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A new method is proposed for calculating the free energy of the one-dimensional spin-1/2 XXZ
Heisenberg model. The partition function is written in terms of the transfer matrix for a two-
dimensional Ising system, whose maximum eigenvalue is obtained by the Bethe-ansatz method
leading to the free energy in the thermodynamic limit. This method uses no such assumption as the
completeness of the Bethe states that has been proved only partially and yields better results than the
previous methods do.

§1. Introduction

The Bethe-ansatz method”~® has been widely used to study thermal properties of
the one-dimensional spin-1/2 XXZ Heisenberg model, e.g., the specific heat, magnetic
susceptibilities, etc.”~® However, these calculations depend on the string conjec-
ture,'®~'2 or more basically on the assumption of the completeness of the Bethe states
that has been proved only partially.'® In other words, these calculations require the
complete knowledge of all the eigenvalues of the Hamiltonian of the model.

In this paper, we propose a new method for the statistical mechanics of the
one-dimensional spin-1/2 XXZ Heisenberg model, which we call the thermal Bethe-
ansatz method." This method is free from the unproven assumptions mentioned
above, because it is sufficient to obtain only the maximum eigenvalue of the transfer
matrix of an Ising system. It consists in (i) using the path integral idea to transform
the partition function of the model into the one of a two-dimensional Ising
system,'®~?% and (ii) applying the Bethe-ansatz method to find the maximum
eigenvalue of the transfer matrix of the Ising system. Then, the standard procedure
gives the free energy of the model in the thermodynamic limit.!*~%?

Thus, in § 2, we use the Trotter formula to carry out the transformation (i)
mentioned above. The partition function of the Ising system so obtained is rewritten
in terms of the transfer matrix in the “space” direction in § 3. In § 4, we shall analyze
the eigenvalue problem of the transfer matrix by the Bethe-ansatz method and obtain
a set of the eigenvalues which is determined by the solutions to the system of the
- Bethe-ansatz equations. In particular, one of the Bethe-ansatz eigenvalues equals the
maximum eigenvalue of the transfer matrix as is proved in § 5. Then, the maximum
eigenvalue leads to the free energy of the model in the thermodynamic limit.

Thus, for calculating the free energy of the one-dimensional spin-1/2 XXZ
Heisenberg model, it is sufficient to solve analytically or numerically only the
Bethe-ansatz equations corresponding to the maximum eigenvalue of the transfer

*) A part of the D. Sc. Thesis submitted to Gakushuin University in March, 1988.

220z ¥snbny oz uo 1senb Aq £182581/€8./v/18/210nie/d)d/woo dno ojwsepede//:sdiy Wwoly papeojumog



784 T. Koma

matrix. In fact, the free energy of the isotropic XY model is obtained analytically
in §6. As is well-known, this special case was solved analytically by Lieb et al. in
1961 and by Katsura in 19622 Their methods are different from ours. Quite
recently, Inoue and Suzuki® diagonalized the transfer matrix of this spec1al case by
the method of the Jordan-Wigner transformation. Further, in § 7, we calculate the
zero-field free energy and the susceptibility of the isotropic ferromagnetic model by
solving the system of the Bethe-ansatz equations numerically, and obtain better
results than those obtained by the previous methods.” 92932

§2. Path integral form of the partition function

The Hamiltonian of the one-dimensional spin-1/2 XXZ Heisenberg model is
given by™®

. N '
Hy.5 I=J§1HN;J‘,J'+1 , (2-1)

-ﬁN;j,jH :=2_i(1_ 6N;j‘ &N;j+1+AEN;j26=N;j+lz)_2_1h( 6N;jz+ 5N‘;j+1z) s (2'2)
where B in (2-1) stands for the boundary condition,

P : periodic, ON;N+1—On;1,

B= =~ 2-3
{F : free, . Hy;vwva=0 2-3)

and Oy,; is the spin operator for the site j (=1, ---, N),
On;; =1Q-®IQORIR-®1,

an N-fold tensor product having the Pauli matrix ¢ at the jth place; 4 and % are the
anisotropy parameter and the external ﬁeld respectively. Our free boundary condi-
tion is different from the standard one Gw,~+1=0. It is convenient for the following
calculation. ’

By using the path integral idea, we transform the partition function of the model
with an even number of spins,

Zuns=Tr expl— Bums]  (n=1 2, ) (2-4)

into a partition function of a two-dimensional Ising model in the following way, where
B is the inverse temperature and Tr denotes the trace of a matrix. »
We follow Suzuki,'”~'"%2 t0 begin with, dividing the Hamiltonian (2-1) with an
even number of spins into two parts such that each one is a sum of operators all
commuting with each other:

(1) EHZn 3 25-1,25 ) R (2‘5)
and
ﬁzn,B(z) =gﬁzn; 25,25+1 (2 ) 6)

*) The symbol := signifies definition.
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Thermal Bethe-Ansatz Method fo7; the Spin-1/2 XXZ Heisenberg Chain 785

to write

Zzn,Bzﬂl}m ZZn,B(M) (2 ° 7)

by invoking the Trotter formula,

explH+H ’]=}li£n{exp[ﬁ/M lexp[H’ /MY, (H,H’: matrices) ‘
in terms of the approximate finite-M partition function,
VA ‘M)#Tr{ex [—ﬁﬁ ‘”}ex [—ﬁﬁ ‘2’]}M (2-8)
2n,B P M 2n P M 2n,B . ‘

We call M the Trotter number.
Let us first put (2-8) into a path integral form,

Zzn,B(M) = %( C()anlexp]: - %ﬁznm] | w2n2>< wznzlexp[ —*‘]'%ﬁzn,zz(z)] | a)2n3>' "

‘"<(l)2n2M|eXp[_%ﬁzn,B(z)]la)an> , _ (2-9)

" where wzr* ={(0*, -+, 02") and ‘ _
!0)2n> :=|01>®"'®|62n> ’ (2‘10)
with

lo> =

and the summation runs over all the “paths” 2 :=(w2.', ***, @2,"™), that is, over all the
configurations wz.* for each “time” & (£=1, -+, 2M)." The matrix elements in (2-9)
are easy to write down because the summand either in (2:5) or (2+6) all commutes
with each other. Thus,

A’ n
<a)2n2”1|exp[ - %Hzn(l):' | Wan?"> :jl;ll Z'( sz—lzl_l,’ o227 Ozj—lzl, 0'21'21) (2 . 11)
and

<a)zn“|exp —ﬁﬁzms(z) | a)znZl“}
v M

n
{Jl;[l T(62j2l7 O2j41°h: 62}‘2”1, 02j+12l+1) s (BZP)
n—1 . .
61:2!]11 T(GZjZl, O‘2j+121: O.2j2l+1’ 0.2]_+121+1) (B=F)

(I=1,-, M) (2-12)
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786 T. Koma

with periodic bbundary conditions, namely, one in the “time” direction,
oMM=g, (=1, -, 2n)

and the other in the “space” direction,
gmit=0",  (k=1,--,2M)-

where
Z'(O'ik, ij: Gil, Gjl) :=<O‘ik, O'jk|exp[—%ﬁz;i,jj||o‘il, Gjl> V (2'13)
and

O 124_1(1 + GznkO'anH)(]. + 61k61k+1) . : (2 . 14)

The expression (2-9) has the form'®~1™19%) of the partition function of a two-

dimensional 2z X 2M Ising spin system with its substates in the £th row spec1ﬁed by

@2n" (k=1, -+, 2M) and with the Boltzmann weight for each state 2=(wz.?, -, @2,2™)
given by the corresponding term in (2-9). In other words, one may think of (2- 13) as
a Boltzmann factor for a four-spin interaction. Then, each term in (2-9) is represent-
ed by such an assembly of the interaction “paths”.

§3. Transfer matrix in the “space” direction

The free energy per spin of the present model (2-1) in the thermodynamic limit is
given by
A(B) :=—87'lim(2n)'log Zons . ' 3-1)
THEOREM 3.1. For any (8, 4, H)ER?® the limit z1 in (3-1) exists and is
independent of the boundary condition B of (2-3).

This theorem can be proved® by using an inequality related to Peierls’s.
Then, (2-7) gives the free energy per spin in the thermodynamic limit,

fi=— B mlim (27) ' log Zans™ . (3-2)

THEOREM 3.2. Let (8,4, B)ER®. Then, the limit
FH0 = ,6’“lni¥n(2n)“llog Zon, g™ ' (3:3)

exists and is independent of the boundary condition B of (2:3). Further, the free.

energy per spin of the model (2-1) in the thermodynamic limit can be written as

f=11m f(M) ,

i.e., the order of limits in (3+2) can be 1nterchanged 19~22) A rigorous proof along the
line of Suzuki and Inoue®*? is given in Appendix A.

In order to calculate the limit # 1 oo in (3- 3) we rewrite (2:9) in terms of the
transfer matrix in the “space” direction.
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Thermal Bethe-Ansatz Method for the Spin-1/2 XXZ Heisenberg Chain 787

Note that
T(_Gik, O‘jki Gil, _Gjl)=<dik, Gz’l’ Vz;i,j'djk, Gjl> , ‘ (34)
where
Vey s :=exp[—%( G2, — 52;:'2)] Ve, i,j(o)exp[z%hj( G2, f— 52;jz)] ' (3-5)
and ‘

I’/‘vz;i,j(o)1=(2D)'_l[D2+ 5z;i‘52;,-"+ Ez;iyaz;jy+D2(1—ZC)52;,’?52;]'2] : (3'6)
with _
D=exp[p4/2M] and c=exp[—pB/M]cosh(5/M) . (3:7)

Therefore, from (2-11), (2-12) and (2-14), the finite-M partition function (2:9) can be
rewritten as

Tr (E'ZMEZM)n s (BZP) )
Zana "= 2 {02l § (R uRew)" R oS rlw'me>, (B=F) (3-8)
using the transfer matrices in the “space” direction,
- Mo - Mo
=1;I I/ZM;Zj—l,Zj and R'n 1;_[ VM 25,25+1 4
where
M
_1;[ 27'(1— Goum;2i—1° B am, 27) (3-9)

and Vau,:; is a 2M-fold tensor product 1Q-+-®1 with two 1’s at the i and jth places
replaced by the matrix V,.; with the periodic boundary condition, .

I/ZM,ZM,ZM-i-l_ I/ZM,ZM,I

Further, we rewrite (3-8) into the form (3-12) below which is more convenient for
the purpose of applying the Bethe-ansatz method to the eigenvalue problem of the
transfer matrix. '

Note, to begin with, that the matrices Rax and R’2x have the following properties:

R'ow=Tow ‘RowTor, . [Rom, (Ton)?]1=0,
where
Tow := Som;120Sew2.0m St 2m-12m
with , |
Somisom =20+ Gomss* Gunam) . G=1, -+, 2M —1)

The operator Tew shifts any periodic array oAf the spin states by one lattice unit
backwards in the “time” direction. Clearly, (Ton)*=1. Therefore, for any integer
L>0, we obtain T
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788 T. Koma

(R 2R )™ = (Ton™ Rors TomRom Tom )™
=(Tosr " Row Torr™ Reoar )™
=(Tanr )™, (3-10)
where
Uz = Ton ™" Row . (3-11)

" Let us now restrict # to multiples of M, that is to say, n=ML (L=1,2, ---). Then,
(3-8) can be rewritten as

g an_ Tt (O™, (B=P)
PMLE 2, M< waml 8 r( Uzt Tow " Srlwanr> . (B=F) (3-12)

wWan, w2

Therefore, by Theorem 3.2 and the first line of (3:12), we obtain :

THEOREM 3.3. The finite-M free energy of our system with B=P can be written
as

f(M)= —B_llog Aszax

max

in terms of the maximum eigenvalue Az
direction of our Ising model.
The second line of (3:12) will be used in the proof of Theorem 5.3 below.

of the transfer matrix Uz in the “space”

§4. Thermal Bethe ansatz

%

max

of the transfer matrix Usn, we
1),34),35)

In order to obtain the maximum eigenvalue Az
assume that the eigenstates of U.x have the Bethe-ansatz form,

|Bk>: 2 . ZP:APF(ZH, yl)"‘F(sz, yk)|y1, YR (k=0, 1, ZM) (4'1)

1<y1<<ye=<2
with

ajzj(yﬂ)/z (y — Odd)

F(z, y)={ 2 . =1, k) o (4-2)
2z (y=even),

where |y, -, &> is the state with all the spins up except those % spins at the sites i,
-+, ¥&; the summation runs over all the possible distributions of the £ down spins, and
over all the permutations P of (1, -*-, £). {2, ax} and {Ar} are complex numbers to be
determined as follows. ;

As in the original Bethe ansatz (see Appendix B for the details), the eigenvalue
equation leads to the conditions,

_ D'EN— D+ (Dc)?
Zi= Aj(/ij—D_lE_l) »

a;=(Dc) (H—DT'E™"),  (=1,-k)  (4:3)
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Thermal Bethe-Awnsatz Method for the Spin-1/2 XXZ Heisenberg Chain 789

A(P1,“-,P(j+1),PJ',"-,Pk)

A(P1,,P5,P(G41)nPR)

Apidpi+1) — ZDSE—IZAP;‘ + (DSE_I)Z

= Aroen—2DE Drgryt (D I L T (4-4)
and to the eigenvalue,
o e =(DS)" A+ Aw , 4-5).
where '
s=1—c, E=exp|ph/M], A=D’—s"'sinh(B4/M) (4-6)

and A, --+, A are determined by the system of the Bethe-ansatz equations,
[ D'EA;—D*+(Dc)? ]M
/L'(/L'—D_IE_I)
_( 1)k IH A /1[ 2DsE~ lA/ll“i‘(DSE 1)2 (
=1t A —2DsE " A+ (DsE™Y)?

]':1’...’/?) (4.7)

In particular, for the isotropic XY -case, 4=1, we have A=0. Therefore, we obtain :

Remark 41. For 4=1, the Bethe-ansatz equations (4:7) can be rewritten as
—~D™(Ez "+ E™)A—(Ds)z, " =0 | (4-8)
with '
Z=(—1*.  (G=1,, k) (4-9)

Similarly, we have the following remark.

Remark 4.2. In the high temperature limit, #=0, the Bethe-ansatz equations (4:7)
can be rewritten as

Aj[Aj_(;Zj_1+1)]=0 . (410)
with ,
F=(-1* =1, k) (4-11)

We define K* to be the set of all the solution vectors A=(A, ---, A) (£=0,1, -

2M) to the system of the Bethe-ansatz equations in Remark 4.1 such that the 2’s in
(4-9) satisfy the condition,

itz . (i#5) ' (4-12)
Further, we define ' '

Re :={z| z>0}.

Lemma 4.3. Let A*Y&€K**. Then, for any (B, 7)< Rr X R, there exists a solu-
tion A to the system of the Bethe-ansatz equations (4+7) analytic in a neighborhood 9
C C® of (B, 4, )=(Bo, 1, ho) such that A=A*" for (8, 4, h)=(ps, 1, ko) and that the
Bethe state (4+1) constructed from the solution A is non-vanishing.
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790 ’ T. Koma

Proof First, we show the existence of A. For this purpose, let

D'EA;—D*+(Dc)?
A A — D‘IE“)

21 g[/l/h 2DsE~ 1A/11+(DSE 1)2]
Aidi—2DsE ™ A7;+(DsE~)?

-M log[ ]—2m'nj— in(k—1)

(]'=1, e k)

with integer #; (=1, -, k). Then, the Bethe-ansatz equations (4-7) can be rewritten
as g;=0 (j=1, ---, k). Therefore, by the well-known theorem on implicit functions, it
is sufficient to show that the Jacobian determinant,

D(gl, y gk)
D(A, +, As). |
is non-vanishing for A=2*" and (8, 4, #)=(8o, 1, ko). Since A=1, it is easily shown
that tlie Jacobian matrix becomes diagonal with the diagonal element being given by
D'E 1 _ 1 } '
D_IE/L'XY'F(DS)Z AT /1,7')“,'—1)_11‘?_1

Ji=M [
Therefore, it is sufficient to show that J;#+0 (j=1,:-, k). By the Bethe-ansatz
equations (4+8), J;; can be rewritten as

_ 2T =D B+ B
]J'J'_ ijy(/}jxy_D—lE—l) ’

where 27 (=1, ---, k) are those determined by.(4:9). Clearly, the numerator equals
the derivative of the left-hand side of (4:8) with respect to A; except for the factor
(—M). This implies that if J;; vanishes, then the discriminant ‘of (4 8),

D[E(2/")"+E7 P+ 4(Ds)(2)™

- must vanish. However, from the definitions of (s, D, E) and (4-9), it is easily shown
that the discriminant is non-vanishing. Thus, all the diagonal elements J; of the
Jacobian are non-vanishing. Therefore, the Jacobian determinant is non- Vamshmg
also.

Next, we show that the Bethe state (4-1) constructed from the solution A is
non-vanishing for (8, 4, 2)=(8,, 1, ko).

Note that for:4=1, (4-4) becomes

Ap=sgn(P) A(1,~--,k)
 where sgn denotes the signature of the permutation P. In particular,

<2, 4, e, 2lek>:A(l,-A-,k);Sgn(‘P)ZPIXY(ZPZXY)Z'"(ZPkXy)k

:A(l,-n,k)ZlX XYE[(ZJXY Zixy) y
1<y
where the second equality is obtained by the Vandermonde determinant. This
implies that the Bethe state is non-vanishing because of the condition (4:12)." Thus,
the proof of the lemma is complete. [
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Theirmal Bethe-Ansatz Method for the Spin-1/2 XXZ Heisenberg Chain: 791

Lemma 4.4. Let A=(A, -+, Ax) be a solution to the system of the Bethe-ansatz
equations (4-7). Then, there exists a polynomial @ of A; (=1, ---, k) and the param-
eters (s, D, E) such that

P, s, D, E)=0'. ()'=1, e, k) ' (4-13)

Proof From the definitions of the parameters (s, D, E, ¢, 4), the Bethe-ansatz
equations (4:7) can be rewritten as the algebraic equatlons with £ unknowns (4, -,
Az) and the parameters (s, D, E). In addition, the statement_ of Lemma 4.3 implies
that the Bethe-ansatz equations (4-7) are regular, i.e., these have a finite number of
solutions. Therefore, by applying the elimination method to (4-7), we obtain (4-13). [

We wish to treat similarly the solutions to the system of the Bethe-ansatz
equations in Remark 4.2. However, if some of the elements of the solution A to (4-10)
vanish, then the Jacobian matrix corresponding to the one in Lemma 4.3 has an
indeterminate form 0/0. In the following, we consider only those solutions to (4-10)
other than 4 such that some of the elements of A vanish, the latter being unnecessary
for calculating the free energy as will be shown in the next section.

We define K° to be the set of all the solutions A=(As, ---, A) (=0, 1, ---, 2M) to the
system of the Bethe-ansatz equations for =0 (see Remark 4.2) such that A,+0 (j=1,

-, k) and the z’s in (4-11) satisfy the condition (4-12).

Lemma 45. Let ’€K°. Then, for any (4, ho)E Cé, there exists a solution A to
the system of the Bethe-ansatz equations (4-7) analytic in a neighborhood 9 C C? of
(B, 4, B)=(0, L, ho)- such that 1=A2° for (B, 4, k)=(0, 4o, ho) and that the Bethe state
(4-1) constructed from the solution A is non-vanishing.

§5. Maximum eigenvalue of the transfer matrix

In order to show that one of the Bethe-ansatz eigenvalues (4-5) equals the
maximum eigenvalue /A:»™* of the transfer matrix Uz, we study the properties of
these eigenvalues.

Lemma 5.1. For any (B, 4, h)ERpXR2 the maximum eigenvalue Azu,.™* of
Uon v is positive and simple, where the subscript 4 denotes the restriction to the &-
down-spin subspace.

Proof In the foregoing basis system (2-10), the matrices R.» and R’y have
positive diagonal elements and non-negative off-diagonal elements. Further, non-
vanishing off-diagonal elements connect every two spin arrangements with one pair of
neighboring opposite spins flipped. Therefore, any two basis vectors with £ down
spins can be connected with a positive matrix element by sufficiently many applica-
tions of R’ zMRzM, but two basis vectors with different numbers of down spins can never
be connected. Thus, the lemma follows from (3- -10) and the Perron-Frobenius theo-
rem. [J

Since the eigenvalue Azx; »™* is a root of the characteristic equation of the matrix
Usm, x, we obtain :

Corollary 5.2. For given (B, 4, h)E Rr X R?, there exists ‘a neighborhood 9 C C?
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of (8, 4, k) such that the eigenvalue /™" is simple and analytic in the three
complex variables (8, 4, %). )

THEOREM 5.3.
AZMmaszZM; 1 (5 . 1)

Proof TFor any state |wsmd, 6rlwzny is an M-down-spin or zero vector by (3-9).
Therefore, from Theorem 3.2 and (3:12), we obtain (5-1). [

Next, we study the properties of the Bethe-ansatz eigenvalues (4+5) in the 4=1
case, i.e., the case of the isotropic XY model.

Lemma 5.4. For 4=1, the limit L t oo of
f?ﬁ,‘“ :=[(2/DY" R’ oseRoua]"*
with
exp(—B/M)=@2ML)"'r. and Bh=L"'r>» (m, }z=const) (5-2)

becomes the density matrix of the isotropic XY model, i.e.,

- ' oM
lLiTm RZM(L)=eXp[2—17’121( Gom; 7* Gonts 41"+ Gawr, 7 Gom, 5417)] . (5-3)
© Jj=

Proof Since the matrix (3-6) can be rewritten as
Vz; i,j(0)=2_1D[1+(7/1/2ML)( 52; ilaz;jx—i_ 5:2; iygz;jy)A—(?’l/ZML)z 52; izézz;fz] ’

we obtain (5-3) from the definitions of the matrices. [
We define p*'=(u, -, u) (=0, 1, -+, 2M) by

=2 DBz + E)+ /D (B T E P+ DSV |
with

z;=exp(2 7riI‘,-/M ), | , » (5-4)
where

Li=—2k—1)+j—1. (=1, &)
Further, we define N

Aon, ol 1) :=(Ds)™ *p pay. . (B=0,1, -, 2M)

Then, from the definitions of the sets K*¥ and K°, we have:
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Thermal Bethe-Ansatz Method Jor the Spin-1{2 XXZ Heisenberg Chain 793

Lemma 5.5.
,U(k)EKXY
and
LPeEK® for B=0. (k=0,1,-,2M)

Lemma 5.6. Let 4=1. Then, for any (8, #)ERxv X R, the maximum eigenvalue
Ao, 2™ equals Aau; 2(12), where Ry is the set of non-negative numbers.

Proof We consider first the case 8>0. From Lemmas 4.3 and 5.5, Aau, «(1)

becomes the Bethe-ansatz eigenvalue of the transfer matrix U,». Therefore, by
(3-10),

Now, 2 :=[(2/D)" Aspa, () P '

“becomes an eigenvalue of the matrix Ro»® in Lemma 54. Further, we consider the

limit L 1 o in Lemma 5.4 so that from the definition of Aaw; (1) and (5-2), we obtain.

lim A, A =exp (1 Z[(2)"+ ()1 ‘. (5:5)

The right-hand side equals the well-known maximum and simple eigenvalue®” of the
density matrix of the isotropic XY model (5-3) in the .-down-spin space.

We prove the statement of the lemma by deducing a contradiction from the
assumption that Aaw; s™*5 Azm, «(12) for B and /% as determined by (5-2) for a certain
Lo. :
Since Az 2™ is simple and analytic as shown in Corollary 5.2, Aaw,.™ with L
=Lo+1 is not.equal to Asm,s(zr) with L=Lo+1. The same results holds for the
maximum eigenvalue of Rum;»®. Therefore, the limit L1 00 of /s, " is not the
maximum one, or is degenerate. This contradicts the above result (5-5). Thus, the
case 8>0 has been proved. In the case =0, consider the limit 21 0. [J

For the 41 case, we consider the analytic continuation of the solutions to the
system of the Bethe-ansatz equations (4-7) and the corresponding eigenvalues (4-5)
with respect to 8 or 4.

Lemma 5.7. For any (4, h)E R?, there exists €>0 such that for AE]0, €), the
Bethe-ansatz equations with £ unknowns in (4-7) have the unique solution A such that
for =0, =" (B=0) and that the corresponding Bethe-ansatz eigenvalue (4-5)
‘equals the maximum eigenvalue Azu; k"‘a" of the transfer matrix Uzu &

Proof From Lemmas 4.3, 4.5 and 5.5, there exists a solution A to the Bethe-ansatz
equations with £ unknowns in (4-7) analytic in a neighborhood 9C C?® of (8, 4, h)
=(0,1, 2) such that for (8, 4, B)=(0,1, k), A=¢®. Therefore, the corresponding
eigenvalue Aau;» of (4-5) is an analytic function of (8, 4, %) in 9. Further, from
Corollary 5.2 and Lemma 5.6, there exists a domain 9'C 9 such that Asw, » = Aou, s™*
in 9. Therefore, from Lemma 4.5 and Corollary 5.2, one can find the analytic
continuation of the solution A and the corresponding eigenvalue A:u, » with respect to
(8, 4,h) along the path,
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ye:=(0,1—t+1td, k). (0<t<1)

Thus, we obtain the’statemént of the lemma. [J

THEOREM 5.8. For any given (8o, 2o, ho)E Rww X R?, the maximum eigenvalue
Az, ™ of the transfer matrix Usw can be constructed from the Bethe-ansatz
eigenvalue (4+5) with a solution to the Bethe-ansatz equations w1th %k unknowns in
(4-7), where Ryw is defined in Lemma 5.6.

Proof Let A be the solution to the Bethe-ansatz equations which is obtained by
the analytic continuation in Lemma 5.7. Then, from Lemma 4.4, A is a vector-valued
algebroidal function of the complex variable 8 for fixed (4, h)=(b, o). Therefore,
if B is not a singular point of A, then one can find the analytic continuation of 8 and
the corresponding eigénvalue Azu;» with respect to 8 along the path y such that

yC{BE C|Azm; ™ is simple and analytic in S}

from Corollary 5.2 and Lemma 5.7. If f is a singular point of 4, then we consider the
limit 8- B in addition to the above procedure. []

Remark As another proof of the theorem, one can also use the analytic continua-
tion with respect to 4 for fixed (8, #)=(8Bu, ho).
This theorem combined with Theorem 5.3 gives:

THEOREM 5.9. For calculating the free energy per spin of the model (2:1) in the
thermodynamic limit, it is sufficient to find only one solution A to the Bethe-ansatz
equations with £#=M unknowns in (4:7) which leads to the maximum eigenvalue
Azr™™ of the transfer matrix Uew. In fact, the free energy is determined by the
Bethe-ansatz eigenvalue (4:5) as will be shown in the following sections.

To conclude this section, we emphasize the following. One can also apply the
Bethe ansatz directly to the eigenvalue problem of the Hamiltonian (2:1) following
the original way.” However, for calculating the free energy, one needs the assump-
tion of completeness of the system of the Bethe states; this assumption has been
proved only partially.”® If this assumption is correct, one must notice that not all the
solutions to the system of the Bethe-ansatz equations give the eigenvectors of the
Hamiltonian;'® we have to examine each solution to select the right ones. In our
thermal Bethe-ansatz method, it is sufficient to find only one solution to the Bethe-
ansatz equations as shown in Theorem 5.9.

§6. Isotropic XY case

In this section, we calculate the free energy per spin of the isotropic (4=1) XY
model in the thermodynamic limit as an example. In the following, we restrict 8 and
% to non-negative numbers, respectively.

From Lemmas 5.3, 5.6 and the definition of Az, M(/l) we have

log Aap™®*= —2—]B+]M :

with
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Ju= iﬂ;log{Z‘l[(Ezj‘1 +E N+ /(Ez '+ E)*+4sinh*(8/M )z 11} .
Thus, for a sufficiently small 5,

fmz%ﬁl_éndx log[Ez, '+ E~'+ 24z, *sinh( 8/M )cos x]

by the formula,
A‘”log[a-%b cos x]dr=rnlog[2 (a+Va*—b*)]. (az=|bl)

But, by Corollary 5.2, this holds for all S&R. The limit M 1 oo can be calculatedvby
using the properties of the z’s of (5-4) as shown in Appendix C. Thus, we obtain

lim log Aay™*= _§+%£”dr log{2cosh B[co§ z+h]}.

Mtoeo

Therefore, by Theorems 3.2 and 3.3, we obtain the well-known result for the free
energy of the isotropic XY model,**¥

7(B, h) =%——,}7[—£”dx log{2cosh Blcos x+ Al} .

Recently, Inoue and Suzuki® obtained the same result by diagonalizing the
transfer matrix of this special case by the method of the Jordan-Wigner transforma-

tion.

§ 7. Isotropic ferromagnetic case

As a second example, we calculate the low temperature limit of the zero-field free
energy and the susceptibility of the model (2-1) with the anisotropy parameter 4=0.
Here, we have to resort to numerical calculations to solve the system of the Bethe-
ansatz equations. ‘

- For the purpose of studying the properties of the Bethe-ansatz equations (4-7) for
4=0 and the state with M-down spins, it is convenient to apply the transformation
Aeyg, ‘ ’

EA=[Qc) " —ig;] ' +s, (=1, M) (7-1)
where E, ¢ and s are defined in (3+7) and (4:6). Then, we have
Remark 71. The solution ¢“*(8=0) in Lemmas 5.5 and 5.6 transforms into

gj(o) :=—2‘1tdn[ﬁ(2j—M—l)] . (]'z]_, s M) (7-2)

Therefore, upon taking the logarithm, the system of the Bethe-ansatz equations
(4-7) for 4=0 whose solution satisfies the condition,

AHB=0)=w"(B=0) (=1, M) | ' (7:3)
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can be rewritten as

—24Bh/M +2[tan""(Ag;) —tanf‘(Zéqj)]
—Zj-M-D+L St (s(a—ad],  G=1,, M) (7-40)

where we take the principal value of tan™' and
A :=2cs/(1+c). (7-5)

From Theorem 5.3, Lemma 5.7 and Remark 7.1, we obtain :

Lemma 7.2. Let hER. Then, there exists e >0 such that for any BE€[0, &), the
system of the Bethe-ansatz equations (7-4) has the unique solution ¢; (j=1, -, M)

which gives the maximum eigenvalue /2»™*= Azu, »™ of the transfer matrix. Usn.

max

We rewrite the maximum eigenvalue /2™ in terms of the solution ¢; (=1, -,

M). By (7-1) and (7-5), we have
log A;=—Bh/M +log(1+c)+2 log[1+(Ag;)?]
—27og[1+(2c¢q;)*]—i tan"(Ag;)+ i tan'(2¢cq;), (=1, -, M)

where we take the principal value of tan™ and log. Therefore, by (4-5) and (7-4), the
maximum eigenvalue can be rewritten as

log Aer™ =M log(1+c)+ Z‘IjIZZ}l{log[l +(Ag)*— ldg[l +(2cq;)} (7-6) -

in terms of the solution ¢; (=1, -, M) in Lemma 7.2.
To calculate the maximum eigenvalue (7-6), we prepare the following two lem-
mas. :

Lemma 7.3. Let hER. Then, the unique solution ¢; (=1, ---, M) for the state

with M=2m down spins (m=1, 2, ) in Lemma 7.2 satisfies
qm‘i‘j:_Qj*‘- (j:l, B m) (7.7)
Therefore, the system of the Bethe-ansatz equations (7-4) can be written as

— ifh/m+2[tan"'(Ap;)—tan'(2¢p;)]

=r(2j - 1/ @2m)+ M“g{tan"‘[S(pj—pz)] +tan™[s(p;+ )]}, G=1, -, m)
' (7-8)
where "
pr=ames.  G=1,,m) (7-9)

Proof From the assumption ZER and the form of the system of the Bethe-
ansatz equations (4:7) for 4=0, we know that if (4, ---, Ax) is a solution, then (A/*, -+,
An®) is also a solution. - Therefore, (7-7) follows from the positivity of the maximum
eigenvalue Aau, ™ (see Lemma 5.1), the uniqueness of the solution which gives the
'maximum eigenvalue and the transformation (7-1). [
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- Lemma 74. There exists €>0 such that for any SE[0, ¢), the solution p; (=1,
-+ m) in Lemma 7.3 can be written as a power of series in A& R if % is sufficiently
small, '

pi= 0,4 iho;V+ W ;P + il 0,0+, (=1, m)
where o;? (I=0, 1, ) are real numbers determined by the system of the Bethe-ansatz
equations (7-8).

Proof Let gi(h) (j=1, -+, M) be the unique solution in Lemma 7.2. Then, by
- applying the transformation %#— —#% and taking the complex conjugate of (7-4), we
obtain \

a)=g(—my*. (=1, M)

This property combined with Lemma 4.5 and (7-9) gives the statement of the lemma.[]

By Theorem 3.3 and the above two lemmas, the finite-M free energy can be
written as

f(M):f(M)(hzo)_2—1h2x(M)+ s

where the finite-M zero-field free energy f™’(2=0) and the finite-M susceptibility "
- are given by

S¥(h=0)=—MBlog(1+c)+B~" é {log[1+(2cp,)*] —log[1+(Ap;”)1}
(7-10)

and

g g1 (o oyl 2eFTL— (2o, ™F] _ A1~ (Ao,
1rM=28 J_Z:I[(PJ( )){ [1+(2co, ") [1+(Ap, @) }

A? @2c)
+ ijw)pjm[ A0 1T ey ]] , (7-11)

respectively; 0,9, 0,V and ;¥ (j=1, -, m) are determined by the system of the

Bethe-ansatz equations,

2[tan~'(Ap,”) —tan™(2¢c0;,)]

=n(2/—1)/2m)+ m“g{tan“[S(pj“”— p:P)]+tan"'[s(0/ "+ 0]},

(7-12)
_ ApM  2c0®
Bl (Ao F 1% (oo,
ST RS N S S R
T+ 550, 0/ " T4 550,01 i)

and
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Ap®  200,” | Ao,NAp/Y) _ 2¢0,”(2cosV)
1+(A0, 7P 14+Q2co/ ) [1+(Ap/PF  [1+(2co,")F

. (02— p/?) s(0;?+0,%)
=(2m)” 2{ 1t sz(JpJ«» 0 T 1+ sz(Jp O+ 0,0)?

(0,200 —0:P) | s(0/7+ 0PN,V — pV) }
[1+ %0, — 0.2 [1+5%(0,+ 0,0)F

G=1,,m) (7-14)

We solve the system of the Bethe-ansatz equations (7 -12)~(7-14) for 0%, o,
and p;* (j=1, -+, m) numerically by iteration method. We consider first (7-12). For
given X;(z), we define

p;%()=—(2c) tan[7(2j — 1)/ 2m) + X;(7)]

and proceed to the (i+1)th iteration by
Xj(i+1):(1—a)Xj(i)+am_lé{tan_l[S(pj‘O’(i)—pz“”(i))]

. Htan ' [s(0;0() + 07())] -2 tan™(Ap; ()},
G=1, '...’ m; i=0,1, o)

thus repeating the process, where the acceleration factor « is determined by numerical
experiment for small 7 to minimize the number of times of the iteration for desired
accuracy. The initial values X;(0) (=1, ---, m) are chosen as follows. We recall, to
begin with, that at #=0 the solution to (7-12) is unique and is guaranteed by Lemma
7.2 to give the maximam eigenvalue /A:»™. Then, we proceed with a decreasing

sequence of temperatures 0=3,< 1<+ < ;< -, taking the iteration limit X;(#max) for

Be as the initial value for the iteration for /o’k+1. The initial value for the highest
temperature [ is taken to be X;(0)=0 (=1, ---, m). From the iteration limits for
each temperature, we can obtain the finite-} free energy f‘M)(,B h=0) of (7-10).
Similarly, we can find the solutions o;* and 0;% (j=1, --, m) of the system of the
Bethe-ansatz equations (7-13) and (7-14). Then, the finite-M susceptibility x™ is
obtained from (7+11) and the solution p;* (j=1, :*-, m) so obtained.
Now we have to take the limit- M 1 co. For this purpose, we prepare two lemmas.

Lemma 751771999 The finite-M partition function (2-8) can naturally be extend-

ed to negative integers M. The function Zz»,s™ (M =31, =2, ---) so obtained is even
with respect to M, ie,

M) _ M
ZZn,B( )_Zzn,B( ),

where B denotes the boundary condition (2-3).
Proof From (2-8), we have'?

Zsn B“M)=Tr{exp [ﬁ gznm]exp [ﬁ fon B(z)}}_M
: o LM,
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—_ _Bi o _Bg oll¥
Triexp MHZn,B exp MHZn

=ZZn,B(M) . D
This combined with Theorem 3.2 gives.:
" Lemma 7.6.17719:39
£ = o)

This implies that if /* can be expanded in powers of M, then there appear only
even powers. Thus, approximately for sufficiently large M,

F~ lzlclM—“ ) , (7-15)

Then, by Theorem 3.2, the free energy equals the coefficient ¢, approximately. In
order to find the coefficient ¢; we determine the expansion (7-15) by the least-squares
fitting at several M’s to the calculated 7’ with the degree % being chosen by the AIC
method®” based on the consideration that the fit would not be good enough for smaller
k while numerical errors would be disturbing at larger 2. We remark in passing that
- one may try an expansion in powers of M~ in the same way, but it results in worse
~ fitting than the one from (7-15) in our numerical experiment.

We solve the system of the Bethe-ansatz equations (7-12)~(7-14) of

M=2m=1000, 1100, 1200, 1400,'16'00, 1800, 2000, 2400
for each of the temperatures as given by

(JB)"2=0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20
and of

M=4000  for  (JB)'*=0.02

using the desk-top computer NEC PC-9801F, where J is the exchange integral, whose
value we have taken to be 2 so far. Then, the zero-field free energy (8, 2=0) is
obtained from (7-10) and the numerical extrapolation discussed above. '

For the susceptibility x, we have not been able to prove a theorem corresponding
“to Theorem 3.2 for the free energy that permits one to interchange the order of the
thermodynamic limit and the limit M 1 o of the Trotter number. In the calculation
of the susceptibility y, therefore, we assume the interchangeability leaving its
justification for future studies. Thus, we write the susceptibility x as

— 13 M .
x=lmx", : (7-16)

using x™", the finite-M (7-11) in the thermodynamic limit. In this way, the suscep-
tibility x is obtained by the same procedure as above.

The M~* dependence of — ™ (B, h=0)X 2] and x™ B2 at fixed tempera-
ture (JB)'=4X10"* are shown in Figs. 7.1 and 7.2, respectively. The temperature
dependence of the zero-field free energy (8, #=0) multiplied by 8% and the suscep-
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tibility x by 8% are given in Figs. 7.3 and 7.4, respectively. It is observed that the
curves in Figs. 7.3 and 7.4 approach non-zero and finite values with well-defined
gradients as (J8)™' | 0, implying that the critical exponents of the specific heat and the
susceptibility are given by a=—0.5 and y=2, respectively. These results agree with
Takahashi and Yamada’s (see Table 7.1),” the best so far available, which were
obtained by Takahashi and Suzuki’s integral equation method® based on the Bethe
ansatz for the eigenvalue problem of the Hamiltonian.

We remark in passing the following. By using the same integral equation

method combined with the finite-string-size scaling, Schlottmann obtained®

2~084%xJB%/log(JB). (B 10)

.37
g ! (Jp)~l=ax10~4
3
(q¥]
S 1.2
@
o
]
£ 1.1}
<
Iy - .
= 1.0 0
Y- .
]

0.9 . . . .
0 0.5 1.0
M~2 (x10-6)

Fig. 7.1. —fF*(8, h=0) X B¥2]J% yersus M2
at temperature (J8) '=4x107*.

1.

0) p3/241/2

-f(a, h

Fig. 7.3.

1 -

0 0.1 0.2
(Jgy 172

—f(8, h=0)X B8*2]"2 yersus (JB) "2

As temperature (JB)™' !0, it approaches
the critical amplitude xo. .

0.20r
T
o (Jp) " l=4x10-4
IQ
$ 0.15}
VX

0.10 1 1 1 1 J

0 0.5 1.0

M~2 (x1078)
Fig. 7.2. x"B72J7! versus M™? at temperature
(JB)'=4%x10"".

0.30

xp 2yt

0.22

0.14 = * * *
0 0.1 0.2
(upy—172

Fig. 74. xB7% 7! versus (JB)™"2. As temperature
(JB)* 40, it approaches the critical amplitude
Yo.
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Table 7.1. The critical exponents e and ¥ obtained using various methods.

~ Authors Methods a Y
~ Baker et al. High temperature series 166
(1964) . expansion' and' Padé — +0.07
approximation
Bonner and Fisher Numerical diagonalization —0.45 18
(1964) of the Hamiltonian ~—0.5 ’
Kondo and Yamaji Green function decoupling
_ . -1/2 2
(1972) approximation
Lyklema (1983) Handscomb and Monte -0.3 - L7
Carlo method +0.1 +0.02
Cullen and Landau Trotter formula and Monte 132
(1983) Carlo method )
Takahashi and - Original Bethe-ansatz -1/2 5
Yamada (1985) method
Schlottmann Original Bethe-ansatz —0.49 2.00
(1985) method ) +0.02 +0.02
fnoue and Suzuki . Pair-product approximation
(1986) and renormalization group — 2
method
Takahashi Spin wave approximation —1/2 9
(1986)
Present author Thermal Bethe-ansatz
—-1/2 2
method
@ 1.4}
3
o b
o
'I* 1.21
L
o L
IQ
* 1,01
~ 0.84
0.8 * * *
0 0.1 0.2
(upy~1/2

Fig. 75. xB7:J 'log(J8) versus (JB)™“%. The
curve does not approach a finite value as tem-

perature (J8)™' 1 0.

However, it is incorrect as Takahashi pointed out.?® To see this, we plot our values
of xB7*J 'log(JB) as a function of (JB) ** in Fig. 7.5. Clearly, it is observed that the
curve diverges as (JB)™V210. Thus, there is no such logarlthmlc correction in the
susceptibility x as was proposed by Schlottmann.

The results from other approximations®~* are also given in Table 7.1. To
compare our results with Takahashi and Yamada’s” in detail, we assume that, in the
low temperature limit, the zero-field free energy and the susceptibility can be expand-
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Table 7.2. The coefficients of the low-temperature expansion of the zero-field free energy. The numbers
in the brackets give the errors in the last digit.

Methods and authors Zo x1 - e

Green function decoupling
approximation
Kondo and Yamaji (1972) X1.0421869---

5
6 ~17/3 6.581-

Original Bethe-ansatz
method
Takahashi and Yamada
(1985)

Spin wave approximation

Takahashi (1986)

Thermal Bethe-ansatz

method 1.042186(2) —0.9999(1) 0.952(3)
Present author

1.042(1) —1.00(2) ’ 0.9(1)

10421869+  —1 1.2320919---

Table 7.3. The coefficients of the low-temperature expansion of the susceptibility.

Methods and authors Yo N V2

Green function decoupling |
approximation 1/6 —
Kondo and Yamaji (1972)

Original Bethe-ansatz method

.1 R 7(1
Takahashi and Yamada (1985) 0.1667(5) 0.586(9) 0.71)

Spin wave approximation

1 _ 678830+
Takahashi (1986) /6 0.582597 0.678839

Thermal Bethe-ansatz method

0.1666666(8) 0.58259(2) 0.6789(2)
Present author ]

~ed in powers of w=(JB)"* such that

/(8 h=0)=]w3g)xzw’ | | (7-17)
- and |

x=]“w"“g)yzwl

as proposed by Takahashi and Yamada.” We approximate — (8, h=0)XJ 'w™®
and y X Jw* by polynomials in w and determine their coefficients by the least-squares
fitting used above. As shown in Tables 7.2 and 7.3, our results are consistent with
Takahashi and Yamada’s” which they obtained by computing (8, 2=0) and ¥ down
to (JB)'=4x10"° using the supercomputer HITAC S-810. Our results are in fact
more precise than theirs. Further, we notice that the results from the spin wave
approximation® deviate from the value of the third term in the zero-field free energy
(7-17).
We remark:
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(a) Takahashi and Yamada used the Takahashi-Suzuki integral equations®
which depend on the string conjecture,® or more basically on the unproven

assumption of the completeness of the system of the Bethe-eigenstates of the

‘Hamiltonian (2-1).

(b) Our results reconfirm that the spin wave approximation cannot be justified
in the one-dimensional isotropic ferromagnetic model because of the dis-
agreement mentioned above in the third term in the zero-field free energy
(7-17). We recall that the spin-wave approximation as applied to the
one-dimensional isotropic ferromagnetic model results in diverging zero-
field magnetization per site, which Takahashi®® had to suppress by imposing
an ad hoc constraint of zero-magnetization without reasonable ground.
Nevertheless, it is remarkable that the coefficients of the first and the second
term in (7-17) agree surprisingly well with those of ours.

In conclusion, we emphasize that our thermal Bethe-ansatz method uses no such
assumption as the completeness of the system of the Bethe states that has been proved
only partially and that it yields the better results than the previous methods do. It
has to be noticed, however, that, for calculating the susceptibility, we used the
assumption (7-16), namely, that the large Trotter number limit and the ther-
modynamic limit can be exchanged. Its proof is left for future studies.

Finally, we note that our thermal Bethe-ansatz method can be applied also to the
one-dimensional Hubbard model. The detailed results will be reported in the near
future. ‘ '
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Appendix A
—— Proof of Theorem 3.2"% —

First, we prepare the following lemma along the line of Suzuki and Inoue.2?

Lemma Al. Let HY, H® and H’ be three Hermitian matrices satisfying [H® H]
=(0. Then, '

llog Tr{exp[H]exp[H®]exp[ A'1}* —log Triexp[H]exp[ AP < MIA| .
(A-1)

Proof Note that the left-hand side of (A-1) equals

' d 7 (1) @), | | [ M Tr(H At A)|
'Aa’xdx log Tr{exp[H"]exp[H®}explzH "]} ‘ \ﬁ dz THAD |

*) Non-string solutions were found by Woynarovich in 1982, by Babelon et al. in 1983 and by
Vladimirov in 1984."?
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where

gHe (M =even)
exp[27 HD]exp[2 W (H® +zH)]™-D2 (M =0dd)

with i
Q :=exp[2(H® + zH")]exp[ HV]exp[2 (H®+ zH")] .
The nuinerator of the integrand can be rewriften as
Tr (ﬁ,ATA)ngi<ei|ATA'ei> ,
where |e:;> and E: are the system of the orthonormal eigAenYectors and the correspond-
ing eigenvalues of the matrix H’. Therefore, by <e:A'Ale:>=0, we obtain
ITr (A" A" A)l=max(|EDITr (A" A)],

and the statement of the lemma follows. [J
By putting

ﬁ(l):—%ﬁznm, ﬁ(2)=—%ﬁzn,p(2) and ﬁ,:;%ﬁzn;zn,l

in Lemma A.1, we obtain

F*0@2n, P)= 1" 2n, F)|<@n) 1Hz; 1,
where '

F*2n, B) :=2nB) og Zzn,z"™

and F and P denote the boundary condition B in (2:3). Therefore, it is sufficient to
show the existence of the double limit in (3+3) in the free boundary case B=F of (2-3).
 The finite-M free energy f™(2n, F) with free boundary condition shall be ab-
breviated as f*(2x), whenever there is no confusion.
Next we show that the sequence f™(2#n) (n=1, 2, --*) converges uniformly with

respect to M. For this purpose, we use arguments similar to Griffith’s on the ther-

modynamic limit,1#%®
First, we divide the Hamiltonian —(8/M)Hzx, into three parts

"(1)=_£" 1)
H MHZn ,

o RoHES] B &
H®= 2 2 <__H2n;ZZK+2j,ZlK+2j+1
=0 ;=1 M
and

A/_L--1 B 7 N
H - E('—"I_W"HZIL;ZIK,ZZK+I> .

Then, Lemma A.1 gives the following lemma.
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Thermal Bethe-Ansatz Method for the Spin-1/2 XXZ Heisenberg Chain 805

Lemma A2. Let n=KL (K,L=1,2,---). Then,

F2n) = FYPQE)| < 2K) T Hy;all

In the particular case z=2%27 (p, ¢=1, 2, --*) of Lemma A.2, we obtain
702224 ) — F40(2-2)| 2777 Bzl

This implies that f*(2-2?) is a Cauchy sequence in p and possesses a well-defined
limit /. Further, as g 1 <0, we have

|00 — £O0(2-22)| <27 Hy; 1.2l .

The limit /™’ thus obtained for the particular sequence {#=2"} is also obtained for an
arbitrary sequence increasing to infinity. To see this, let #=2?K (p, K=1,2, ).
Then, in the same way as above,

L0 — QR S|4 — £00(2-20) |+ ™0(2-22) — 90 2n) +1 0 2n) — £ 2K)
|\ Az l27 24277+ (2K) Y.
Thus, as p 1 oo, Wé obtain
£ 30— £90QK) < QE) ™M Haonl (A-2)

This implies that *’(2%) converges uniformly with respect to M as we wished to
show. . :

We can now prove the statement of Theorem 3.2. For this purpose, we use the
standard argument for the interchangeability of double limits.’®”*»*? The inequality
(A-2) combined with Theorem 3.1 shows that for any given >0 and for any M, one
can find # such that

L0 —f02n)l=e/3

and ‘
lf—7F(2n)|<€/3.

On the other hand, the Trotter formula (2+7) implies that for given #, there exists M
such that

lF90@n)—f2n)l=el3.
These inequalities give
|f=rl=lf = F@I+f@2n) — £ Cm) |+ 2n) — £
<e.
A Thus, the proof of Theorem 3.2 is complete. []

Appendix B
—— Bethe Ansatz"" for the Transfer Matrix Uz

In this appehdix, we show that

220z 18nbny 0z uo 1senb Aq /18/G81/68//v/18/eloe/did/woo dno-oiwepeoe/:sdpy Wwoly pepeojumoq



806 T. Koma

02M|Bk>=A2M;k|Bk> . (k=0, ]., oy ZM) (B'l)
Note that from the definition of the matrix V2,1, in (3-5), we have
<Gik, ijl 172;1’,le‘1‘1, Gjl>

Ds (all the spins up, or down),
Dc (6#=0t, of=0f, of+df),
=1 E'D?  (of=0/=+1,0f=0/=—1),
 ED? (6f=0l=—1, 0/=0'=+1),
0 otherwise . (B-2)

Lemma Bl Let
Nz by k+1> :=F(z;, B)|—1, + D+ F(z;, k+1)I+1, —1> . (k=1,-,2M)
Then,
Vayiilas 20—1,20=2)2; 20,20 +1> . (1=1, -, M) (B-3)
Proof From the definitions (4-2) and (4-3), we have

(Dc E‘lD“> (F(zj,Zl—l)): ( F(z,20)

(=1, M
ED™! Dc F(z;,20) F(z;, 21+1)) ( )

This implies (B+3) by (B*2). [
Lemma B.2. Let

|zps, 2PGisny; B, BH1D .
=29 ApF(zps, B)YF (zpian; B+ DI—1, —1>, (k=1 2M)

where the summation 2Y“*Y runs over two permutations, (P1, ---, Pk) and (P1, -+,
P(j+1), Pj, ---, PE). Then,

Ve islams, zpgen; 20— 1,20
— (D) Ausheasenlams, zmen; 21, 204>, (=1, M) (B-4)
Proof From the definitions (4-2)~(4-4), we have
(Dsy?2ED ApF(zps, 21 —1)F(zp ey, 20)
= e D070 ApF (28, 20) F(zpen, 20+1). (I=1,+, M)

This implies (B+-4) by (B-2). [0
Further, from the system of the Bethe-ansatz equations (4+7) and the definitions (4-2)
~(4+4), we obtain :

Lemma B.3.
A(pl,...,pk)F(AZPk, 2M +1)=Aprprpie-1F(2ee, 1) .
We now prove (B:1). First, Lemmas B.1 and B.2 combined with the definitions
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Thermal Bethe-Ansatz Method for the Spin-1/2 XXZ Heisenberg Chain 807
of Row, (4-1) and (4-5) give
E2M|3k>: 2 E(DS)M_kAm"‘/;(PkAPF(Zm, y1+1)'--
1<y1<--<yp<2M P

- F(zen, yatDlys, =+, a0

:AZM;k 2 ;APF(ZPI, y1+1)"'F(ZPk, yk+1)|y1) T yk> .

1<Yy1<<yr<2M

(k=0,1, -, 2M)
Therefore, by (3-11) and Lemma B.3, we obtain
U Be>
= Az, ol 2 2 APF(zp1, y1+1) - F(zpr, ya+ Dy +1, -+, yo+1>
1<y1<~<yp<2M—-1 P »
+ > 2 AprF(zp1, yl+1)"'F(ZP(k—1);yk—1+1)
1€<y1<<Yp-1<2M—-1 P

XF(ZPk, 2M+1)|1, y1+1, oy yk_1+1>]

=AZM;k[ 2 " ;APF(Z}’], yl)"'F(ZPk, yk)lyl, ..-, yk> .

2Ky 1<K Y2,

2 yo<<Yp <2

+ % 2ArF(ze, 1DF(zp2, y2)- F(zen, y)lL, v, -, yi)]

:AZM;lek> . (k:(), 1, ey 2M) [

Appendix C
— Calculation of the Limit M t o of Ju——

For simplicity, we restrict M to even integers, M=2m (m=1,2, ---). Then, Ju
can be written as

2 m
Ju=TJn+ 2 23 n. P sin ¢,)
~F=
where

Jn® = Zélog[Zcosh( BhiM)cos ¢;1,

1
Jni® == [ dulog Li(w), (E“=Io, w2, E®=[x2,x]

(Yo sinh(Bh/M)w + sinh( 8/M)cos x ?
Liw):=1+ [ cqsh(Bh/M Ycos @; ]

and

¢j:=%(j—1/2). (j=1,2, )
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808 ' T. Koma

From the definitions, one can easily obtain the following lemmas.
- Lemma C.1. Let A and B be two complex numbers. Then,

jf;nII{A(cos @;)*+Bl=(a)"+(a )",

where

p—VATBE/B
+ 2 .

Lemma C.2. For ény e>0,
min(Z @/, %1 —€), 20, P (1) £ 29 Jn,/ ¥ (sin @)
=max(Z 9 Jn,, M (1—e), 2a,5(Q1)),

where the summation 2 runs over integer ; satisfying 1—e<sin ¢;<1.

Lemma C.3. If {w,} is bounded, then, for any >0,
lim( 3} — 53 T, ® 1) =0
By Lemma C.1, we obtain

1ﬂi¥n] ~V=log 2+ Ilwi¥n2"‘M log{cosh(B8hr/M)]

=log 2
and
2+ $a 0)
—x f W22 0g (@@ +[a-"@N"), (k=1,% w=const)  (C-1)
where |

a0 (x):= /cosh®(Bh/M) + [sinh(Br/M) + sinh(B/M )cos x]*

+ [sinh(BA/M)+sinh(B/M)cos x] .

It is easily shown that the integrand of (C+1) is bounded on EYUE®. Therefore, by
the Lebesgue convergence theorem, we obtain
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Thermal Bethe-Ansatz Method for the Spin-1{2 XXZ Heisenberg Chain 809

hm[2 a9+ 2] S (w)]= _1/ dx log{2cosh Blcos z+ hwl} .

(k=1, 2; w=const)

Therefore, by Lemmas C.2 and C.3, we obtain

limJy=7""lim f “dr log{2cosh Blcos x+(1—¢&)k]}
Mt g0 0

iy
2)
3)
4)
5)
6)
7

8)

9)
10)
11)
12)
13)
14)
15)

16)
17
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31
32)
33)

34)
35)
36)
37

=g! j; ndx log{2cosh B[cos x+ 2]} .
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