})</td>
</tr>
<tr>
<td>Sample</td>
<td>Temperature interval (ºC)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Stage B</td>
</tr>
<tr>
<td>100C</td>
<td>---</td>
</tr>
<tr>
<td>5P95C</td>
<td>290-343</td>
</tr>
<tr>
<td>10P90C</td>
<td>273-353</td>
</tr>
<tr>
<td>20P80C</td>
<td>240-360</td>
</tr>
<tr>
<td>50P50C</td>
<td>215-365</td>
</tr>
<tr>
<td>80P20C</td>
<td>198-363</td>
</tr>
<tr>
<td>100P</td>
<td>196-364</td>
</tr>
</tbody>
</table>

C = coal, P = pine.
Table 4
Peak temperature and maximum rate of mass loss for all samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Peak temperature (ºC)</th>
<th>Maximum rate of mass loss (% min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage B</td>
<td>Stage C</td>
</tr>
<tr>
<td>100C</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5P95C</td>
<td>326</td>
<td>467</td>
</tr>
<tr>
<td>10P90C</td>
<td>323</td>
<td>467</td>
</tr>
<tr>
<td>20P80C</td>
<td>323</td>
<td>464</td>
</tr>
<tr>
<td>50P50C</td>
<td>323</td>
<td>464</td>
</tr>
<tr>
<td>80P20C</td>
<td>323</td>
<td>454</td>
</tr>
<tr>
<td>100P</td>
<td>323</td>
<td>---</td>
</tr>
</tbody>
</table>

C = coal, P = pine.
<table>
<thead>
<tr>
<th>Sample</th>
<th>Stage B</th>
<th>Stage C</th>
<th>Stage D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E (kJ mol$^{-1}$)</td>
<td>A (min$^{-1}$)</td>
<td>R^2</td>
</tr>
<tr>
<td>Model O1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5P95C</td>
<td>227.1</td>
<td>6.5E+19</td>
<td>0.9973</td>
</tr>
<tr>
<td>10P90C</td>
<td>149.5</td>
<td>7.4E+12</td>
<td>0.9987</td>
</tr>
<tr>
<td>20P80C</td>
<td>111.4</td>
<td>3.6E+09</td>
<td>0.9978</td>
</tr>
<tr>
<td>50P50C</td>
<td>103.2</td>
<td>7.4E+08</td>
<td>0.9977</td>
</tr>
<tr>
<td>80P20C</td>
<td>102.0</td>
<td>6.1E+08</td>
<td>0.9981</td>
</tr>
<tr>
<td>100P</td>
<td>102.3</td>
<td>6.6E+08</td>
<td>0.9983</td>
</tr>
</tbody>
</table>

Model D3				228.1	8.7E+14	0.9980
100C	---	---	---	228.1	8.7E+14	0.9980
5P95C	228.1	8.7E+14	0.9980	238.6	4.4E+15	0.9981
10P90C	238.6	4.4E+15	0.9981	238.4	5.2E+15	0.9988
20P80C	238.4	5.2E+15	0.9988	224.1	6.3E+14	0.9986
50P50C	224.1	6.3E+14	0.9986	217.4	3.2E+14	0.9983
80P20C	217.4	3.2E+14	0.9983	236.1	1.5E+16	0.9986
100P	236.1	1.5E+16	0.9986	---	---	---

Model D4				223.1	5.6E+14	0.9980
100C	---	---	---	223.1	5.6E+14	0.9980
5P95C	223.1	5.6E+14	0.9980	229.2	1.2E+15	0.9988
10P90C	229.2	1.2E+15	0.9988	229.5	1.4E+15	0.9992
20P80C	229.5	1.4E+15	0.9992	208.1	4.3E+13	0.9992
50P50C	208.1	4.3E+13	0.9992	195.5	9.4E+12	0.9993
80P20C	195.5	9.4E+12	0.9993	219.0	6.0E+14	0.9983
100P	219.0	6.0E+14	0.9983	---	---	---

$C =$ coal, $P =$ pine.
Fig. 1.
Fig. 2.