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Abstract A perturbation technique is proposed for solu-
tion of the generalized equations governing the thermal
behaviour of thin metal ®lms described by a hyperbolic
two-step model. The generalized equations of this model
contains diffusion terms in both the electron and lattice
energy equations and assumes that incident laser radiation
is absorbed by both the electron gas and solid lattice to
account for the thermal behaviour of semiconducting and
impure metals. A perturbation technique is utilized to
eliminate the coupling between the electron and phonon
energy equations when the normalized temperature dif-
ference between electrons and phonons is a small quantity,
which is true in materials exhibit high coupling factors.

List of symbols
C heat capacity Jmÿ3 Kÿ1

CR heat capacity ratio, Ce=Cl

G electron±phonon coupling factor, Wmÿ3 Kÿ1

G Green's function
h Planck constant, J s
kB Boltzmann constant, J Kÿ1

K thermal conductivity Wmÿ1 Kÿ1

KR thermal conductivity ratio, Ke=Kl

L ®lm thickness, m
me effective mass of electrons, kg
ne electron number density per unit volume 1/m3

na atomic density per unit volume, 1/m3

N number of atoms in the solid
Pe dimensionless heat source in the electron gas,

SeL2=TiKe

Pl dimensionless heat source in the lattice, SlL
2CR=TiKe

q conduction heat ¯ux, Wmÿ2

Q dimensionless conduction heat ¯ux, qL=TiKe

Se volumetric heat source in the electron gas, Wmÿ3

Sl volumetric heat source in the lattice, Wmÿ3

t time, s

T temperature, K
TD Debye temperature, K
Ti initial temperature of both lattice and electron gas, K
vs speed of sound, m sÿ1

x spatial coordinate, m
X dimensionless spatial coordinate, x=L

Greek symbols
d Dirac's delta function
D difference function
� dimensionless small parameter
h dimensionless temperature, �T ÿ Ti�=Ti

s dimensionless time, tKe=�L2Ce�

Subscripts
e electron
i initial
l lattice

1
Introduction
In applications involving high-rate heating induced by a
short-pulse laser, the typical response time is an order of
picoseconds (Qiu and Tien, 1992, 1993) which is compa-
rable to the phonon-electron thermal relaxation time. In
such cases, thermal equilibrium between phonons and
electrons cannot be assumed and heat transfer in the
electron gas and the metal lattice needs to be considered
separately. Models describing the non-equilibrium thermal
behavior in such cases are called the microscopic two-step
models. In the literature, there are two microscopic two-
step models. The ®rst one is the parabolic two-step model
which is pioneered by Anisimov et al. (1974) and ad-
vanced later by Fujimoto et al. (1984). The second one is
the hyperbolic two-step model introduced by Qiu and Tien
(1993) based on the macroscopic averages of the electric
and heat currents carried by electrons in the momentum
space. The parabolic two-step model involves two coupled
energy equations governing the heat transfer in the elec-
tron-gas and the metal-lattice. Solutions for this model can
be found in the literature for different operating and
boundary conditions and using different solutions meth-
odologies (Al-Nimr, 1997; Al-Nimr and Masoud, 1997;
Tzou et al., 1994; Tzou, 1995a). On the other hand, the
hyperbolic two-step model, in its simplest form, involves
three coupled equations. This model does not account for
the conduction of heat by phonons and for the absorption
of the incident laser energy by the electron gas (Tzou,
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1995b). When these effects are included, the model leads to
four coupled equations which are dif®cult to solve.

The electron±phonon coupling varies over a wide range.
Some metals have low and some others have high coupling
factors. For example, the coupling factor of gold is about
2:6 � 1016 Wmÿ1 Kÿ1 and that of Vanadium (V) is about
648 � 1016 Wmÿ3 Kÿ1. As the value of the coupling factor
increases, the thermalization time (the time required for
the electron and lattice to reach equilibrium state) de-
creases (Tzou, 1995a, b). Before thermalization, the nor-
malized temperature difference between the electron gas
and the lattice may be small but not negligible. This small
difference is observed especially in materials having large
coupling factors and when the laser duration time is long
enough to enable the electron gas to give part of its energy
to the solid lattice. When the temperature difference
between the electron gas and the lattice is small enough,
the difference may be normalized as a perturbed quantity.
Then, a perturbation technique may be used to eliminate
the coupling between the energy equations. The elimina-
tion of this coupling produces four uncoupled equations
which have the same order as the original coupled
equations.

The objective of this work is to reformulate the general-
ized governing equations of the hyperbolic two-step model
by a perturbation technique. These equations include dif-
fusion terms in both electron gas and solid lattice describing
the thermal behavior of semiconductors and metals with
impurities. Also, the generalized equations assume that in-
cident laser heating is absorbed by both electron gas and
solid lattice. As an illustrative example, a simple problem is
solved analytically by the proposed perturbation technique.
Also, a criterion which determine the parameters affecting
the thermal equilibrium is derived.

2
Analysis
Qiu and Tien (1993) derived the hyperbolic two-step ra-
diation heating model based on the macroscopic averages
of the electric and heat currents carried by electrons in the
momentum space. In the absence of electric current during
laser heating, they arrived at three coupled equations
describing the one-dimensional energy exchange between
phonons and electrons. These equations, in their dimen-
sionless form, are written as:

ohe

os
� ÿ oQe

oX
ÿ H1�he ÿ hl� � Pe �1�

ohl

os
� CRH1�he ÿ hl� �2�

oQe

os
� H2

ohe

oX
� H2Qe � 0 �3�

These equations assume that electronic contribution to
thermal conductivity dominates the phonon contribution
and that the incident radiation is totally absorbed by the
electron gas. This is true especially in pure metals in which
the electronic contribution is usually more than 90% of the
total conductivity (Blakemore, 1974). In the present work,
Eqs. (1)±(3) are generalized by assuming that the con-
duction of heat by phonons is signi®cant and that the

incident laser energy is absorbed by both electron gas and
solid lattice. Assumption that conduction of heat may be
carried by phonons, as well as by electrons, is justi®ed for
metals containing signi®cant impurities or for semicon-
ductors in which the energy is diffused by both solid lattice
and electron gas. It is also known that energy deposits into
materials in different ways, depending on the nature of
heating methods and the structure of materials. For ex-
ample, energy can be deposited simultaneously on both
electrons and phonons, through contact heating at sur-
faces, or selectively on a particular group of carriers by
radiative heating. Radiation excites free/bound electrons
in metals, but excites electrons or phonons in semicon-
ductors. So it is necessary for each one of the energy
equations of the hyperbolic two-step models to contain a
source term to account for that part of incident radiation
absorbed by electrons and phonons.

On the basis of the foregoing discussion, the governing
equations (1)±(3) are:

ohe

os
� ÿ oQe

oX
ÿ H1�he ÿ hl� � Pe �4�

ohl

os
� ÿCR

oQl

oX
� CRH1�he ÿ hl� � Pl �5�

oQe

os
� H2

ohe

oX
� H2Qe � 0 �6�

oQl

os
� H3

ohl

oX
� H2Ql � 0 �7�

where

H1 � L2G

Ke
; H2 � L2Ce

KesF
; H3 � H2

KR
; CR � Ce

Cl
;

KR � Ke

Kl
; Pe � SeL2

TiKe
; Pl � SlL

2CR

TiKe
;

The initial and boundary conditions to be satis®ed are:
For s � 0 : he � hl � Qe � Ql � 0.

X � 0 :
ohe

oX
� ohl

oX
� 0 :

X � 1 :
ohe

oX
� ohl

oX
� 0 :

Equations (4)±(7) are four coupled equations. Elimi-
nation of the coupling between these equations yields four
uncoupled equations which contain mixed derivatives. The
higher order and mixed derivatives resulting from this
elimination raise the dif®culties encountered in solution.
However, in many cases, the coupling between the energy
equations (4)±(7) may be eliminated without raising the
order of the resulting equations and without creating
mixed derivatives. These cases involve situations in which
the incident radiation interacts with materials having very
large coupling factor or cases in which the laser pulse
duration is not too short. In these cases, the difference
between the electron and lattice temperature may be
written as a perturbation,

he�s; n� � hl�s; n� � �D�s; n� �8�
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where D�s; n� is a function of space and time, and
� � 1=H1 is a dimensionless small parameter. Consider,
for an example, the interaction of laser beam with a very
thin lead ®lm of 1� 10ÿ6 m thickness. For lead, the
thermal conductivity and coupling factor have values of
35 Wmÿ1 Kÿ1 and 12:4� 1016 Wmÿ3 Kÿ1, respectively (Qiu
and Tien, 1992; Tzou, 1995 a, b). Under these conditions,
H1 � 3500 and a result, ��� 1=H1� may be considered as a
very small perturbed quantity. Examples of other metals
having very large coupling factor (i.e., having very small
perturbed parameter �) are Vanadium, Niobium,
Titanium, etc.

Elimination of he ÿ hl between Eqs. (4) and (5), using
Eq. (8), and droping terms of order � and higher, yields:

ohe

os
� ÿC1

oQe

oX
� oQl

oX

� �
� C2Pe � C3Pl � O��� �9�

where

C1 � CR

1� CR
; C2 � C1; C3 � C1

CR

Now, differentiating both Eqs. (6) and (7) with respect to
X, and combining the results with regard to Eq. (8), yield,

o2

osoX
�Qe � Ql� � �H2 � H3� o

2he

oX2

� H2
o

oX
�Qe � Ql� � O��� �10�

Elimination �Qe � Ql�o=oX between Eqs. (9) and (10)
gives:

o2

osoX
�Qe � Ql� � �H2 � H3� o

2he

oX2
ÿ H2

C1

ohe

os
� H2C2

C1
Pe

� H2C3

C1
Pl � O��� �11�

Differentiating Eq. (9) with respect to s yields:

o2he

os2
� ÿC1

o2

osoX
�Qe � Ql� � C2

oPe

os
� C3

oPl

os
�12�

Eliminating o2�Qe � Ql�=osoX between Eqs. (11) and (12)
gives

o2he

os2
� H2

ohe

os
ÿ C4

o2he

oX2
ÿ H2Sÿ oS

os
� O��� �13�

where

C4 � C1�H2 � H3�; S � C2Pe � C3Pl

After solving for he from Eq. (13), Qe may be obtained
from (6) as:

Qe�s;X� � ÿeÿH2s
Z s

0

H2
ohe

oX
eH2s ds �14�

In Eq. (14), it is assumed that there is no conduction of
heat by the electron gas at s � 0. Also, substituting for
he ÿ hl from (8) into (4) yields

D�s;X� � ÿ ohe

os
ÿ oQe

oX
� Pe �15�

and the hl is obtained from (8) as:

hl � he ÿ D
H1

�16�
Now, Ql is obtained from Eq. (7) as

Ql�s;X� � ÿH3eÿkRH3s
Z s

0

ohl

oX
ekRH3s ds �17�

Also, it is assumed that there is no conduction of heat by
the solid lattice at s � 0.

The analytical solution to Eq. (13) is expressed in terms
of Green's function (see, for example, Ozisik, 1993)

he�s;X� �
Z 1

X0�0

Z s

s��0

G�X; sjX0; s��

� H2S�X0; s�� � oS

os�
�X0; s��

� �
ds� dX0 �18�

Here G�X; sjX0; s�� is the appropriate Green's function
for the solution of governing equations (13)and its initial
and boundary conditions with the source term replaced
by the unit impulse function d�sÿ s��d�X ÿ X0�. In terms
of the Green function, the electron temperature given by
Eq. (13) satis®es

o2G

os2
� H2

oG

os
ÿ C4

o2G

oX2
� d�sÿ s��d�X ÿ X0� �19�

Subject to the following initial and boundary conditions:

oG

oX
� 0; X � 0

oG

oX
� 0; X � 1

G � 0; s < s�

oG

os
� 0; s < s� �20�

The initial conditions are based on the causality principle,
which states that there can be no effect experienced at
times prior to the cause. The ®nite integral transforms are
used to solve system (19) and (20). Consider the integral
transform and inversion pair de®ned as (see, for example,
Ozisik, 1993):

�Gm�s� �
Z 1

X0�0

G�X; sjX0; s�� cos�kmX�dX �21�

G�X; sjX0; s�� �
X1
m�0

�Gm�s�
N�km� cos�kmX� �22�

where N�km� is the normalization integral given by

N�km� � 1 for m � 0 and

N�km� � 0:5 for m � 1; 2; 3; . . . �23�
and km's are the eigenvalues by

km � mp �24�
The transform of Eq. (19) satis®es

d2 �Gm�s�
ds2

� H2
d �Gm�s�

ds
� k2

mC4
�Gm�s�

� cos�kmX0�d�sÿ s�� �25�
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subject to

�Gm�s� � 0; s < s�

d �Gm�s�
ds

� 0; s < s� �26�
By a somewhat lengthy but straightforward manipula-
tions, the solution to the system of equations (25) and
(26) leads to

�Gm�s� � cos�kmX0�
bm

eÿ
H2
2 �sÿs�� sin�bm�sÿ s���; s > s�

�27�
where bm �

���������������������
C4k

2
m ÿ H2

2

4

q
. The inversion formula give by

Eq. (22) readily gives the Green function as

G�X; sjX0; s�� � 2

H2
eÿ

H2
2 �sÿs�� sinh

H2

2
�sÿ s��

� �
�
X1
m�1

2 cos�kmX0�
bm

eÿ
H2
2 �sÿs��

� sin�bm�sÿ s��� cos�kmX�; s > s�

�28�
In terms of this solution, Eq. (18) yields the electron
temperature,

he�X; s� �
Z 1

X0�0

Z s

s��0

2

H2
eÿ

H2
2 �sÿs�� sinh

H2

2
�sÿ s��

� �
� H2S�X0; s�� � oS

os�
�X0; s��

� �
ds� dX0

�
X1
m�1

Z 1

X0�0

Z s

s��0

2 cos�kmX0�
bm

eÿ
H2
2 �sÿs��

� sin�bm�sÿ s��� cos�kmX�

� H2S�X0; s�� � oS

os�
�X0; s��

� �
ds� dX0

�29�
The ®rst term on the RHS of Eq. (29) represents the
steady-state part of the solution remaining after the
transients have died out. Any energy released within any
insulated region will merely distribute evenly over the
entire region after suf®cient time. To proceed further,
the nature of the heating source needs to be speci®ed.
Now, assume an impulse energy source, which is totally
absorbed by the electron gas, released at time s � 0 and
at location X � 0, and given by

S�s;X� � S0d�s�d�X�; �30�
where S0 � C2;C3 � 0 and d is the Dirac's delta function.
Such an energy source could model, for example, the
application of strong laser pulses at the boundary of an
absorbing medium which is encountered in the annealing
of semiconductors (see, for example, Appleton and Cellar,
1982).

Now, with the notation thatZ 1

X0�0

f �s; s�;X;X0�d�X0 ÿ X0�dX0 � f �s; s�;X;X0�
�31�Z s

s��0

f �s; s�;X;X0�d�s� ÿ s0�ds� � f �s; s0;X;X
0� �32�Z s

s��0

f �s; s�;X;X0� od
os�
�s� ÿ s0�ds�

� f �s; s�;X;X0�d�s� ÿ s0�� �ss��0

ÿ
Z s

s��0

of

os�
�s; s�;X;X0�d�s� ÿ s0�ds� �33�

and for s0 � 0, Eq. (33) is reduced to:Z s

s��0

f �s; s�;X;X0� od
os�
�s� ÿ s0�ds�

� ÿ
Z s

s��0

of

os�
�s; s�;X;X0�d�s� ÿ s0�ds�

� ÿ of

os�
�s; 0;X;X0�js��0 �34�

As a result, the temperature distribution is directly
available by inserting Eq. (30) into the general solution
(29), after performing indicated operations as in
Eqs. (31)±(34),

he�X; s� � S0

(
1�

X1
m�1

eÿ
H2
2 s cos�kmX�

� H2

bm

sin�bms� � 2 cos�bms�
� �)

�35�

Also, Qe is found after inserting Eq. (35) into Eq. (14),

Qe�X; s� � 2H2S0

X1
m�1

km

bm

eÿ
H2
2 s sin�kmX� sin�bms� �36�

and D is found in terms of Eqs. (15), (35) and (36) as:

D�X; s� �
X1
m�1

S0cmeÿ
H2
2 s cos�kmX� sin�bms� � Pe�s;X�

�37�
where cm � 2bm � �H2

2=2bm� ÿ �2H2k
2
m=bm�. Also, hl is

found from Eqs. (16), (35) and (37),

hl�X; s� � S0 ÿ Pe

H1
�
X1
m�1

S0eÿ
H2
2 s cos�kmX�

� H2

bm

ÿ cm

H1

� �
sin�bms� � 2 cos�bms�

� �
�38�

A sample of the results will be presented for a thin metal
®lm exposed to a laser pulse as in Eq. (30). The metal ®lm
is insulated from both sides and its thermal behavior is
described by Eqs. (4)±(7) and their initial and boundary
conditions. The schematic diagram of the problem is
shown in Fig. 1. The results are obtained using the
following values for different parameters:
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L � 5� 10ÿ6 m; G � 12:4� 1016 Wmÿ3 Kÿ1;

Ke � 35 Wmÿ1 Kÿ1; Kl � 0 Wmÿ1 Kÿ1; Ti � 300 K;

Ce � 2:1� 104 Jmÿ3 Kÿ1; Cl � 1:5� 106 Jmÿ3 Kÿ1;

Se � 1� 1012 Wmÿ3; Sl � 0 Wmÿ3; sF � 10 ps

Figure 2 shows the spatial variation of the difference
function D at different times. It is clear that this difference
diminishes as s ! 1. This is because hot electrons ex-
change their energy with the cold lattice and in the limit, as
s ! 1, both attain the same temperature.

Figure 3 shows the spatial variation of the electron
temperature at different times. The maximum temperature
occurs at the surface of the ®lm, which is exposed to the
incident laser pulse. As time proceeds, hot electrons near
the hot surface give part of their energy to cold electrons,
which are far away of the hot surface, and to cold lattice. In
the limit, as s ! 1, electron gas and solid lattice attain
the same uniform and steady temperature.

It is clear from Fig. 3 that the boundary condition
�ohe=oX��s; 0� � 0 is not satis®ed at s � 5. This strange
behavior is justi®ed due to the fact that the heating source
term is assumed to vary in the form S � S0d�s�d�X�. This
implies that the source evolves all of its energy at s � 0
and X � 0. At these instant of time and speci®ed location,
the electron gas, which absorbs this energy ®rst, has much
higher temperature than the solid lattice. This implies that
he � hl, and as a result, the perturbation technique fails
near s � 0 and X � 0. However, for times and locations far
from 0, the difference between he and hl is small enough to
be considered as a perturbed quantity, and as a result, the
solution becomes accurate. It is clear from Fig. 3 that the
boundary conditions at s� 5 and at X � 1 and any time
are satis®ed very well.

In all cases, there is no problem if we have selected source
term varies smoothly in time and space. We may assume any
form for the heating source term and insert it directly into
Eq. (29) and carry out the required integrations.

The reasons for selecting S � S0d�s�d�X�, is to simplify
the mathematical manipulations and to get closed form
solutions. It is worth mentioning here the fact that there
are no practical applications involve heating sources vary
in the form of S � S0d�s�d�X�. It is impossible for a source
term to evolve all its energy during a zero time interval and

within a zero thickness layer. If the heat source is of
non zero time duration and spatial thickness and if the
material has large coupling factor, then the difference
between he and hl is small enough to be considered as a
perturbed quantity and the strange behavior in Fig. 3 will
not appear.

3
Conclusion
The hyperbolic two-step model, which describes the
thermal behavior of thin metal ®lms under fast rate of
heating, is generalized by including diffusion terms in both
the electron and lattice energy equations and assuming
that incident laser radiation is absorbed by both the
electron gas and solid lattice to account for the thermal
behaviour of semiconducting and impure metals. A per-
turbation technique is proposed for solution of the gen-

Fig. 1. Schematic diagram

Fig. 2. Transient variation of the difference function

Fig. 3. Transient variation of the dimensionless electron
temperature, he
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eralized equations. The perturbation technique is utilized
to eliminate the coupling between the electron and phonon
energy equations when the normalized temperature dif-
ference between electrons and phonons is a small quantity,
which is true in materials exhibit high coupling factors.
The obtained simpli®ed governing equations are solved
analytically using Green's function transform to get closed
form expressions for the electron and lattice temperatures
and electron and lattice heat ¯uxes.
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