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ABSTRACT

Buckling and post-buckling thermomechanical deformations of a functionally
graded material (FGM) Timoshenko beam resting on a two-parameter non-
linear elastic foundation and subjected to only a temperature rise have been
numerically investigated with the shooting method. The material properties
are assumed to vary only in the thickness direction according to a power
law function. Through-the-thickness temperature distribution is determined
by numerically solving the one-dimensional heat conduction equation. Geo-
metric non-linearities in the strain-displacement relations and the non-linear
traction-displacement relations at the interface between the beam and the
foundation are considered. For clamped-clamped and immovable simply sup-
ported beams, critical values of the ratio of temperatures of the top and the
bottom surfaces of the beam for transitions in buckling modes to occur are
determined. Post-buckled equilibrium paths and con�gurations of the heated
FGM beam are illustrated for di�erent values of the elastic foundation sti�ness
parameters, exponent in the power law variation of material properties and
the slenderness ratio. Results for the Timoshenko beam are compared with
those of the corresponding homogeneous Euler–Bernoulli beam available in
the literature.
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Introduction

Thermal buckling and post-buckling deformations of isotropic homogeneous beams with and without
an elastic foundation have been well-investigated in the literature. For example, Li et al. [1–3] presented
a mathematical model of the post-buckling deformations of elastic beams under di�erent boundary
conditions and subjected to either uniform [1, 2] or non-uniform [3] temperature rise. The coupled
non-linear ordinary di�erential equations were numerically solved by the shooting method. The work
has been extended to Timoshenko beams [4, 5] subjected to thermomechanical loads.

Thermal buckling and post-buckling deformations of Euler-Bernoulli beams (EBBs) resting on two-
parameter non-linear elastic foundations were studied by Song and Li [6] and Li and Batra [7] for
di�erent boundary conditions. It was found that the critical temperature depended linearly on the linear
elastic foundation sti�ness parameter. Vaz et al. [8] used the perturbationmethod to provide an analytical
solution for the initial post-buckling behavior of a slender rod supported on a linear elastic foundation
and subjected to a uniform temperature gradient.

Functionally graded materials (FGMs) are usually composed of two di�erent homogeneous con-
stituents, such as a ceramic and a metal. The material properties vary continuously in one or more
directions, and this variation can be exploited to optimize a functionality of the structure. When
FGM structures are used in high-temperature environments, they may buckle under thermal loads.

CONTACT Shi-Rong Li srli@yzu.edu.cn School of Civil Science and Engineering, Yangzhou University, Yangzhou 225127,
Jiangsu, China.
Color versions of one or more of the �gures in the article can be found online at www.tandfonline.com/uths.
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12 Y. SUN ET AL.

However, they may still perform well while being in post-buckled con�gurations. Therefore, a thorough
understanding of thermal buckling and post-bucking deformations of FGM structures, such as FGM
beams, is very helpful in understanding their load carrying capacity.

Kiani and Eslami [9, 10] analyzed the buckling of FGM beams by using both the EBB and the
Timoshenko beam (TB) theories, and gave a closed-form expression for the critical buckling temperature
for three types of thermal loads.Ma andLee [11] obtained a closed-form solution for the non-linear static
response of both clamped-clamped and pinned-pinned FGMbeams subjected to in-plane thermal loads.
Zhao et al. [12] studied post-buckling deformations of immovable simply-supported (S-S) FGM EBBs
subjected to a thermal load and presented thermal post-buckling equilibriumpaths for di�erent values of
the material gradient parameter. The post-buckling of clamped FGMTBs was numerically studied by Li
et al. [13] with the shootingmethod. Based on the non-linear �rst-order shear deformation beam theory
(FSDT),Ma and Lee [14] used the shootingmethod to numerically study non-linear deformations of S-S
FGM beams subjected to uniform in-plane thermal loads. Anandrao et al. [15] investigated the thermal
post-buckling behavior of uniform slender FGM beams. They used a single-term Ritz method and the
�nite element method (FEM) to �nd the non-linear response of the beams.

There are a few studies on buckling and post-buckling deformations of FGM beams resting on
elastic foundations. Sahraee and Saidi [16] applied the di�erential quadraturemethod (DQM) to analyze
buckling and free vibration of a deep FGMbeam-column resting on a Pasternak-type elastic foundation.
Fallah and Aghdam [17, 18] studied the post-buckling and non-linear free vibrations of FGM EBBs
resting on a non-linear elastic foundation subjected to axial compressive [17] and thermomechanical
[18] forces. They used a variational method to obtain an approximate closed-form solution of the
governing equations. Esfahani et al. [19] analyzed thermal buckling and post-buckling deformations
of FGM TBs resting on three-parameter non-linear elastic foundations with �ve possible boundary
conditions in conjunction with two types of thermal loads.

The generalized di�erential quadrature method (GDQM) was employed to discretize equilibrium
equations derived by using the principle of virtual work. Ghiasian et al. [20] studied static and dynamic
buckling of an FGM EBB subjected to uniform thermomechanical loads and resting on a three-
parameter non-linear elastic foundation with hardening/so�ening cubic non-linearity. More recently,
Esfahani et al. [21] studied small amplitude vibrations of an FGMTBunder in-plane thermal loads in the
pre-buckling andpost-buckling regimes. TheGDQMin conjunctionwith theNewton–Raphsonmethod
was used to numerically solve the non-linear governing equations. Shen and Wang [22] investigated
non-linear free vibrations, non-linear bending and thermal post-buckling of FGM beams resting on an
elastic foundation in a thermal environment. They deduced material properties of the homogenized
material by using two micromechanics models, namely, the Voigt and the Mori-Tanaka. Equations of
motion were established by using a higher order shear deformation beam theory and incorporating the
von Kármán non-linear strain-displacement relations. Praveen and Reddy [23] have studied non-linear
transient thermoelastic deformations of a FGM plate.

In the above-mentioned works [17–22] on the post-buckling analysis of FGM beams resting on
elastic foundations, geometric non-linearities are taken into account in the sense of von Kármán’s strain-
displacement relations. It has been pointed out by Batra and Xiao [27] that there is no stress tensor that
is work conjugate of the von Kármán strain tensor. They considered all geometric non-linearities that
include the von Karman non-linearities. Furthermore, the beammaterial was assumed to be St. Venant–
Kirchho� for which the 2nd Piola–Kirchho� stress tensor is a linear function of the Green–St. Venant
strain tensor.

A few investigations have dealt with the in�uence of an elastic foundation on the equilibrium paths of
buckled and post-buckled beams subjected to thermal loads. However, the relation between the critical
temperature and the linear elastic foundation sti�ness parameters for an FGM beam subjected to non-
uniform temperature rise has not been considered in them. In this work, based on the non-linear strain-
displacement relations for a TB, the governing equations of a FGM TB resting on a non-linear elastic
foundation are derived and numerically solved by the shooting method. Material properties of the FGM
beam are assumed to vary in the thickness direction according to a power-law function of the thickness
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JOURNAL OF THERMAL STRESSES 13

coordinate. The through-the-thickness temperature variation governed by the one-dimensional heat
conduction equation is computed. The governing equations of the thermal post-buckling deformations
are solved via the shooting method to investigate the e�ect of elastic foundation sti�ness parameters on
the critical buckling temperature and the equilibrium paths of the beam.

Governing equations

A schematic sketch of the problem studied is shown in Figure 1. We use rectangular Cartesian
coordinates with the x−axis originating from the le� edge of the beam and located on its mid-surface
and the positive z−axis pointing upward along the normal to the mid-surface. The beam of rectangular
cross-section b × h and length l rests on a two-parameter non-linear elastic foundation.

Material properties of FGMs

The FGM beam is assumed to be made of two isotropic constituents. For analyzing the problem, the
FGM beam is replaced by a beam made of an equivalent in homogeneous and isotropic material with
material properties varying only in the thickness direction. The e�ective material property, P (i.e.,
Young’s modulus E, thermal conductivity κ , and thermal expansion coe�cient α), are expressed as [23]

P(z) = PbψP(z) (1)

where

ψP(z) = 1 + (Pr − 1)

(

1

2
+

z

h

)n

(2)

Pr = Pt/Pb, Pt and Pb denote the value of P at the top (z = h/2) and the bottom (z = −h/2) surfaces,
respectively, of the beam. However, we assume that Poisson’s ratioµ is a constant which is approximately
valid when Poisson’s ratios of the two constituent materials are nearly the same. Thus the e�ective shear
modulus G(z) can be expressed as

G(z) =
E(z)

2(1 + µ)
(3)

Furthermore, the material properties are considered to be independent of the temperature.

Temperature �eld

We assume that the temperature varies only in the thickness direction and denote its change from that
in the natural or the undeformed state of the beam by T(z). The value of T(z) is found by solving the
one-dimensional steady-state heat conduction equation [13, 23]

d

dz

[

κ(z)
dT(z)

dz

]

= 0 (4)

Figure 1. Schematic sketch of the problem studied.
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14 Y. SUN ET AL.

and the associated boundary conditions

T(h/2) = Tt ,T(−h/2) = Tb (5)

where Tt and Tb denote the temperature change at the top and the bottom surfaces of the beam,
respectively. We assume that Tb 6= 0 and write

T(z) = Tbt(z) (6)

in which t(z) is given by

t(z) = 1 + (Tr − 1)

∫ z

−h/2

dz

κ(z)

/

∫ h/2

−h/2

dz

κ(z)
(7)

where Tr = Tt/Tb. Thus Tr = 1 represents the uniform temperature rise in the beam. Knowing κ(z) >
0, and the temperature at the top and the bottom surfaces of the beam, one can �nd the temperature at
any point in the beam. If Tb = 0 we normalize the temperature by Tt in Eq. (6) and suitably modify
equation (7).

Strain-displacement relations

As reported in Refs. [2, 7] and [13], the strain-displacement relations can be written as

ds0

dx
= 30,

du0

dx
= 30 cos θ − 1,

dw0

dx
= 30 sin θ (8)

where s0(x) is the arc length of the deformed central axis, u0(x) and w0(x) are displacements of a point
on the central axis in the x- and the z-directions, respectively,30(x) is the stretch at a point on the central
axis, and θ(x) is the angle an element of the deformed central line makes with the x−axis.

In the TB theory the transverse shear strain is assumed to be independent of the z-coordinate. Thus
a cross-section initially perpendicular to the x−axis is rotated by the angle

ϕ = θ + γ (9)

about the y−axis. The axial strain, ε, and the transverse shear strain, γ ′ (not to be confused with d γ /d
x) , at the point (x, z) are given by [4, 13]

ε = 30 cos γ − 1 − z
dϕ

dx
, γ ′ = 30 sin γ (10)

Constitutive equations

In the TB theory, the beam is assumed to undergo plane strain deformations in the xz-plane. Further-
more, the beam’s thickness is assumednot to change. Thus beam’s cross-sectional area remains una�ected
by the deformations. However, the cross-section may undergo large rotations. Batra [25] has discussed
predictions from four constitutive relations for �nite elastic deformations that express a stress tensor as a
linear function of the appropriate strain tensor. Allix and Corigliano [26], and Batra and Xiao [27] have
used the St. Venant–Kirchho� material model, respectively, for the TB and the beam with deformations
governed by a third-order shear and normal deformable beam theory (TSNDT). For problems studied
here, themaximum total axial strain and themaximumangle of rotation of a cross-section are anticipated
to be about 0.01 and 0.2 radians, respectively. The total axial strain consists of the thermal strain and
the strain produced by the stress. We thus use Hooke’s law to �rst �nd the horizontal and the vertical
forces acting on the undeformed cross-section and then their components along and perpendicular to
the beam’s deformed axis.
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JOURNAL OF THERMAL STRESSES 15

Using Hooke’s law, the stress-strain relations are expressed as

σ = E(z) [ε − α(z)T(z)] , τ = G(z)γ ′ (11)

The resultant axial and transverse normal forces, N and Q, respectively, and the bending moment, M,
are de�ned by

N =

∫∫

A
σdA, M = −

∫∫

A
σ zdA, Q =

1

k

∫∫

A
τdA (12)

where k is the shear correction factor whose value depends on the shape of the cross-section. Here,
k = 3/2 is used for the rectangular section [19].

Substituting for strains from Eq. (10) into Eq. (11), and then for stresses into Eq. (12) results in

N = A1(30 cos γ − 1)− B1
dϕ

dx
− NT (13)

M = −B1(30 cos γ − 1)+ D1
dϕ

dx
+ MT (14)

Q =
1

k
C130 sin γ (15)

where A1, B1, C1 and D1 are sti�ness coe�cients, and NT and MT are, respectively, the thermal axial
force and the thermal bending moment. These are given by

(A1,B1,D1) =

∫∫

A
(1, z, z2)E(z)dA = (Aφ1,Ahφ2, Iφ3)Eb (16a)

C1 =

∫∫

A
G(z)dA =

EbA

2(1 + µ)
φ1 (16b)

(NT ,MT) =

∫∫

A
(1, z)α(z)E(z)T(z)dA = (φ4, hφ5)N

b
T (16c)

where A and I are, respectively, the cross-sectional area and the moment of inertia of the cross-section
about the y−axis, and Nb

T is the axial force due to temperature change. These quantities and the
dimensionless coe�cients φi are de�ned as

A = bh, I = Ah2/12,Nb
T = αbEbTbA (17a)

φ1 =
1

h

∫ h/2

−h/2
ψE(z)dz,φ2 =

1

h2

∫ h/2

−h/2
ψE(z)zdz,φ3 =

12

h3

∫ h/2

−h/2
ψE(z)z

2dz (17b)

φ4 =
1

h

∫ h/2

−h/2
ψE(z)ψα(z)t(z)dz,φ5 =

1

h2

∫ h/2

−h/2
ψE(z)ψα(z)t(z)zdz (17c)

where ψE(z) and ψα(z) are given by Eq. (2) with P = E and α for Young’s modulus and the thermal
expansion coe�cient, respectively.

For a homogeneous beam, φ2 = 0, and φ1 = φ3 = 1 when n tends to in�nity and φ1 = φ3 = Er
for n = 0. Furthermore, for a uniform temperature rise (Tr = 1), we have φ5 = 0, and φ4 = 1 when n
tends to in�nity and φ4 = Erαr for n = 0.
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16 Y. SUN ET AL.

Equilibrium equations

Equilibrium equations derived in Refs. [4], [7] and [13] can be written as

dH

dx
= 30qx,

dV

dx
= 30qz,

dM

dx
= 30 (−H sin θ + V cos θ) (18)

where H and V are the horizontal and the vertical resultant forces, respectively, and qx and qz are
distributed loads in the x- and the z- directions, respectively, exerted by the foundation on the deformed
beam.

We assume that the reaction force exerted on the beam by the non-linear elastic foundation can be
expressed in terms of the displacements of beam’s centroidal axis as [7]

qx = −k1u0 − k2u0(u
2
0 + w2

0), qz = −k1w0 − k2w0(u
2
0 + w2

0) (19)

where k1 and k2 can be interpreted, respectively, as the linear and the non-linear foundation sti�ness
(their units are di�erent); and u0 and w0, are respectively, displacements of a point on the beam’s
centroidal axis in the x- and the z-directions. For non-uniform temperature distribution along the beam
thickness, the centroidal axis may not coincide with the neutral axis of the beam.

Resultant forces N and Q are related to H and V by

N = −H cosϕ − V sin ϕ, Q = −H sin ϕ + V cosϕ (20)

Substitution for N, M and Q from Eqs. (13)–(15) into Eq. (20) yields

dϕ

dx
=

−φ1c
(

−M + hφ5N
b
T

)

+ hφ2c
(

−H cosϕ − V sin ϕ + φ4N
b
T

)

φ1EbI
(21)

30 sin γ =
2k(1 + µ) (−H sin ϕ + V cosϕ)

EbAφ1
(22)

30 cos γ =
−12φ2c

(

−M + hφ5N
b
T

)

+ hφ3c
(

−H cosϕ − V sin ϕ + φ4N
b
T

)

EbAhφ1
+ 1 (23)

where c = 1/(φ3−12φ22/φ1) is a dimensionless coe�cient. For c = 1, Eqs. (21)–(23) reduce to those for
a homogeneous beam with material properties equal to those of the bottom surface of the FGM beam.

Equations (8), (18) and (21) constitute a system of seven non-linear coupled ordinary di�erential
equations (ODEs) for seven unknown functions, s0(x), u0(x),w0(x), ϕ(x),H(x),V(x) andM(x) de�ned
on the domain [0, l]. We note that30 and γ can be expressed in terms of these seven functions.

Equilibrium equations in terms of non-dimensional variables

We introduce the following non-dimensional variables:

(ξ , S,U,W) = (x, s0, u0,w0)/l, δ = l/h, (K1,K2) =
(k1, k2l

2)l4

EbI
(24a)

(PH ,PV ,PN ,PNT ,m,mT) =
(Hl,Vl,Nl,NT l,M,MT)l

EbI
, τ =

Nb
T l

2

EbI
= 12αbTbδ

2 (24b)

The value of τ is found by assuming the beam material to be homogeneous with values of material
parameters of the material of the bottom surface of the FGM beam and the temperature rise to be
uniform; τ is used as the reference thermal load parameter.
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JOURNAL OF THERMAL STRESSES 17

In terms of the above non-dimensional parameters, Eqs. (8), (18) and (21)–(23) become

dS

dξ
= 30,

dU

dξ
= 30 cos θ − 1,

dW

dξ
= 30 sin θ (25)

dϕ

dξ
=

c

δφ1
[φ1 (δm − φ5τ)− φ2 (PH cosϕ + PV sin ϕ − φ4τ)] (26)

dPH

dξ
= −30U

[

K1 + K2(U
2 + W2)

]

(27a)

dPV

dξ
= −30W

[

K1 + K2(U
2 + W2)

]

(27b)

dm

dξ
= 30 (−PH sin θ + PV cos θ) (28)

where

30 =

√

s21 + s22, γ = arc tan
s1

s2
(29)

s1 =
k(1 + µ)

6δ2φ1
(−PH sin ϕ + PV cosϕ)

s2 =
c

12δ2φ1
[12φ2 (δm − φ5τ)− φ3 (PH cosϕ + PV sin ϕ − φ4τ)] + 1

From Eq. (29), we conclude that for γ = 0, i.e., ϕ = θ , s1 = 0, and Eqs. (21)–(29) reduce to those for an
EBB.

Boundary conditions for clamped-clamped and immovable simply supported beams are:
Clamped edges (C-C):

U(0) = 0,W(0) = 0,ϕ(0) = 0,U(1) = 0,W(1) = 0,ϕ(1) = 0 (30a)

Immovable simply supported edges (S-S):

U(0) = 0,W(0) = 0,m(0) = 0,U(1) = 0,W(1) = 0,m(1) = 0 (30b)

For the arc length measured from the le� edge, we have S(0) = 0.
The normalization conditions added to specify a buckled con�guration of the FGMbeam are: ϕ(0) =

ϕ0 for an immovable S-S beam, andm(0) = m0 for a C - C beam.

Numerical results and discussion

The FGM beam is assumed to be made of a ceramic (zirconia) and a metal (aluminum) with the top
surface made of pure ceramic and the bottom one of pure metal with the following values of material
parameters: Et = Ec = 151GPa, αt = αc = 10 × 10−6 K−1, κt = κc = 2.09W/m · K for zirconia; and
Eb = Em = 70GPa, αb = αm = 23× 10−6 K−1, κb = κm = 204W/m ·K for aluminum. Poisson’s ratio
for both materials is taken to be 0.3, i.e., µ ≡ 0.3.

The coupled non-linear ODEs (25)–(28) under the boundary conditions (30) are numerically solved
by the shooting method and setting the relative error limit, EPS = 10−5, for integration using the
Runge-Kutta method and the iterative scheme using the Newton-Raphson method. Because di�erential
equations (25)–(28) and boundary conditions (30) are in terms of non-dimensional variables, the three
geometric parameters of the beam reduce to only one, the slenderness ratio, δ = l/h. Unless stated
otherwise, numerical results have been computed for δ = 30.
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18 Y. SUN ET AL.

The response of the pre-buckled FGMbeam is found by settingW ≡ θ ≡ 0,30 = 1 in Eqs. (25)–(28)
and (30), which results in U = 0, PH = −PN = φ4τ .

Critical buckling temperature and bucklingmode transitions

By linearizing Eqs. (25)–(28) and (30), i.e., setting30 = 1, sin θ ≈ θ ≈ W′, cos θ = 1, and PH = φ4τ ,
and neglecting all non-linear terms in the unknown functions, we get a linear equation for the critical
buckling temperature of a FGMbeam resting on the elastic foundation; e.g., see Ref. [7]. In the numerical
work, it can be found in the limit ofm0 (or ϕ0) approaching zero.

To ensure the accuracy of the present method, we have compared in Table 1 the presently computed
critical temperature rise,1Tcr , of C-C FGM TBs subjected to uniform temperature rise without elastic
foundation with those given in Ref. [19] based on the GDQM. For the SUS304/Si3N4 FGM beam
studied in Ref. [19], Eb = 207.8GPa, αb = 15.3 × 10−6 K−1, κb = 6.35Wm−1 K−1 for the metal and
Et = 322.3GPa, αt = 7.47 × 10−6 K−1, κt = 8.77Wm−1 K−1 for the ceramic, δ = 20, and the shear
correction factor, k = 1.2. It is clear from the values listed in Table 1 that the presently computed values
of1Tcr(K) agree well with those reported in Ref. [19].

The critical buckling temperature τcr as a function of the linear foundation sti�ness parameter K1

for the C-C FGM TB is depicted in Figure 2. It is seen that the critical temperature decreases with an
increase in the volume fraction index n and the temperature ratio Tr . For a speci�ed value of n, the
buckling temperature increases with an increase in the value of K1. Results for K1 = 0 are for a beam
without an elastic foundation, and those for K1 = 0 and n = ∞ are for a homogeneous beam with
no elastic foundation. Each critical buckling temperature curve is piecewise linear with line segments
of di�erent slopes which correspond to distinct buckling modes. The point of intersection, Amn, of two
consecutive line segments gives the value of (K1)mn at which the buckling mode transitions from mode
m to mode n.

From the results it can be seen that in di�erent ranges of values of the sti�ness parameter K1 the
critical buckling thermal load corresponds to di�erent bucklingmodes. In otherwords, for theC-C FGM
beam resting on an elastic foundation and hence subjected to follower type (or displacement-dependent)

Table 1. Comparison of1Tcr(K) for C-C Timoshenko FGM beam subjected to uniform temperature rise without elastic foundation, i.e.,
K1 = K2 = 0.

n 0 0.5 1 2 5 10 ∞

This work 693.05 510.14 458.91 423.75 394.61 376.34 338.12
Ref. [19] 692.70 509.89 458.68 423.53 394.39 376.14 337.94

Figure 2. Critical temperature for the C-C FGM beam resting on a linear elastic foundation for di�erent values of (a) exponent n, and
(b) temperature rise ratio Tr .
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JOURNAL OF THERMAL STRESSES 19

continuously distributed loads the lowest critical temperature need not correspond to the �rst buckling
mode. That is, a higher-order buckling mode could have a lower buckling temperature than that for the
immediately lower order buckling mode. The coordinates of the transition points in the buckling modes
are listed in Tables 2 and 3 and are compared with the results of Li and Batra [7], and of Wu and Zhong
[24] for homogeneous EBBs. Wu and Zhong studied a mechanical problem, thus values of τcr for the
mode transition are not listed in the table. It is clear that the critical temperature for the homogeneous
EBB is a little higher than that for the TB due to shear deformations considered in the TB but not in
the EBB. An increase in the value of Tr from 0.2 to 1.5 monotonically increases values of K1 and τcr at
which the buckling mode transitions to the next higher one. However, when Tr is increased from 1.5 to
2, values of K1 and τcr decrease when the buckling mode transitions to the next higher one.

The equilibrium path of the S-S homogeneous beam under uniform or non-uniform temperature rise
is not of bifurcation-type. The critical buckling temperatures for a S-S homogeneous TB under uniform
temperature rise as a function of the linear foundation sti�ness parameters are depicted in Figure 3. For
comparison, similar results for the EBB beam are also plotted. It can be seen that the critical temperature
of a metal-rich beam (n = 8) is lower than that of a geometrically identical ceramic-rich beam (n = 0).
Because of the neglect of transverse shear deformations, the critical temperature for an EBB is higher
than that of the corresponding TB. For the TB, an increase in the slenderness ratio results in higher
values of the critical temperature because of the decrease in the in�uence of shear deformations with an
increase in the slenderness ratio of the beam. As the slenderness ratio approaches in�nity, the critical
temperature of the TB tends to that of the EBB.

In Table 4 we have listed coordinates of the buckling mode transition points for a S-S homogeneous
beam and compared them with those available in the literature for the pure metal beam. It is clear that
the presently computed values ofK1 for the buckling mode transitions agree well with those of Ref. [24],
wherein a mechanical problem has been studied.

Analysis of post-buckling deformations

When the thermal load τ exceeds the critical temperature τcr , the FGMbeam is in the post-buckled state.
Thermally post-buckled equilibrium paths have been computed by the continuation method in which
the parameterm0 (or ϕ0) is increased in small steps. Due to symmetry of beam’s deformations about the

Table 2. Coordinates of transition points for the C-C FGM beam and various values of the exponent n under uniform temperature rise
(Tr = 1).

(K1/π
4 , τcr/π

2)

n Source A01 A12 A23 A34

0 This work (TB) (0, 9.126) (17.403, 22.217) (125.888, 43.499) −

0.5 This work (TB) (0, 6.262) (12.442, 15.028) (88.431, 28.927) (287.617, 46.729)
5 This work (TB) (0, 4.940) (10.24, 11.848) (70.807, 22.986) (233.193, 37.216)

∞ This work (TB) (0, 4.029) (8.055, 9.622) (55.941, 18.773) (196.43, 31.169)
This work (EBB) (0, 4.069) (8.467, 10.011) (62.169, 20.087) (216.358, 33.8797)

Li and Batra [7] (EBB) (0, 4) (9, 10) (64, 20) (225, 34)
Wu and Zhong [24] (EBB) − (9,−) (64,−) −

Table 3. Coordinates of transition points for C-C FGM beam for di�erent values of the temperature rise ratio, Tr (n = 0.5).

(K1/π
4 , τcr/π

2)

Tr A01 A12 A23 A34

0.2 (0, 7.579) (10.084, 17.485) (68.664, 32.792) (225.118, 53.434)
0.5 (0, 7.012) (11.118, 16.425) (74.759, 30.923) (242.571, 49.651)
1 (0, 6.262) (12.442, 15.028) (88.431, 28.927) (287.617, 46.729)
1.5 (0, 5.798) (14.402, 14.061) (98.373, 27.350) (313.698, 43.680)
2 (0, 5.248) (13.207, 12.630) (88.366, 24.187) (278.672, 38.680)
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20 Y. SUN ET AL.

Figure 3. Critical temperature versus the linear foundation sti�ness parameter for a S-S homogeneous beam under uniform tempera-
ture rise.

Table 4. Coordinates of transition points for a S-S homogeneous beam and uniform temperature rise (Tr = 1).

(K1/π
4 , τcr/π

2)

n Beam A01 A12 A23 A34

0 EBB (0, 2.300) (8.629, 11.500) (77.668, 29.901) (310.642, 57.500)
TB δ = 30 (0, 2.292) (8.480, 11.333) (74.331, 28.890) (286.514, 54.052)

δ = 20 (0, 2.282) (8.306, 11.139) (70.789, 27.809) (263.929, 50.780)
δ = 10 (0, 2.231) (7.546, 10.284) (58.176, 23.923) (280.781, 51.274)

∞ EBB (0,1) (0,1)* (4,5) (4,5)* (4,-)** (36,13) (36,13) * (36,-)** (144,25) (144,25)* (144,-)**
TB δ = 30 (0, 0.997) (3.931, 4.927) (34.462, 12.561) (132.850, 23.504)

δ = 20 (0, 0.992) (3.850, 4.843) (32.818, 12.091) (122.322, 22.076)
δ = 10 (0, 0.970) (3.498, 4.471) (26.972, 10.401) (130.190, 22.295)

*Results from [7]; **Results from [24].

mid-section, the de�ection of the beam centroid can also be regarded as the continuation parameter for
an odd order buckling mode, such as the �rst, the third, and the ��h.

In Figures 4 and 5 we have exhibited post-buckled con�gurations of the �rst and the secondmodes of
the C-C and the S-S FGM beam for di�erent values of the thermal load τ and for (K1,K2)= (500, 0) and
(2000, 50000). For each one of the four cases studied, the de�ection of a point increases monotonically
with an increase in the thermal load. We note that the C-C FGM beam with n = 5 and Tr = 1 buckles
in mode 2 at τ = 143.56 for (K1, K2) = (2000, 50000) but in mode 1 for τ = 94.77 for (K1, K2) = (500,
0). Thus values of parameters of the elastic foundation noticeably a�ect the buckling temperature and
the buckling mode. Similar remarks apply to the S-S FGM beam.

In Figure 6 we have plotted the relation between the centroidal de�ection W(0.5) and the thermal
load τ for the C-C FGM beam for various values of the foundation sti�ness and the power law exponent
de�ning through-the-thickness variation of the material properties. The buckling mode corresponding
toK1 = 10000 is the third onewhereas the beam buckles in the 1stmode forK1 = 200, 300, 400 and 500.
For a �xed bucklingmode, the de�ection decreases with an increase in the value of the linear foundation
sti�nessK1. It is clear that the C-C FGM beam undergoes bifurcation-type buckling.WithK1 = 300 but
K2 varied from 100 to 150,000, the beam buckles in mode 1.

The non-linear foundation sti�ness K2 has a little in�uence on the buckling deformation when the
thermal load is low and the in�uence becomes more obvious when the thermal load is larger, or the
deformations become signi�cant. For the same thermal load, beam’s centroidal de�ection decreases
with an increase in the value of K2. However, the centroidal de�ection increases with an increase in
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Figure 4. The post-buckled con�gurations of a C-C FGM beam for (K1 , K2)= (500, 0) and (2000, 50000).

Figure 5. The post-buckled con�gurations of a S-S FGM beam for (K1 , K2)= (300, 0) and (2000, 50000).

Figure 6. For a C-C FGM beam the central de�ection,W(0.5), versus the thermal load τ for di�erent values of (a) K1 , (b) K2 , and (c) the
power law exponent, n.
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22 Y. SUN ET AL.

the thermal load and the lateral de�ections of the third buckling mode are much smaller than those of
the �rst mode for the same value of τ . ForK1 = 300,K2 = 0 and Tr = 1, the C-C beam buckles in mode
1 for values of the power law exponent varying from 0 to ∞; the thermal buckling load is the least for
the metallic beam (n = ∞) and the most for the ceramic beam (n = 0).

For the S-S FGM beam we have depicted in Figure 7 the relationship between the centroidal
de�ection, W(0.5), and the thermal load τ for di�erent values of the foundation sti�ness and the
power law exponent. It is seen that only the equilibrium paths of a homogeneous beam under uniform
temperature rise are of bifurcation-type. However, when either the beam is non-homogeneous or it
is subjected to a non-uniform temperature rise, the equilibrium paths are similar to those of the
homogeneous beam with an initial imperfection. The central de�ection increases with an increase in
the thermal load. Because deformations of the homogeneous beam under uniform temperature rise
are symmetric about the beam mid-point, it can buckle either upwards or downwards depending upon
values of the power law exponent and the temperature ratio. For a given value of the thermal load, a
higher value of the linear foundation sti�ness decreases the centroidal de�ection of the beam. As for the
C-C FGM beam, for a given thermal load centroidal de�ections of the two homogeneous beams – one
made of the ceramic and the other of the metal–bound centroidal de�ections of the FGM beam. For
Tr = 0.1 and 0.5, the beam de�ects downwards but for Tr ≥ 1 it de�ects upwards.

In Figure 8 we have displayed the relationship between the end bending moment, m(1), and the
thermal load, τ , for the C-C FGM beam for some values of the linear sti�ness parameter,K1, the volume
fraction index, n, and the temperature ratio,Tr . For the unbuckled beam, we setW ≡ θ ≡ 0 and30 = 1
in Eqs. (25)–(28) and (30), and getm = φ5τ/δ = mT , whichmeans that the bendingmoment is uniform
and varies linearly with the thermal load as indicated by the straight line in Figure 8a. The dependence of
the parameter φ5 upon the power law exponent n is depicted in Figure 9 for a uniform temperature rise

Figure 7. For a S-S FGM beam centroidal de�ection,W(0.5), versus the thermal load, τ for various values of parameters.
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JOURNAL OF THERMAL STRESSES 23

Figure 8. For a C-C FGM beam, dependence of the end bending moment, m(1), upon the thermal load, τ , for di�erent values of
parameters.

Figure 9. For a C-C FGM beam dependence of φ5 upon n (Tr = 1).

(Tr = 1). It can be seen that φ5 = 0 for the FGM beam with n = 0, 1.349, ∞ only; otherwise φ5 6= 0.
For the post-buckled deformations in the �rst buckled mode and a uniform temperature rise, the end
momentm(1) decreases with an increase in the value of the linear foundation sti�ness parameter K1; cf.
Figure 8a.
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24 Y. SUN ET AL.

By comparing results depicted in Figure 6c and Figure 8b, we see that even though the centroidal
de�ection monotonically decreases with an increase in the value of the power law exponent, n, the end
moment m(1) is not a monotonic function of n. The dependence of the end moment m(1) upon the
thermal load for di�erent values of Tr is exhibited in Figure 8c. For a �xed value of the thermal load, the
end bending moment monotonically increases with an increase in the value of Tr .

In Figure 10 we have displayed the characteristic curves of the horizontal resultant force, PH(1),
versus the thermal load τ for the S-S FGM beam. For a homogeneous beam under uniform temperature
rise, the resultant axial force prior to the onset of buckling is given by PH = φ4τ = nT , which
increases linearly with the thermal load and stays constant a�er buckling. For other values of the beam
material and foundation sti�ness parameters, there is no critical buckling temperature according to
the traditional de�nition of buckling. Below a speci�ed temperature that can be identi�ed as a critical
buckling temperature, the horizontal force also increases linearly with the thermal load. Above the
speci�ed temperature, the horizontal force changes slowly with an increase in the thermal load and in
fact decreases with an increase in the thermal load for n = 0.2 and 0.5. Values of the linear sti�ness of
the foundation noticeably a�ect the temperature at which the slope of the PH (1) vs. the thermal load
curve noticeably changes.

We show in Figure 11 the e�ect of the slenderness ratio on the beam centroidal de�ection for S-S
FGMEB andTimoshenko beams. It is clear that as the slenderness ratio increases, the di�erence between

Figure 10. For a S-S FGM beam, dependence of the horizontal force PH (1) upon the thermal load for di�erent values of parameters.
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Figure 11. The e�ect of slenderness ratio on the central de�ection of S-S FGM Euler–Bernoulli and Timoshenko beams.

de�ections of the EBB and the TB becomes miniscule indicating the negligible e�ect of transverse shear
deformations on the beam de�ection for large values of the slenderness ratio.

Conclusions

Thermal buckling and post-buckling responses of a linear elastic FGM Timoshenko beam resting on a
non-linear elastic foundation have been studied by solving one-way coupled equations for thermoelastic
deformations of the beam. The non-linear strain–displacement relations that consider transverse shear
strains have been used. Thematerial properties are assumed to vary in the thickness direction according
to a power law function of the thickness coordinate except that Poisson’s ratio is assumed to be
constant. For prescribed uniform temperatures on the top and the bottom surfaces of the beam, the
through-the-thickness variation of the temperature is determined by solving the one-dimensional heat
conduction equation. The coupled non-linear ordinary di�erential equations have been numerically
solved by using the shooting method. E�ects of various parameters upon thermally post-buckled equi-
librium con�gurations have been illustrated. The following conclusions are drawn from the computed
results.

Post-buckling behaviors of a C-C FGM Timoshenko beam exhibit bifurcations under both uniform
and non-uniform temperature rise but those of a S-S beam do not. For a C-C FGM Timoshenko beam
resting on a linear elastic foundation, the critical buckling modes exhibit transitions from the lower-one
to the higher-one at well-de�ned values of the foundation sti�ness and the thermal load.

For a C-C FGM Timoshenko beam with material properties given by a power law function of the
thickness coordinate, the end bendingmoment need not have values between those for the homogeneous
beams composed of materials of the bottom and the top surfaces of the FGM beam. For a S-S FGM
Timoshenko beam the resultant axial force vs. the thermal load curve is bilinear with the point of
intersection of the two linear parts representing the buckling load.
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