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for the Spin-l/2 XXZ Heisenberg Chain*) 
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(Received November 11, 1988) 

A new method is proposed for calculating the free energy of the one·dimensional spin·l/2 XXZ 
Heisenberg model. The partition function is written in terms of the transfer matrix for a two· 
dimensional Ising system, whose maximum eigenvalue is obtained by the Bethe·ansatz method 
leading to the free energy in the thermodynamic limit. This method uses no such assumption as the 

completeness of the Bethe states that has been proved only partially and yields better results than the 
previous methods do. 

§ 1. Introduction 

The Bethe-ansatz methodlH
) has been widely used to study thermal properties of 

the one-dimensional spin-1/2 XXZ Heisenberg model, e.g., the specific heat, magnetic 

susceptibilities, etc.7
)-9) However, these calculations depend on the string conjec­

ture,I°H2) or more basically on the assumption of the completeness of the Bethe states 

that has been proved only partially.13) In other words, these calculations require the 

complete knowledge of all the eigenvalues of the Hamiltonian of the model. 

In this paper, we propose a new method for the statistical mechanics of the 

one-dimensional spin-1/2 XXZ Heisenberg model, which we call the thermal Bethe­

ansatz method.14) This method is free from the unproven assumptions mentioned 

above, because it is sufficient to obtain only the maximum eigenvalue of the transfer 

matrix of an Ising system. It consists in en using the path integral idea to transform 

the partition function of the model into the one of a two-dimensional Ising 

system,I5)-22),25) and (i0 applying the Bethe-ansatz method to find the maximum 

eigenvalue of the transfer matrix of the Ising system. Then, the standard procedure 

gives the free energy of the model in the thermodynamic limit.19H2) 

Thus, in § 2, we use the Trotter formula to carry out the transformation (0 

mentioned above. The partition function of the Ising system so obtained is rewritten 

in terms of the transfer matrix in the "space" direction in § 3. In § 4, we shall analyze 

the eigenvalue problem of the transfer matrix by the Bethe-ansatz method and obtain 

a set of the eigenvalues which is determined by the solutions to the system of the 

Bethe-ansatz equations. In particular, one of the Bethe-ansatz eigenvalues equals the 

maximum eigenvalue of the transfer matrix as is proved in § 5. Then, the maximum 

eigenvalue leads to the free energy of the model in the thermodynamic limit. 

Thus, for calculating the free energy of the one-dimensional spin-l/2 XXZ 

Heisenberg model, it is sufficient to solve analytically or numerically only the 

Bethe-ansatz equations corresponding to the maximum eigenvalue of the transfer 

, *) A part of the D. Sc. Thesis submitted to Gakushuin University in March, 1988. 
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784 T. Koma 

matrix. In fact, the free energy of the isotropic XY model is obtained analytically 

in § 6. As is well-known, this special case was solved analytically by Lieb et al. in 

196123) and by Katsura in 1962.24) Their methods are different from. ours. Quite 

recently, Inoue and Suzuki25)' diagonalized the transfer matrix of this special case by 

the method of the Jordan-Wigner transformation. Further, in § 7, we calculate the 

zero-field free energy and the susceptibility of the isotropic ferromagnetic model by 

solving the system of the Bethe-ansatz equations numerically, and obtain better 

results than those obtained by the previous methods.7H),26)-32) 

§ 2. Path integral form of the partition function 

The Hamiltonian of the one-dimensional spin-1/2 XXZ Heisenberg model is 

given by*) 

(2·1) 

H- '-2-1(1 - ;;. + A - Z - Z) 2-1h( - z+ - Z) 
N;j,j+l.- - (IN;j· VN;j+1 £.J 6N;j 6N;j+1 - 6N;j 6N.:j+l , (2·2) 

where B in (2 ·1) stands for the boundary condition, 

B = {P : periodic, 

F : free, , 

- -
(IN;N+1=(JN;I, 

HN;N,N+l=O 

(2·3) 

and aN;j is the spin operator for the site j (j=1, "', N), 

aN;j : =1(8)"'(8H(8) a(8)l(8)"'(8)l , 

an N-fold tensor product having the Pauli matrix a at the jth place; L1 and h are the 

anisotropy parameter and the external field, respectively. Our free boundary condi­

tion is different from the standard one aN;N+l=O. It is convenient for the following 

calculation. 

By using the path integral idea, we transform the partition function of the model 

with an even number of spins, 

(n=l, 2, ... ) (2·4) 

into a partition function of a two-dimensional Ising model in the following way, where 

/3 is the inverse temperature and Tr denotes the trace of a matrix. 

We follow Suzuki,15H7),19),20) to begin with, dividing the Hamiltonian (2 ·1) with an 

even number of spins into two parts such that each one is a sum of operators all 

commuting with each other: 

H- (J)-~H-
2n - £....J 2n;2j-l,2j 

j=1 
(2·5) 

and 

H- (2)-~H-
2n,B - ~ 2n; 2j,2j+l 

j=1 
(2·6) 

*) The symbol := signifies definition. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

1
/4

/7
8
3
/1

8
5
7
8
1
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 785 

to write 

by invoking the Trotter formula, 

exp[H + H'] = lim {exp[H/M]exp[H' /M]}M, (H, H': matrices) 
Mtoo 

in terms of the approximate finite-M partition function, 

Z2n,B(M) = Tr{exp[ - !H2n(I)]exp[ - !H2n,B(2)Jr 

We call M the Trotter number. 

Let us first put (2-8) into a path integral form, 

Z (M)-~< 11 [ !J H- (1)JI 2>< 21 [ !J H- (2)JI 3> 2n,B - ~ a)zn exp - M 2n W2n W2n exp - M 2n,B W2n'" 

with 

(6= + 1) 

16>:= 

(6= -1) 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

and the summation runs over all the "paths" Q :=(W2n\ "', W2n2M), that is, over all the 

configurations W2nk for each "time" k (k=l, "', 2M).' The matrix elements in (2-9) 

are easy to write down because the summand either in (2 -5) or (2 -6) all commutes 

with each other. Thus, 

and 

< 
21-11 [_AH- (I)JI 21>_ TIn ( 21-1 21-1. 21 21) W2n exp M 2n W2n - j=1 r 62j-1 , 62j . 62j-1 ,62j 

n 

{TI 
( 21 21. 21+1 21+1) . r 62j ,62j+l . 62j , 62j+l , 

;=1 

n-l 
~ 21 TI (21 21. 21+1 21+1) 
UF r 62j ,62j+1 . 62j , 62j+l 

j=1 

(/=1, "', M) 

(B=P) 

(B=F) 

(2-11) 

(2-12) 
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786 T. Kama 

with periodic boundary conditions, namely, one in the "time" direction, 

(j=1, "', 2n) 

and the other in the "space" direction, 

(k=l, "', 2M) . 

where 

(2'13) 

and 

(2'14) 

The expression (2-9) has the fbrm15)-17),19),20) of the partition function of a two­

dimensional 2n x 2M Ising spin system with its substates in the kth row specified by 

Cthnk (k=l, "', 2M) and with the Boltzmann weight for each state Q=(CtJ2n\ "', CtJ2n2M) 

given by the corresponding term in (2-9). In other words, one may think of (2-13) as 

a Boltzmann factor for a four-spin interaction: Then, each term in (2-9) is represent­

ed by such an assembly of the interaction "paths". 

§ 3_ Transfer matrix in the "space" direction 

The free energy per spin of the present model (2 -I) in the thermodynamic limit is 

given by 

/(B) := - ,8-1Iim(2n)-110g Z2n,B . (3-1) 
n 100 

THEOREM 3.1. For any (,8, Lt, h)ER3, the limit n i 00 in (3-1) exists and is 

independent of the boundary condition B of (2-3). 

This theorem can be proved33
) by using an inequality related to Peierls's. 

Then, (2 -7) gives the free energy per spin in the thermodynamic limit, 

THEOREM 3.2. Let (,8, Lt, h)ER3. Then, the limit 

j<M) := - ,8-1Iim(2n)-110g Z2n,B(M) 
nloo 

(3-2) 

(3-3) 

exists and is independent of the boundary condition B of (2-3). Further, the free 

energy per spin of the model (2 -I) in the thermodynamic limit can be written as 

/=lim/(M) , 
Mloo 

i.e., the order of limits in (3-2) can be interchanged.19)-22) A rigorous proof along the 

line of Suzuki and Inoue21 ),22) is given in Appendix A. 

In order to calculate the limit n i 00 in (3'3), we rewrite (2-9) in terms of the 

transfer matrix in the "space" direction. 
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The.rmal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 787 

Note that 

r( - 6/,6/: 6/, - 6/)=<6/,6/1 V2; ;,jI6/, 6/> , (3'4) 

where 

TT • _ [ /3h (- Z - Z)] TT (0) [ /3h (- Z - - Z)] 
V2;;,j .-exp - 4M 62;; - 62;j V2;;,j exp 4M 62;; 62;j (3'5) 

and 

- (0)._( )'-1[ 2 - x- x - y- Y D2( -2)- z- Z] 
V2;i,J .- 2D D + 62;i 62;j + 62;i 62;j + 1 C 62;i 62;J (3'6) 

with 

D~exp[/3L1/2M] and c=exp[ - /3/M]cosh(/3/M) . (3'7) 

Therefore, from (2'11), (2·12) and (2'14), the finite-M partition function (2'9) can be 

rewritten as 

using the transfer matrices in the "space" direction, 

where 

_ M_ 

R2M := II V2M;2J-1,2J 
j=l 

_ M _ 

and R'2M:= II V2M;2J,2j+1, 
j=l 

_ M 

~ .- II 2-1(1 - Z - Z) UF.- - 62M'2j-1 62M'2j 
j=l ' , 

(3·8) 

(3'9) 

and V2M; i,J is a 2M-fold tensor product 10···01 with two 1's at the i and jth places 

replaced by the matrix V2; i,j with the periodic boundary condition,. 

V2M; 2M,2M+1 = V2M; 2M,1 • 

Further, we rewrite (3'8) into the form (3'12) below which is more convenient for 

the purpose of applying the Bethe-ansatz method to the eigenvalue problem of the 

transfer matrix. 

Note, to begin with, that the matrices R2M and R' 2M have the following properties: 

where 

with 

(j=1, "',2M-l) 

The operator T2M shifts any periodic array of the spin states by one lattice unit 

backwards in the "time" direction. Clearly, (T2M)2M ='1. Therefore, for any integer 

L>O, we obtain 
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788 T. Konw 

(3'10) 

where 

(3'11) 

, Let us now restrict n to multiples of M, that is to say, n=ML (L=l, 2, "'). Then, 

(3'8) can be rewritten as 

(B=P) 

(B=F) 

Therefore, by Theorem 3.2 and the first line of (3'12), we obtain: 

(3'12) 

THEOREM 3.3. 'the finite·M free energy of our system with B=P can be written 

as 

in terms of the maximum eigenvalue A2Mmax of the transfer matrix e2M in the "space" 

direction of our Ising model. 

The second line of (3 '12) will be used in the proof of Theorem 5.3 below. 

§ 4. Thermal Bethe ansatz 

In order to obtain the maximum eigenvalue A2Mmax of the transfer matrix e2M, we 

assume that the eigenstates of e2M have the Bethe·ansatz form/),34),35) 

with 

{

aj ZP+I)/2 (y = odd) . 
F(zj, y)= y/2 ( ) (;=1, "', k) 

Zj y=even , 
(4·2) 

where IYl, "', Yk) is the state with all the spins up except those k spins at the sites Yl, 

"', Yk; the summation runs over all the possible distributions of the k down spins, and 

over all the permutations P of (1, "', k). {Zk, ak} and {Ap} are complex numbers to be 

determined as follows. 

As in the original Bethe ansatz (see Appendix B for the details), the eigenvalue 

equation leads to the conditions, 

(j=1, "', k) (4'3) 

'I, 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 789 

A(PI ..... PU+I).Pj ..... Pk) 

A(p l.···.pj.p U+ 1 ).···.Pk) 

ilpjltpU+l) - 2DsE-I L1ilpj + (DsE- I)2 

ilpjilpu+1) - 2DsE-I L1ilpu+1) + (DsE-IY 

and to the eigenvalue, 

A 2M; k=(Ds)M-kill···ilk , 

where 

(j=1, ... , k-1) 

and ill, ... , ilk are determined by the system of the Bethe-ansatz equations, 

[ 
D-IEilj-D-2+(DcY]M 

iliilj - D-I E- I) 

=( _l)k-1 IT iljill-2DsE-I-4..ill+(DsE-I)2 . 

1=1 iljill-2DsE-ILlilj +(DsE-1Y 
(j=1, ... , k) 

(4·4) 

(4·5) . 

(4·6) 

(4·7) 

In particular, for the isotropic XY-case, Ll=l, we have L1=0. Therefore; we obtain: 

Remark 4.1. For Ll=l, the Bethe-ansatz equations (4·7) can be rewritten as 

(4·8) 

with 

(j=1, ... , k) (4·9) 

Similarly, we have the following remark. 

Remark 4.2. In the high temperature limit, /:1=0, the Bethe-ansatz equations (4·7) 

can be rewritten as 

(4·10) 

with 

(j=1, ' .. , k) (4·11) 

We define K XY to be the set of all the solution vectors il=(ill, ... , ilk) (k=O, 1, ... , 

2M) to the system of the Bethe-ansatz equations in Remark 4.1 such that the z's in 

(4·9) satisfy the condition, 

(4·12) 

Further, we define 

Rp :={xl x>O}. 

Lemma 4.3. Let ilXY 
EK

XY
• Then, for any (/:10, ho)ERp x R, there exists a solu­

tion il to the system of the Bethe-ansatz equations (4·7) analytic in a neighborhood g) 

C C3 of (/:1, Ll, h)=(/:1o, 1, ho) such that il=ilXY for (/:1, Ll, h) =(/:10, 1, ho) and that the 

Bethe state (4·1) constructed from the solution il is non-vanishing. 
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790 T. Kama 

Proof First, we show the existence of A. For this purpose, let 

._ [D-1EAj-D-2+(Dc)2] . . 
gj .-M log Aj(Aj- D-1E-1) -2mnj-ZJr(k-1) 

k [AjAI-2DsE-1 LiAI + (DsE-1)2 ] 
- ~Ilog AjAI-2DsE-1LiAj+(DsE-1)2 

(j=1, "', k) 

with integer nj (j=1, "', k). Then, the Bethe-ansatz equations (4'7) can be rewritten 

as gj=O (j=l, "', k). Therefore, by the well-known theorem on implicit functions, it 

is sufficient to show that the Jacobian determinant, 

D(gl, "', gk) 

D(AI, "', Ak) 

is non-vanishing for A=AXY and (/J, Ll, h)=(/Jo, 1, ho). Since Ll=l, it is easily shown 

that the Jacobian matrix becomes diagonal with the diagonal element being given by 

Therefore, it is sufficient to show that h *' 0 (j = 1,. "', k). By the Bethe-ansatz 

equations (4'8), Ijj can be rewritten as 

_ 2AjXY - D-1[E(z/Y)-1 + E-1] 
Ijj- - M A/Y(A/Y _ D-1E-1) , 

where z/Y (j=1, "', k) are those determined b'y>.(4·9). Clearly, the numerator equals 

the derivative of the left-hand side of (4'8) with respect to Aj except for the factor 

(-M). This implies that if h vanishes, then the discriminant fof (4'8), 

D-2[E(zjXY)-I+ E-1]2+4(Ds)2(z/Y)-1 

must vanish. However, from the definitions of (s, D, E) and (4'9), it is easily shown 

that the discriminant is non-vanishing. Thus, all the diagonal elements h of the 

Jacobian are non-vanishing. Therefore, the Jacobian determinant is non-vanishing 

also. 

Next, we show that the Bethe state (4·1) constructed from the solution A is 

non-vanishing for(/J, Ll, h) = (/Jo, 1, ho). 

Note that forLl=l, (4'4) becomes 

Ap=sgn(P) A(1, ... ,k) , 

where sgn denotes the signature of the permutation P. In particular, 

<2, 4, "', 2klBk) == A(I, ... ,k)2:sgn(P)zPIXY (ZP2XY )2" . (ZPkXY)k 
P 

-A XY XYII( XY XV) 
- (1, ... ,k)ZI ••• Zk Zj - Zi , 

i<j 

where the second equality is obtained by the Vandermonde determinant. This 

implies that the Bethe state is non-vanishing because of the condition (4'12). Thus, 

the proof of the lemma is complete. 0 
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Thermal Bethe-Anscdz Method for the Spin-l/2 XXZ Heisenberg Chain 791 

Lemma 4.4. Let il=(/IJ, ... , ilk) be a solution to the system of the Bethe-ansatz 

equations (4·7). Then, there exists a polynomial P of ilj (j=1, ... , k) and the param­

eters (s, D, E) such that 

P(ili, s, D, E)=O . (j=1, ... , k) (4·13) 

Proof From the definitions of the parameters (s, D, E, c, if), the Bethe-ansatz 

equations (4·7) can be rewritten as the algebraic equationswith k unknowns (ill, ... , 

ilk) and the parameters (s, D, E). In addition, the statement bf Lemma 4.3 implies 

that the Bethe-ansatz equations (4·7) are regular, i.e., these have a finite number of 

solutions. Therefore, by applying the elimination method to (4·7), we obtain (4·13). D 

We wish to treat similarly the solutions to the system of the Bethe-ansatz 

equations in Remark 4.2. However, if some of the elements of the solution il to (4 ·10) 

vanish, then the Jacobian matrix corresponding to the one in Lemma 4.3 has an 

indeterminate form 0/0. In the following, we consider only those solutions to (4·10) 

other than il such that some of the elements of il vanish, the latter being unnecessary 

for calculating the free energy as will be shown in the next section. 

We define KO to be the set of all the solutions il = (ill, ... , ilk) (k = 0, 1, ... , 2M) to the 

system of the Bethe-ansatz equations for (3=0 (see Remark 4.2) such that ilj=FO (j=1, 

... , k) and the z's in (4·n) satisfy the condition (4·12). 

Lemma 4.5. Let iloEKo. Then, for any (.,10, ho)E C 2
, there exists a solution il to 

the system of the Bethe-ansatz equations (4·7) analytic in a neighborhood fJ) C C3 of 

«(3, ,1, h)=(O, LIo, ho) such that il=ilo for «(3, LI, h)=(O, LIo, ho) and that the Bethe state 

(4 ·1) constructed from the solution il is non-vanishing. 

§ 5. Maximum eigenvalue of the transfer matrix 

In order to show that one of the Bethe-ansatz eigenvalues (4·5) equals the 

maximum eigenvalue A2M
max of the transfer matrix ()2M, we study the properties of 

these eigenvalues. 

Lemma 5.1. For any «(3, LI, h)ERp XR2, the maximum eigenvalue A2M;kmax of 

()2M; k is positive and simple, where the subscript k denotes the restriction to the k­

down-spin subspace. 

Proof In the foregoing basis system (2·10), the matrices R2M and R'2M have 

positive diagonal elements and non-negative off-diagonal elements. Further, non­

vanishing off-diagonal elements connect every two spin arrangements with one pair of 

neighboring opposite spins flipped. Therefore, any two basis vectors with k down 

spins can be connected with a positive matrix element by sufficiently many applica­

tions of R'2MR2M, but two basis vectors with different numbers of down spins can never 

be connected. Thus, the lemma follows from (3·10) and the Perron-Frobenius theo­

rem. D 

Since the eigenvalue A2M; k max is a root of the characteristic equation of the matrix 

()2M; k, we obtain: 

Corollary 5.2. For given «(3, LI, h)ERp x R2, there exists a neighborhood g) C C 3 
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792 T. Koma 

of (/3, LJ, h) such that the eigenvalue AZM;k
max is simple and analytic in the three 

complex variables (/3, LJ, h). 

THEOREM 5.3. 

(5-1) 

Proof For any state IWZM), BFlwZM) is an M-down-spin or zero vector by (3-9). 

Therefore, from Theorem 3.2 and (3-12), we obt~in (5-1). 0 

Next, we study the properties of the Bethe"ansatz eigenvalues (4-5) in the LJ=l 

case, i.e., the case of the isotropic XY model. 

Lemma 5.4. For LJ=l, the limit L i 00 of 

with 

(Yl, Yz=const) 

becomes the density matrix of the isotropic XY model, i.e., 

_ ZM 

1· R (Ll_ [2-1 "'(- x- x+- y- Y)] 1m ZM -exp Yl~ 6ZM·j 6ZM·j+l 6ZM·j 6ZM;j+l • 
Lta:> j=l ,t , 

Proof Since the matrix (3-6) can be rewritten as 

we obtain (5-3) from the definitions of the matrices. 0 

We define /-Pl=(J1.1, ... , J1.k) (k=O, 1, ... , 2M) by 

with 

where 

I j := -2-1(k-1)+ j -1. (j=1, ... , k) 

Further, we define 

(k=O 1 ... 2M) " , 

Then, from the definitions of the sets K XY and KO, we have: 

(5-2) 

(5-3) 

(5-4) 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 793 

Lemma 5.5. 

and 

(k=O 1 ... 2M) " , 

Lemma 5.6. Let Ll=1. Then, for any (/3, h)ERNN X R, the maximum eigenvalue 

A2M; k max equals A2M; keU), where RNN is the set of non-negative numbers. 

Proof We consider first the case /3>0. From Lemmas 4.3 and 5.5, A2M;k(f.l) 

becomes the Bethe-ansatz eigenvalue of the transfer matrix U2M. Therefore, by 

(3'10), 

A2M;k(L) :=[(2/D)MA2M;k(f.l»)2ML 

. becomes an eigenvalue of the matrix R2M(L) in Lemma 5A. Further, we consider the 

limit L i 00 in Lemma 5A so that from the definition of A2M; k(f.l) and (5' 2), we obtain· 

(5'5) 

The right-hand side equals the well-known maximum and simple eigenvalue24
) of the 

density matrix of the isotropic XY model (5'3) in the k-down-spin space. 

We prove the statement of the lemma by deducing a contradiction from the 

assumption that A2M; k max* A2M; k(f.l) for /3 and h as determined by (5' 2) for a certain 

Lo. 

Since A2M; k max is simple and analytic as shown in Corollary 5.2, A2M ,k max with L 

= Lo+ 1 is not. equal to A2M; k(f.l) with L= Lo+ 1. The same results holds for the 

maximum eigenvalue of R2M;k(L). Therefore, the limit L i 00 of A2M;k(L) is not the 

maximum one, or is degenerate. This contradicts the above result (5· 5). Thus, the 

case /3>0 has been proved. In the case /3=0, consider the limit /3! O. 0 

For the Ll*l case, we consider the analytic continuation of the solutions to the 

system of the Bethe-ansatz equations (4'7) and the corresponding eigenvalues (4'5) 

with respect to /3 or Ll. 

Lemma 5.7. For any (Ll, h)ER2, there exists £>0 such that for /3E[O, E), the 

Bethe-ansatz equations with k unknowns in (4·7) have the unique solution A such that 

for /3'7=0, A=f.l(k)(/3=O) and that the corresponding Bethe-ansatz eigenvalue (4·5) 

equals the maximum eigenvalue A2M; k max of the transfer matrix U2M; k. 

Proof From Lemmas 4.3, 4.5 and 5.5, there exists a solution A to the Bethe-ansatz 

equations withk unknowns in (4'7) analytic in a neighborhoodg)C C 3 of (/3,Ll, h) 

=(0,1, h) such that for (/3, Ll, h)=(O,l, h), A=f.l(k). Therefore, the corresponding 

eigenvalue A2M ;k of (4'5) is an analytic function of (/3, Ll, h) in ffJ. Further, from 

Corollary 5.2 and Lemma 5.6, there exists a domain g)'cg) such that A2M;k=A2M;kmax 

in g)'. Therefore, from Lemma 4.5 and Corollary 5.2, one can find the analytic 

continuation of the solution A and the corresponding eigenvalue A2M; k with respect to 

(/3, Ll,-h) along the path, 
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794 T. Koma 

Yt :=(0, 1-t+tLl, h). (O~ t ~1) 

Thus, we obtain the stat~ment of the lemma. 0 

THEOREM 5.8. For any given (/30, Llo, ho)ERNN x R2, the maximum eigenvalue 

A2M; k max of the transfer matrix U2M can be constructed from the Bethe-ansatz 

eigenvalue (4·5) with a solution to the Bethe-ansatz equations with k unknowns in 

(4·7), where RNN is defined in Lemma 5.6. 

Proof Let A be the solution to the Bethe-ansatz equations which is obtained by 

the analytic continuation in Lemma 5.7. Then, from Lemma 4.4, A is a vector-valued 

algebroidal function of the complex variable /3 for fixed (Ll, h)=(Llo, ho). Therefore, 

if /30 is not a singular point of A, then one can find the analytic continuation of /3 and 

the corresponding eigenvalue A2M ; k with respect to /3 along the path y such that 

yC{/3ECIA2M;kmax is simple and analytic in /3} 

from Corollary 5.2 and Lemma 5.7. If /30 is a singular point of A, then we consider the 

limit /3~ /30 in addition to the above procedure. 0 

Remark As another proof of the theorem, one can also use the analytic continua­

tion with respect to Ll for fixed (/3, h)=(/3o, ho). 

This theorem combined with Theorem 5.3 gives: 

THEOREM 5.9. For calculating the free energy per spin of the model (2 ·1) in the 

thermodynamic limit, it is sufficient to find only one solution A to the Bethe-ansatz 

equations with k=M unknowns in (4·7) which leads to the maximum eigenvalue 

A2Mmax of the transfer matrix U2M. In fact, the free energy is determined by the 

Bethe-ansatz eigenvalue (4·5) as will be shown in the following sections. 

To conclude this section, we emphasize the following. One can also apply the 

Bethe ansatz directly to the eigenvalue problem of the Hamiltonian (2 ·1) following 

the original way.l) However, for calculating the free energy, one needs the assump­

tion of completeness of the system of the Bethe states; this assumption has been 

proved only partially.13) If this assumption is correct, one must notice that not all the 

solutions to the system of the Bethe-ansatz equations give the eigenvectors of the 

Hamiltonian;13) we have to examine each solution to select the right ones. In our 

thermal Bethe-ansatz method, it is sufficient to find only one solution to the Bethe­

ansatz equations as shown in Theorem 5.9. 

§ 6. Isotropic XY case 

In this section, we calculate the free energy per spin of the isotropic (Ll = 1) XY 

model in the thermodynamic limit as an example. In the following, we restrict /3 and 

h to non-negative numbers, respectively. 

From Lemmas 5.3, 5.6 and the definition of A2M ;M(,u), we have 

with 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 795 

Thus, for a sufficiently small /3, 

JM= ~fdl1Cdx log[Ezj- 1+ E-1+2izj-1I2sinh(/3/M)cos x] 

by the formula, 

l 1Clog[a+ b cos x]dx= 7r log[2- 1(a+J a2
- b

2
)]. (a~ Ibl) 

But, by Corollary 5.2, this holds for all (JER. The limit M t 00 can be calculated by 

using the properties of the z's of (5' 4) as shown in Appendix C. Thus, we obtain 

lim log A2Mmax= _li+ ~11C dx log{2cosh /3[cos x + h]} . 
Mtoo 2 0 . 

Therefore, by Theorems 3.2 and 3.3, we obtain the well-known result for the free 

energy of the isotropic XY model,23),24) 

1 1 l 1C 
/(/3, h)=---/3 dx log{2cosh (J[cos x+ h]) . 

2 7r 0 

Recently, Inoue and Suzukj25) obtained the same result by diagonalizing the 

transfer matrix of this special case by the method of the Jordan-Wigner transforma­

tion. 

§ 7. Isotropic ferromagnetic case 

As a second example, we calculate the low temperature limit of the zero-field free 

energy and the susceptibility of the model (2 '1) with the anisotropy parameter .1 = O. 

Here, we have to resort to numerical calculations to solve the system of the Bethe­

ansatz equations. 

For the purpose of studying the properties of the Bethe-ansatz equations (4·7) for 

.1=0 and the state with M-down spins, it is convenient to apply the transformation 

A<->q, 

(j=1, "', M) (7'1) 

where E, c and s are defined in (3'7) and (4'6). Then, we have 

Remark 7.1. The solution f-L(M)(/3=O) in Lemmas 5.5 and 5.6 transforms into 

(j=1, "', M) (7·2) 

Therefore, upon taking the logarithm, the system of the Bethe-ansatz equations 

(4' 7) for .1 = 0 whose solution satisfies the condition, 

(j=1, "', M) (7'3) 
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796 T. Kama 

can be rewritten as 

(j=1, "', M) (7'4) 

where we take the principal value of tan- 1 and 

A :=2cs/(1 +c). (7·5) 

From Theorem 5.3, Lemma 5.7 and Remark 7.1, we obtain: 

Lemma 7.2. Let hER. Then, there exists £>0 such that for any ,BE[O, c), the 

system of the Bethe-ansatz equations (7·4) has the unique solution qj (j=1, "', M) 

which gives the maximum eigenvalue A2Mmax=A2M;Mmax of the transfer matrix U2M. 

We rewrite the maximum eigenvalue A2M
max in terms of the solution qj (j = 1, "', 

M). By (7·1) and (7·5), we have 

log Aj= - ,Bh/M + log(l +c)+2-1Iog[1 + (Aqj)2] 

(j=1, "', M) 

where we take the principal value of tan- 1 and log. Therefore, by (4·5) and (7·4), the 

maximum eigenvalue can be rewritten as 

M 

log A2M
max = M log(l + c) + 2-1 ~ {log[l + (AqJ2] -log[l + (2cqj)2]) (7·6) 

j=1 

in terms of the solution qj (j=1, "', M) in Lemma 7.2. 

To calculate the maximum eigenvalue (7·6), we prepare the following two lem­

mas. 

Lemma 7.3. Let hER. Then, the unique solution qj (j=1, "', M) for the state 

with M=2m down spins (m=l, 2, ... ) in Lemma 7.2 satisfies 

(j=1, "', m) 

Therefore, the system of the Bethe-ansatz equations (7 ·4) can be written as 

- i,Bh/m+ 2[tan-1(APj)-tan- 1(2cpj)] 

m 

(7·7) 

=7r(2j-1)/(2m)+m-l~{tan-l[s(pj-PI)]+tan-l[s(pj+PI*)]}, (j=1, "', m) 
1=1 

(7·8) 

where 

(j=1, "', m) (7·9) 

Proof From the assumption hER and the form of the system of the Bethe­

ansatz equations (4·7) for L1 = 0, we know that if (,11, "', AM) is a solution, then (,11*, "', 

AM*) is also a solution. Therefore, (7·7) follows from the positivity of the maximum 

eigenvalue A2M; M
max (see Lemma 5.1), the uniqueness of the solution which gives the 

'maximum eigenvalue and the transformation (7 ·1). 0 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 797 

Lemma 7.4. There exists E>O such that for any .8E[O, E), the solution pj (j=1, 

... , m) in Lemma 7.3 can be written as a power of series in hER if h is sufficiently 

small, 

(j=1, ... , m) 

where p/l) (l =0,1, ... ) are real numbers determined by the system ofthe Bethe-ansatz 

equations (7·8). 

Proof Let qj(h) (j=1, ... , M) be the unique solution in Lemma 7.2. Then, by 

applying the transformation h -+ - h and taking the complex conjugate of (7·4), we 

obtain 

(j=1, .", M) 

This property combined with Lemma 4.5 and (7·9) gives the statement of the lemma. 0 

By Theorem 3.3 and the above two lemmas, the finite-M free energy can be 

written as 

f(M)=f(M)(h=0)-2- 1h2X(M)+ ... , 

where the finite-M zero-field free energy j(M)(h=O) and the finite-M susceptibility X<M) 

are given by 

and 

m 

f(M)(h=O)= - M.8- 1log(1 + c)+ .8-1 ~{log[l +(2cp/O»)2]-lOg[1 + (Ap/O»)2]) 
j=1 

A2[1-(Ap/O»)2] } 

[1 + (Ap/O»)2]2 

(7·10) 

(7·11) 

respectively; p/O), p}l) and pP) (j=1, '.', m) are determined by the system of the 

Bethe-ansatz equations, 

m 

=7r(2j-1)/(2m)+ m-1 ~{tan-l[s(p/O>- p/O»)] + tan-1 [s(p/O) + p/O»)]} , 

(7·12) 

(7·13) 

and 
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798 . T. Kama 

2cpP)· Ap/O)(Ap/l»)2 

1 + (2Cp/O»)2 + [1 + (Ap/O»)2)2 

2cp/O)(2cp/l»)2 

[1 + (2cp/O»)2]2 

=(2m)-I~ j 1 + j 1 
m { s(p .(2) _ P (2») s(p .(2) + p (2») 

1=1 1 + S2(p/0)_ p/O»)2 1 + S2(p/0) + p/0»)2 

+ S3(p/0)_ PI(O»)(p/l)_ pP»)2 + S3(p/0) + PI(O»)(PP)_ P/{l»)2} 

[1+s2(p/0)_p/0»)2]2 [1+s2(p/0)+PI(O»)2]2' 

(j=1, "', m) (7·14) 

We solve the system of the Bethe-ansatz equations (7·12)~(7·14) for p/O), Pj(l) 

and pP) (j = 1, "', m) numerically by iteration method. We consider first (7 '12). For 

given Xii), we define 

and proceed to the (i + l)th iteration by 

. +tan-1[s(p/0)(i)+ p/O)(i))] - 2tan- 1(App)(i))} , 

(j=l ... m' i=O 1 ... ) , " ," 

thus repeating the process, where the acceleration factor a is determined by numerical 

experiment for small m to minimize the number of times of the iteration for desired 

accuracy. The initial values XiO) (j=1, "', m) are chosen as follows. We recall, to 

begin with, that at (3=0 the solution to (7 ·12) is unique and is guaranteed by Lemma 

7.2 to give the maximnm eigenvalue A2Mmax. Then, we proceed with a decreasing 

sequence of temperatures 0= (30< (31 < ... < (31< .. ', taking the iteration limit Xiimax) for 

(3k as the initial value for the iteration for (3k+l. The initial· value for the highest 

temperature (30 is taken to be Xj(O)~O (j=1, ' .. , m). From the iteration limits for 

each temperature, we can obtain the finite-M free energy j(M)«(3, h=O) of (7 ·10). 

Similarly, we can find the solutionspP) and pP) (j=1, "., m) of the system ofthe 

Bethe-ansatz equations (7·13) and (7·14). Then, the finite-M susceptibility X(M) is 

obtained from (7·11) and the solution p/O) (j=1, ... , m) so obtained. 

Now we have to take the limit M i 00. For this purpose, we prepare two lemmas. 

Lemma 7.5.17)-19),36) The finite-M partition function (2·8) can naturally be extend­

ed to negative integers M. The function Z2n,B(M) (M = ±1, ±2, ... ) so obtained is even 

with respect to M, i.e., 

where B denotes the boundary condition (2·3). 

Proof From (2·8), we havel9) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

1
/4

/7
8
3
/1

8
5
7
8
1
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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= Z2n,B (M). 0 

This combined with Theorem 3.2 gives: 

Lemma 7.6.17)-19),36) 

j(-M)= j(M) . 

This implies that if j(M) can be expanded in powers of M-r, then there appear only 

even powers. Thus, approximately for sufficiently large M, 

(7·15) 

Then, by Theorem 3.2, the free energy equals the coefficient Co approximately. In 

order to find the coefficient Co we determine the expansion (7 ·15) by the least-squares 

fitting at several M's to the calculated j(M) with the degree k being chosen by the AIC 

method37
) based on the consideration that the fit would not be good enough for smaller 

k while numerical errors would be disturbing at larger k. We remark in passing that 

one may try an expansion in powers of M-1 in the same way, but it results in worse 

fitting than the one from (7 ·15) in our numerical experiment. 

We solve the system of the Bethe-ansatz equations (7 ·12) ~ (7 ·14) of 

M =2m=1000, 1100, 1200, 1400, 1600, 1800, 2000, 2400 

for each of the temperatures as given by 

(f(J)-1/2=0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20 

and of 

M=4000 for (f(J)-1/2=0.02 

using the desk-top computer NEC PC-9801F, where J is the exchange integral, whose 

value we have taken to be 2 so far. Then, the zero-field free energy j«(J, h=O) is 

obtained from (7 ·10) and the numerical extrapolation discussed above. . 

For the susceptibility X, we have not been able to prove a theorem corresponding 

. to Theorem 3.2 for the free energy that permits one to interchange the order of the 

thermodynamic limit and the limit M i 00 of the Trotter number. In the calculation 

of the susceptibility X, therefore, we assume the interchangeability leaving its 

justification for future studies. Thus, we write the susceptibility X as 

x=limx(M) , 
Mtoo 

(7·16) 

using X(M), the finite-M (7 ·11) in the thermodynamic limit. In this way, the suscep­

tibility X is obtained by the same procedure as above. 

The M-2 dependence of _j(M)«(J, h=O) x (J3/2P/2 and X(M) (J-2r1 at fixed tempera­

ture (f(J)-1=4 X 10-4 are shown in Figs. 7.1 and 7.2, respectively. The temperature 

dependence of the zero-field free energy j«(J, h = 0) multiplied by (J3/2 and the suscep-
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800 T. Koma 

tibility x by (3-2 are given in Figs. 7.3 and 7.4, respectively. It is observed that the 

curves in Figs. 7.3 and 7.4 approach non-zero and finite values with well-defined 

gradients as (ff3)-1 ! 0, implying that the critical exponents of the specific heat and the 

susceptibility are given by a= -0.5 and r=2, respectively. These results agree with 

Takahashi and Yamada's (see Table 7.1),7) the best so far available, which were 

obtained by Takahashi and Suzuki's integral equation method5
) based on the Bethe 

ansatz for the eigenvalue problem of the Hamiltonian. 

We remark in passing the following. By using the same integral equation 

method combined with the finite-string-size scaling, Schlottmann obtained9
) 

x ~ 0.84 X f(32/log(f(3) . «(3 i ex)) 

C\J *.3 
(Jp)-1=4 x 10- 4 

"'-
..--i 

J 
C\J 

"'- 1.2 
(\') .... 

0 

II 
..r:: 1.1 
ai. 

::;: 
1.0 

<- Co 
..... 
I 

0.9~--~--~--~----~--~ 

o 1.0 

Fig. 7.1. - f(Ml«(3, h=O) x (33/2J1/2 versus M-2 

at temperature (ff3)-1 =4 x 10-4
• 

o 
II 

..c 

1. 1 

ai.0.9 

y... 

I 

O. 8L---~----~--~~--~-

o O. 1 

(J,a)-1/2 

0.2 

Fig. 7.3. - f«(3, h=O) x (33/2]1/2 versus (ff3)-1!2. 

As temperature (ff3)-1 J, 0, it approaches 

the critical amplitude Xo. 

..--i 

I 
J 

C\J 
I .... 

o. 20 

~ 0.15 

x 

O. 10L---~--~---L--~--~ 

o O. 5 1.0 

Fig. 7.2. X(Ml(3-2]-1 versus M-2 at temperature 

(ff3)-1=4 x 10-4
• 

7 0.30 
J 

C\J 
I 
"'­
>< 

0.22 

yo-

0.14L---~----~----~----~-

o O. 1 

(J.s)-1/2 

O. 2 

Fig. 7.4. x(3-2r l versus (ff3)-1!2. As temperature 

(f(3)-1 J, 0, it approaches the critical amplitude 

Yo. 
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Table 7.1. The critical exponents a and r obtained using various methods. 

Authors 

Baker et al. 

(1964) 

Bonner and Fisher 

(1964) 

Kondo and Yamaji 

(1972) 

Lyklema (1983) 

Cullen and Landau 

(1983) 

-

Takahashi and 

Yamada (1985) 

Schlottmann 

(1985) 

Inoue and Suzuki 

(1986) 

Takahashi 

(1986) 

Present author 

"'- 1.4 
J 

OJ 
0 

..-! 

.... 1.2 
I 
J 

N 
I 
"'-
>< 1.0 

O. 8 

Methods 

High temperature series 

expansion and Pade 

approximation 

Numerical diagonalization 

of the Hamiltonian 

Green function decoupling 

approximation 

Handscomb and Monte 

Carlo method 

Trotter formula and Monte 

Carlo method 

Original Bethe·ansatz 

method 

Original Bethe·ansatz 

method 

Pair-product approximation 

and renormalization grOU!? 

method 

0 

Spin wave approximation 

Thermal Bethe-ansatz 

method 

0.84 

O. 1 

(Jjl)-1/2 

0.2 

Fig. 7.5. xfl-2r 1 log(ffl) versus (ffl)-lI2. The 

curve does not approach a finite value as tem­

perature (ffl)-l ! o. 

a 

-0.45 

~-0.5 

-1/2 

-0.3 

±0.1 

-1/2 

-0.49 

±0.02 

-1/2 

-1/2 

r 

1.66 

±0.07 

1.8 

2 

1.75 

±0.02 

1.32 

2 

2.00 

±0.02 

2 

2 

2 

However, it is incorrect as Takahashi pointed out,26) To see this, we plot our values 

of x{J-2r 1log(j{J) as a function of (j1J}-1/2 inFig. 7.5. Clearly, it is observed that the 

curve diverges as (j{J)-1!2.l- O. Thus, there is no such logarithmic correction in the 

susceptibility X as was proposed by Schlottmann. 

The results from other approximations27)-32) are also given in Table 7.1. To 

compare our results with Takahashi and Yamada's7) in detail, we assume that, in the 

low temperature limit, the zero-field free energy and the susceptibility can be expand-
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802 T. Koma 

Table 7.2. The coefficients of the low-temperature expansion of the zero-field free energy. The numbers 

in the brackets give the errors in the last digit. 

Methods and authors Xo Xl 

Green function decoupling 5 

approximation 6" -7/3 

Kondo and Yamaji (1972) X 1.0421869'" 

Original Bethe-ansatz 

method 
1.042(1) -1.00(2) 

Takahashi and Yamada 

(1985) 

Spin wave approximation 
1.0421869'" -1 

Takahashi (1986) 

Thermal Bethe-ansatz 

method 1.042186(2) -0.9999(1) 

Present author 

Table 7.3. The coefficients of the low-temperature expansion of the susceptibility. 

Methods and authors 

Green function decoupling 

approximation 

Kondo and Yamaji (1972) 

Original Bethe-ansatz method 

Takahashi and Yamada (1985) 

Spin wave approximation 

Takahashi (1986) 

Thermal Bethe-ansatz method 

Present author 

ed in powers of W=(Jf3)-1!2 such that 

'" 
- /(/3, h=O)= JW

3
L:,XlW

l 

l=O 

and 

Yo YI 

1/6 

0.1667(5) 0.586(9) 

1/6 0.582597'" 

0.1666666(8) 0.58259(2) 

6.581·" 

0.9(1) 

1.2320919··· 

0.952(3) 

0.7(1) 

0.678839'" 

0.67189(2) 

(7·17) 

as proposed by Takahashi and Yamada.7) We approximate -/(/3, h=0)xr 1w-3 

and X xJw4 by polynomials in wand determine their coefficients by the least-squares 

fitting used above. As shown in Tables 7.2 and 7.3, our results are consistent with 

Takahashi and Yamada's7) which they obtained by computing /(/3, h=O) and X down 

to (J/3)-1=4 X 10-3 using the supercomputer HITAC S-810. Our results are in fact 

more precise than theirs. Further, we notice that the results from the spin wave 

approximation26
) deviate from the value of the third term in the zero-field free energy 

(7'17). 

We remark: 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 803 

(a) Takahashi and Yamada used the Takahashi-Suzuki integral equations
5

) 

which depend on the string conjecture,*) or more basically on the unproven 

assumption of the completeness of the system of the Bethe-eigenstates of the 

Hamiltonian (2·1). 

(b) Our results reconfirm that the spin wave approximation cannot be justified 

in the one-dimensional isotropic ferromagnetic model because of the dis­

agreement mentioned above in the third term in the zero-field free energy 

(7 ·17). We recall that the spin-wave approximation as applied to the 

one-dimensional isotropic ferromagnetic model results in diverging zero­

field magnetization per site, which Takahashi26
) had to suppress by imposing 

an ad hoc constraint of zero-magnetization without reasonable ground. 

Nevertheless, it is remarkable that the coefficients of the first and the second 

term in (7 ·17) agree surprisingly well with those of ours. 

In conclusion, we emphasize that our thermal Bethe-ansatz method uses no such 

assumption as the completeness of the system of the Bethe states that has been proved 

only partially and that it yields the better results than the previous methods do. It 

has to be noticed, however, that, for calculating the susceptibility, we used the 

assumption (7 ·16), namely, that the large Trotter number limit and the ther­

modynamic limit can be exchanged. Its proof is left for future studies. 

Finally, we note that our thermal Bethe-ansatz method can be applied also to the 

one-dimensional Hubbard model. The detailed results will be reported in the near 

future. 
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Appendix A 
-- Proof of Theorem 3.2 19

)-22) __ 

First, we prepare the following lemma along the line of Suzuki and Inoue.21
},22} 

Lemma A.I. Let H(l}, H(2} and H' be three Hermitian matrices satisfying [H(2}, H'] 

=0. Then, 

Ilog Tr{exp[H(1}]exp[H(2}]exp[H,]}M -log Tr{exp[H(1}]exp[H(2}]}MI ~ MIIH'II . 

(A·1) 

Proof Note that the left-hand side of (A ·1) equals 

I [I dx-.!Llog Tr{exp[Hil}]exp[H(2}]exp[xH']}MI = I [I dx M Tr(I!.' ~t A) I 
)0 dx )0 Tr(A tA) , 

*} Non-string solutions were found by W oynarovich in 1982,10) by Babelon et al. in 198311
) and by 

Vladimirov in 1984.12
) 
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804 T. Kama 

where 

with 

The numerator of the integrand can be rewritten as 

Tr (ii' .!1tA) = ~Ei<eiIAt Alei> , 
• 

where lei> and Ei are the system of the orthonormal eigenvectors and the correspond­

ing eigenvalues of the matrix ii'. Therefore, by <edAtAlei>~O, we obtain 

ITr (ii' At A)I ~max(IE;I)ITr (At A)I , 
i 

and the statement of the lemma follows. 0 

By putting 

ii(I)- _Lfj (1) ii(2)- _LH- (2) and 
- M 2n, - M 2n,F 

in Lemma A.I, we obtain 

where 

j<M>(2n, B) :=(2nm-1Iog Z2n,B(M) 

and F and P denote the boundary condition B in (2·3). Therefore, it is sufficient to 

show the existence of the double limit in (3·3) in the free boundary case B = F of (2·3). 

The finite-M free energy j(M)(2n, F) with free boundary condition shall be ab­

breviated as j(M)(2n), whenever there is no confusion. 

Next we show that the sequence j<M)(2n) (n=l, 2, ... ) converges uniformly with 

respect to M. For this purpose, we use arguments similar to Griffith's on the ther­

modynamic limit.19
),33) 

and 

First, we divide the Hamiltonian -([J/M)ii2n,F into three parts 

H-(l)-_Lfj (1) 
- M 2n , 

- L-IK-l( [J - ) 
H(2) = ~ ~ - MH2n; UK +2j,UK +2j+l 

l=;O j=1 

Then, Lemma A.I gives the following lemma. 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 805 

Lemma A.2. Let n=KL (K, L=l, 2, ... ). Then, 

I/(M)(2n)- I(M)(2K)I~(2K)-11IHz;1,zll. 

In the particular case n=2P2Q (p, q=l, 2, ... ) of Lemma A.2, we obtain 

I/(M)(2' 2p+q) - I(M)(2' 2P)1 ~ 2-P-11IHz; 1,zll. 

This implies that PM)(2'2P) is a Cauchy sequence in p and possesses a well-defined 

limit I(M). Further, as q i co, we have 

I/(ML I(M)(2'2P)1 ~2-P-11IHz; 1,zll. 

The limit PM) thus obtained for the particular sequence {n=2P} is also obtained for an 

arbitrary sequence increasing to infinity. To see this, let n=2PK (p, K=l, 2, ... ). 

Then, in the same way as above, 

IPM) - j(M)(2K) I ~ IPM) - I(M)(2· 2P)1 + I/(M)(2' 2P) - 1(M)(2n)1 + IPM)(2n) - PM)(2K)1 

~ 11Hz; 1,zll[2-P- 1+2-P-1+(2K)-1] . 

Thus, as Pi co, we obtain 

(A·2) 

This implies that 1(M)(2n) converges uniformly with respect to M as we wished to 

show .. 

We can now prove the statement of Theorem 3.2. For this purpose, we use the 

standard argument for the interchangeability of double limits.19
),Z1),ZZ) The inequality 

(A'2) combined with Theorem 3.1 shows that for any given .:>0 and for any M, one 

can find n such that 

and 

II - 1(2n)1 ~ .:/3. 

On the other hand, the Trotter formula (2' 7) implies that for given n, there exists M 

such that 

1!(M)(2n)-1(2n)1 ~ .:/3. 

These inequalities give 

1/- I(M)I~I/_ 1(2n)I+I/(2n)-I(M)(2n)1 + 11(M)(2n)- I(M)I 

~.:. 

Thus, the proof of Theorem 3.2 is complete. 0 

Appendix B 

-- Bethe Ansatz l
),34),35) for the Transfer Matrix ()2M--

In this appendix, we show that 
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806 T. Koma 

(k=O 1 ... 2M) " , 

Note that from the definition of the matrix Vi; i,j in (3' 5), we have 

Ds (all the spins up, or down) , 

Lemma B.1. Let 

(6/=6/,6/=6/,6/=1=6/) , 

(6/= 6/= + 1,6/= 6/= -1) , 

(6/=6/=-1,6/=6/=+1) , 

otherwise. 

IZj; k, k+D :=F(zj, k)l-l, +D+ F(zj, k+l)l+l, -D. (k=l, "', 2M) 

Then, 

V2;i,jIZj; 21-1, 21)=/Uzj; 21, 21+D. (l=I, "', M) 

Proof From the definitions (4·2) and (4'3), we have 

(
Dc E-ID-l) (F(Zj, 21-1»)=/t( F(zj,2l) ). 
ED- 1 Dc F(zj,2l) J F(zj,21+1) (l=I,"',M) 

This implies (B'3) by (B·2). 0 

Lemma B.2. Let 

:=L:U,j+l)ApF(zpj, k)F(zPu+l); k+ 1)1-1, - D, (k=I,"', 2M) 

(B'I) 

(B'2) 

(B'3) 

where the summation L:U,j+l) runs over two permutations, (PI, "', Pk) and (PI, "', 

P(j + 1), Pj, "', Pk). Then, 

V2; dZpj, ZpU+l); 21-1, 21) 

= (Ds )-l,'\Pj;\pu+l)lzpj, ZpU+l); 21, 21 + D. (l = 1, "', M) 

Proof From the definitions (4'2)~(4'4), we have 

(Dsy~:~(i,j+l)ApF(zpj, 21-1)F(zPu+l), 21) 

=;\Pj;\PU+l)L:(j,j+l)ApF(zPj, 2l)F(zPu+l), 21 + 1). (l =1, "', M) 

This implies (B'4) by (B·2). 0 

(B'4) 

Further, from the system of the Bethe-ansatz equations (4'7) and the definitions (4'2) 

~(4'4), we obtain: 

Lemma B.3. 

We now prove (B ·1). First, Lemmas B.l and B.2 combined with the definitions 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZ Heisenberg Chain 807 

of R2M, (4-1) and (4-5) give 

(k=O 1 ... 2M) " , 

Therefore, by (3-11) and Lemma B.3, we obtain 

02MIBk > 

(k=O, 1, ... , 2M) o 

Appendix C 

-- Calculation of the Limit M i 00 of f M --

For simplicity, we restrict M to even integers, M=2m (m=l, 2, ... ). Then, fM 

can be written as 

where 

and 

m 

fm(O) :=2L:log[2cosh(.8h/M)cos cPj] , 
j=l 

fm,P):= ~l(k)dx log Lj(w) , (E(1)=[O, n/2] , E(2)=[n/2, Jr]) 

Liw) :=1 + [sinh(/3h/M)w+sinh(/3/M)cos x J2 
cosh(/3h/M)cos cPj 

(j=1, 2, ... ) 
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808 T. Koma 

From the definitions, one can easily obtain the following lemmas . 

. Lemma c.1. Let A and B be two complex numbers. Then, 

where 

/A+B±/B 
2 

Lemma C.2. For any c>O, 

where the summation ~(e) runs over integer j satisfying 1- c;;:;;sin (j?j;;:;;1. 

Lemma C.3. If {Wj} is bounded, then, for any c>O, 

By Lemma C.1, we obtain 

lim]m(O)=log 2+ lim2- 1M log[cosh(,8h/M)] 
mt~ Mtoo 

=log2 

and 

m 
2-1]m(O)+ ~]m.j(k)(w) 

j=l 

where 

a± (M)(X): = j cosh2(,8h/M) + [sinh(j%/M) + sinh(,8/M)cosx J2 

±[sinh(,8h/M)+sinh(,8/M)cos x] . 

It is easily shown that the integrand of (C'l) is bounded on E(1)UE(2). Therefore, by 

the Lebesgue convergence theorem, we obtain 
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Thermal Bethe-Ansatz Method for the Spin-l/2 XXZHeisenberg Chain 809 

Ur;![2- 1f m(O}+ idfm./k}(w)]=7r-1h!k) dx log{2cosh ,8[cos x+ hW]}. 

(k=l, 2; w=const) 

Therefore, by Lemmas C.2 and C.3, we obtain 

limfM=7r- l lim l 1C 

dx log{2cosh ,8[cos x+(l- c)h]} 
Mt= qO 0 

= 7r- 111C 

dx log{2cosh ,B[cos x+ h]} . 
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