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(ABSTRACT) 

This paper discusses an investigation into thermal buckling and post-buckling of sym- 

metrically laminated composite plates. In this study thermal buckling is investigated for lam- 

inates under two different simple support conditions, fixed and sliding. These laminates are 

subjected to the conditions of a uniform temperature change and a linearly varying temper- 

ature change along the length of the plate. Postbuckling in the presence of a uniform tem- 

perature change and nonlinear response to imperfections in the form of a thermal gradient 

through the thickness of the plate and a lack of initial flatness are also studied. The buckling 

response is studied using variational methods, specifically the Trefftz criterion. Postbuckling 

and responses to imperfections are studied using nonlinear equilibrium conditions. A 

Rayleigh-Ritz formulation is used to obtain numerical results from the formulations for the 

prebuckling response, the buckling response, and the postbuckling and imperfection re- 

sponses. The analyses are applied to  graphite-reinforced materials with 

(+ 45/02), and (+ 45/0/90), lamination sequences. Numerical results are obtained for these 

laminates and also for the case of these laminates being rotated 30° inplane. For the first 

laminate, for example, such a rotation results in a (+75/ — 15/30.). stacking sequence. Such 

skewing of the principal material directions may be encountered when using fiber-reinforced 

materials in a structurally tailored design. In addition, the influence on thermal buckling of a 

lack of ideal boundary conditions in the form of boundary compliance and thermal expansion, 

which would occur in any real set-up, are investigated.
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1.0 Introduction and Background 

While fiber-reinforced polymer matrix composite materials have been used success- 

fully on a number of military and commercial aircraft structures, their use on structures that 

operate at elevated temperatures for sustained periods of time has been limited. This situ- 

ation may change with the envisioned high-speed civil transport. On the basis of potential 

structural efficiency and projected fabrication costs of composite materials, some proponents 

of the high-speed civil transport contend that an affordable aircraft will not be possible without 

extensive use of polymer matrix materials in primary structures. The use of these materials 

in a sustained elevated temperature environment, however, poses a wide variety of chal- 

lenges. Among these challenges are: the large scale synthesis of polymers capable of re- 

taining their properties at an elevated temperature; the processing of these polymers to make 

affordable composites; the measurement and subsequent modelling of structural and material 

response; the design of efficient structures that can operate at elevated temperature, and the 

verification of these designs through actual tests. The ability to design structures with the 

complexity of a high-speed transport will be based on having the appropriate analytical tools 

for combined thermal and structural analysis. Much of this will be new and will require time 

to develop the tools and to interpret the results. Thus, a logical approach is to understand the 

issues associated with simpler structural elements before approaching more complex struc- 
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tures. This thesis describes a study directed at the latter point, namely, understanding the 

response of a simple structural element in an elevated temperature environment. Specif- 

ically, this thesis addresses the issue of thermally induced buckling and postbuckling of sym- 

metrically laminated fiber-reinforced plates. As buckling and postbuckling are responses that 

occur in an ideal situation, i.e., perfectly flat plates, no temperature gradients through the 

thickness, etc., the response of plates in the presence of imperfections is also addressed. 

Because in any real set-up the presence of compliance and thermal expansion in the frame 

or fixture supporting the plate may also affect thermal buckling, these issues are also ad- 

dressed. The study described is analytical in nature and is based on using Rayleigh-Ritz for- 

mulations in conjunction with variational methods. 

Though plates are a very limited structural form, thermally induced buckling and 

postbuckling involve many issues. Among these are: the inclusion of temperature-dependent 

material properties; the inclusion of time-dependent material properties due to the elevated 

temperature effects in polymers; thermal gradients, both in the plane of the plate and through 

the thickness; plate aspect ratio; plate boundary conditions; and the degree of material 

property orthotropy. In this study, neither temperature-dependent nor time-dependent mate- 

rial property effects will be addressed. However, the influence of temperature gradients and 

material property orthotropy will be studied. Though only simple supports will be studied, two 

different simple support conditions will be considered. The first set, which will be referred to 

as the fixed edge case, will assume that all three components of the displacements at all four 

edges are zero. The second set, which will be referred to as the sliding edge case, will as- 

sume that the out-of-plane displacements and the inplane displacements normal to the edges 

are zero at all four edges. The inplane displacements parallel to the edges, however, are not 

restricted to zero. That is, the edges of the plate may slide tangentially. Clearly, these two 

sets of boundary conditions result in different prebuckling stress states. The question to be 

addressed is the degree to which the two different simple support boundary conditions influ- 

ence buckling and postbuckling response. The influence of plate aspect ratio on buckling is 

studied. In this study, one more effect will be considered. To take full advantage of the di- 
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rectionally dependent properties of composites, many applications of composite materials in- 

voive structural tailoring. Hence the plate’s principal material directions may not be aligned 

with any of the edges of the plate. This is referred to here as material axis skewing. More 

specifically, to serve as an example, a quasi-isotropic stacking sequence of ( + 45/0/90); may 

be rotated in its plane by 30° to form a (+75/ — 15/30/ — 60), stacking arrangement. This 

study will explore the influence of this material axis skewing on buckling, postbuckling, and 

the response in the presence of imperfections. 

This thesis begins in the next chapter with a review of some of the relevant past work in 

the area of thermally induced buckling and postbuckling. In ch. 3 a description is given of the 

specific class of problems studied in this thesis. The geometry, definitions, and nomenclature 

are introduced. The variational principles used to study buckling, postbuckling, and 

imperfection response are also introduced, and the use of the Rayleigh-Ritz method as it is 

applied here is described in general terms. 

Chapter 4 focuses on buckling response. Inherent in the study of buckling is the issue 

of prebuckling. The prebuckling response of the plate is determined by using the first vari- 

ation in the total potential energy under the condition that the out-of-plane deflections are 

zero. It is shown that for certain cases the prebuckling solution is trivial, while for other cases 

it is as involved, or even more so, than the buckling solution. Buckling is studied, using the 

prebuckling response, by examining the first variation of the second variation and allowing for 

out-of-plane deflections. Numerical examples are given to illustrate the specific issues dis- 

cussed with regard to buckling. Buckling due to a spatially uniform change in temperature, 

and buckling due to a temperature gradient along the length of the plate are considered. The 

influence on the buckling response of varying the material properties, as well as the influ- 

ences of square and rectangular plate aspect ratios, quasi-isotropic and orthotropic stacking 

arrangements, and fixed and sliding boundary conditions, are also considered. In all of these 

cases, the influence of material axis skewing is studied. Convergence of the buckling calcu- 

lations is also discussed, as is the sensitivity of the buckling calculations to variations in the 

material properties. 
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Postbuckling response is discussed in ch. 5. This problem is computationally more in- 

volved than the buckling problem. The coupling of the inplane and out-of-plane displace- 

ments, in conjunction with the Rayleigh-Ritz formulation, results in a coupled set of nonlinear 

algebraic equations that must be solved. WHence, to keep the computational work within 

bounds, the specific issues discussed in conjunction with postbuckling response are some- 

what more limited than the issues considered in the buckling chapter. Only a spatially uni- 

form change in temperature and square laminates are considered. However, the influence 

of material axes skewing, fixed and sliding boundary conditions, and quasi-isotropic and 

orthotropic stacking sequences are discussed. Convergence of the postbuckling solution is 

also evaluated. 

Chapter 6 concerns the response of plates in the presence of imperfections. All tami- 

nates deviate in some form and to some degree from the ideal situation. Spatially varying 

properties due to nonuniform cure, variable ply thickness, and lack of initial flatness represent 

but some of the the deviations from the ideal situation. Also, testing laminates, whatever the 

form of loading, will introduce other deviations from the ideal. When testing laminates, ther- 

mal gradients, friction, perhaps even the air currents in convective ovens, contribute to the 

lack of ideal test conditions. Here two forms of imperfections will be considered, one due to 

the laminate itself, and one due to testing. In particular, imperfections in the form of initial 

out-of-plane deflections of the plate and in the form of a through-the-thickness temperature 

gradient are modelled. With either imperfection present the problem is not one of buckling 

or of postbuckling, rather it is a forced response problem. In general, such problems in the 

presence of imperfections lead to a response that asymptotically approaches the postbuckling 

response, as is the case here. Again, the influence of material axis skewing, boundary con- 

ditions, and degree of orthotropy are studied, but now in the context of a slight out-of-plane 

initial shape, and a slight temperature gradient through-the-thickness of the plate. These 

calculations for the case of imperfections describe the response that is likely to be observed 

in any experimental set-up. The calculations provide insight as to why observations might 

deviate from the ideal. 
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In designing an experimental fixture, or in analyzing a composite plate attached to a 

frame made of some other material, the effects of a fixture with a finite stiffness and a nonzero 

coefficient of thermal expansion on the thermal buckling response need to be considered. 

Chapter 7 discusses the sensitivity studies conducted to determine the influence of the lack 

of infinite fixturing stiffness and the presence of fixturing thermal expansion in any real set-up. 

Lastly, a discussion of the study, conclusions, and recommendations for future research 

are presented in ch. 8. 
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2.0 Literature Review 

One of the earliest studies to examine thermal buckling of fiber-reinforced plates is that 

conducted by Whitney and Ashton [1] in 1971. The stability, vibration, and bending behavior 

of composite plates subjected to a uniform increase in temperature, or to a swelling due to 

moisture absorption, is studied using an energy formulation in conjunction with the Rayleigh- 

Ritz method. For the thermal buckling problem, the prebuckling solution is obtained using 

displacement equations derived from the equilibrium equations of laminated plate theory. 

Only symmetric laminates for which all the prebuckling solutions are trivial are considered. 

Two cases are examined for thermal buckling. In the first case, the effect of ply angle on the 

buckling temperature is studied for angle-ply (+ @)s plates with two edges free and two edges 

clamped so as to constrain movement normal to the clamped edge. Due to the negative 

thermal expansion coefficient of graphite fibers, there can exist a range of values for @ such 

that the coefficient of thermal expansion for an angle-ply, graphite/epoxy laminate is negative. 

In [1], it is found that for this range of 8, the temperature must be decreased to cause buckling 

in plates with two free edges. Moreover, there is, theoretically, a value of 6 for which such a 

plate cannot be buckled either by raising, or lowering the temperature. In the second case, 

the effect of varying @ for (+@/0)s; laminates subjected on all four sides to sliding simple 

support conditions is examined. For plates supported on ail four edges, it is shown that 
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buckling can only occur for positive changes in temperature. This case is investigated for 

graphite/epoxy, boron/epoxy, S glass/epoxy, and aluminum plates. Because of the low (or 

negative) coefficient of expansion for all the fibers considered, the fiber-reinforced plates show 

greater resistance to thermal buckling than aluminum. A similar treatment of the subject is 

given by Whitney [2]. 

Flaggs and Vinson [3] consider hygrothermal effects in the buckling of moderately thick 

composite plates. Using a formulation similar to Whitney and Ashton, but one which also ac- 

counts for transverse shear and normal deformation, a study is made of the effects of tem- 

perature change and moisture content upon the uniaxial prebuckling stress resultants for 

(0/ + 45/90), graphite/epoxy plates subject to sliding simple support and clamped boundary 

conditions. In all cases studied the hygrothermal loads reduce the prebuckling stress result- 

ants necessary to cause buckling. 

In [4], Stavsky develops a thermoelastic theory for thin anisotropic plates which were 

heterogeneous through the thickness. This theory is formulated from differential equations 

of equilibrium in terms of the transverse deflection, and Airy’s stress function. Nonlinear 

terms are included to obtain the thermal postbuckling equations. A similar formulation is 

used by Stavsky [5] to study the thermal buckling of circular plates composed of cylindrically 

orthotropic layers. Biswas [6] also develops thermal buckling equations from the equations 

of equilibrium for orthotropic plates of irregular shape. Critical buckling temperatures are 

found in [6] for a square plate, a circular plate, and a square plate with rounded edges, under 

fixed simple support conditions. This is done by using a conformal mapping technique and 

Galerkin’s method to solve the system of equations. Chen and Chen [7] use Galerkin’s 

method with displacement equations of equilibrium to study thermal buckling due to a uniform 

change in temperature for antisymmetric angle-ply plates under clamped and fixed simple 

support boundary conditions. For all cases considered, the prebuckling solutions are trivial. 

Results are given showing the effects of ply angle, aspect ratio, a/b, modulus ratio, E,/E., and 

thermal expansion coefficient ratio, «,/a2, on the buckling temperature. 
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Thangaratnam, et al. (8] employ the finite-element method to study the thermal buckling 

of symmetric and antisymmetric cross-ply and angle-ply laminates. Prebuckling solutions are 

obtained by minimizing the potential energy with respect to the generalized displacement 

vector of the element used. For plates with clamped edges and both fixed and sliding simple 

support boundary conditions, the effect on the buckling temperature of varying aspect ratio, 

modulus ratio, thermal expansion coefficient ratio, and number of layers is examined. They 

find that the buckling temperature for the clamped plate is always higher than for a simply 

supported plate. The buckling temperature is determined to decrease with increasing 

modulus ratio, and with increasing expansion coefficient ratio (for «, > 0). The variation of 

the buckling temperature with fiber orientation @ is found to be significantly influenced by the 

plate aspect ratio. 

Many other studies in thermal buckling of fiber-reinforced plates have been conducted 

by Tauchert, together with Huang [9,10], or alone [11]. In (9] the thermal buckling of symmetric 

angle-ply laminates is investigated for plates with both fixed and sliding simple support 

boundary conditions. Buckling and prebuckling equations are formulated using variational 

methods and solved using the Rayleigh-Ritz technique. For plates with fixed simple supports, 

the prebuckling solution is found to be trivial. However, for plates with sliding simple supports 

and an odd number of layers, the prebuckling stress resultants are found to vary throughout 

the laminate. This is due to the presence of Ais Az, and N,, terms for the case of an odd 

number of layers. Numerical results are given showing the effects of aspect ratio, number of 

layers, and ply angle on the buckling temperature and associated mode shape. Using dis- 

placement equations of equilibrium, thermal buckling and prebuckling equations are devel- 

oped in [10] for thin anti-symmetric angle-ply laminates. These are solved using an assumed 

double series solution for plates subject to sliding simple support boundary conditions. For 

this case, the prebuckling solutions are trivial. The effects of ply angle, aspect ratio, and 

number of layers on the critical buckling temperature are investigated. The work done in [10] 

is extended in [11] for thick anti-symmetric angle-ply plates by including transverse normal 

and shear deformations in the original formulation. As in [10], all prebuckling solutions are 
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again found to be trivial. The effects of ply angle, aspect ratio, and span-to-thickness ratio on 

buckling temperature are considered and the results are compared to those in obtained [10]. 

An optimization procedure is also proposed in [11] which used Powelil’s method to maximize 

resistance to thermal buckling using ply angle as the design parameter. 

Few papers are available addressing the issue of thermal postbuckling of composite 

plates. As mentioned previously, Stavsky [4] develops thermal postbuckling equations for thin 

anisotropic plates that are heterogeneous through the thickness. Biswas [12] derives gov- 

erning equations in terms of displacements and Airy’s stress function for the nonlinear anal- 

ysis of heated orthotropic plates. Using Galerkin’s method, a one-term solution is obtained 

in [12] for plates with fixed simple supports subjected to a temperature gradient that is linear 

through the thickness. Results for deflections and membrane stress are given for plates with 

various aspect ratios. Chen and Chen [13] also study the postbuckling of antisymmetric 

angle-ply plates with sliding simple supports under a ‘tent shaped’ thermal field using the 

finite-element method. Results are given for plates with various ply angles, numbers of layers, 

and aspect ratios. 

Huang and Tauchert examine thermal postbuckling of anti-symmetric angle-ply laminates 

due to an uniform increase in temperature in [10] and [14]. In both studies, the plates have 

sliding simple support boundary conditions. Double series expressions are assumed for the 

displacements and the total potential energy of the laminate is minimized at each temperature 

increment with respect to the coefficients of these series using Powell’s method. Results are 

given showing the effects of ply angle and number of layers on the plate’s response. Huang 

and Tauchert [15] have also studied the large deformation of antisymmetric angle-ply lami- 

nates with sliding simple supports due to nonuniform temperature loadings. Both an inplane 

parabolic temperature field and a temperature gradient that is linear through the thickness 

of the plate are considered. Using the same method as in [10] and [14], the response of plates 

to these thermal fields is studied for laminates with various aspect ratios, ply angles, and 

numbers of layers. These results are compared with the results obtained from the small- 

deformation formulation developed by Wu and Tauchert [16,17]. 
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All of the papers cited above are purely analytical. No experimental results appear to 

be available for the thermal buckling or postbuckling of fiber-reinforced composite plates. In 

addition, no attention has been given to material axis skewing, nor to the influence of initial 

out-of-plane deflections. 
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3.0 Description of Problem and Solution Approach 

In this chapter a description of the problem studied and a general discussion of the ap- 

proaches to the various solutions are given. The nomenclature to be used in the following 

chapters is also introduced. 

3.1 Description of Problem 

Consider a rectangular plate of length a in the x direction, width b in y direction, and 

thickness H. The temperature change, AT, is, in general, a function of the spatial location x, 

y, and z. As shown in Fig. 1, the reference coordinate system has its origin at one corner of 

the plate. The x-y plane is coincident with the geometric midplane of the plate, and the z axis 

is perpendicular to this plane. As usual, the geometric midplane will be the reference surface 

of the plate. The plates under consideration are symmetrically laminated. Only thin plates 

are studied. In the laminate nomenclature the orientation of the layers is defined relative to 

the +x axis. Two sets of boundary conditions, fixed and sliding simple supports, are consid- 

ered. For fixed simple support conditions, all four edges are fixed against inplane normal and 
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Fig. 1. Description of Problem. 
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tangential displacements, and out-of-plane displacements. For sliding simple supports, all 

four edges are fixed against inplane normal displacements and out-of-plane displacements, 

but are free to move, or ’slide’, tangentially. The sliding is assumed to be frictionless. For 

both support conditions there are zero moments along the edges. Explicitly stated, the 

boundary conditions for the fixed simple support conditions are, 

at x=0, a: 

i) u° =0 

ii) v° =0 (3.1a) 

iii) w° =0 
iv) M, =0. 

at y=0, Db: 

i) u° =0 

ii) vV° =0 (3.1b) 
iii) w° = 0 
iv) My =0. 

For the sliding simple supports, 

atx=0, a: 

i) u° =0 

li) Nyy =0 (3.2a) 

iii) w° =0 
iv) M, =0. 

at y= 0, b: 

i) Nyy =0 

ii) v° = 0 (3.2b) 
iii) w° =0 
iv) My = 0. 

The topics of specific interest are: 

14. Buckling due to a uniform temperature change; 
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2. Buckling due to a temperature change that varies linearly with x; 

3. Postbuckling due to a uniform temperature change: 

4. Geometrically nonlinear response due to a temperature field that is uniform in x and y, 

but which varies slightly through the thickness of the plate. 

5. Geometrically nonlinear response due to a uniform temperature change and lack of initial 

flatness; 

Also of interest in this study are the effects on thermal buckling, postbuckling, and 

imperfection response of the laminate material axes being rotated inplane by some angle « 

relative to the +x axis. Specifically, if a (+ 45/0/90), laminate is rotated by « = 30°, the re- 

sulting laminate can be thought of as a (+75/ — 15/ + 30/ — 60)s laminate. Such skewing of 

material axes relative to the support boundaries could well be the situation for a tailored 

structure. The angle « is measured with respect to the +x axis and is shown in Fig. 1. 

3.2 Solution Approach 

Energy and variational methods are well suited to this study. Equilibrium conditions are 

obtained by setting the first variation of the total potential energy to zero. Stability of the 

equilibrium conditions can then be determined by examining the second variation of the total 

potential energy. The Trefftz stability criterion [18] states that the transition from stable to 

unstable equilibrium occurs when the first variation of the second variation goes to zero. If 

the second variation is identically zero for some nonzero variations in the displacements at 

equilibrium, then the third variation must be examined, and so on. In the framework of these 

variational approaches, approximate solutions are sought using the Rayleigh-Ritz method. 
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With this approach in mind, the total potential energy of the plate is given by: 

x= +] | [flex - oy. ey + (cy ~ ay Jey + (ty _ txy) Pxyydxdydz (3.3). 

Note that no external work terms are given in eqn. 1 because there are no loads applied to 

the plate and the boundaries are stationary or considered frictionless. The stress components 

superscribed with a “P” denote preloading effects. In this study they will always be due, at 

least, to thermally-induced deformation, but may also be due, for example, to imperfections 

in the plate. They will be defined shortly. The strains in the energy expression are given by 

t, = ey + ZKy 
° ° 

by = fy + iky (3.4). 

oO Oo 
Yxy = Vxy + ZK yy: 

where the quantities superscribed with a zero are reference surface strains and curvatures. 

These quantities are, of course, functions of x and y. Including the effects of moderate ro- 

tations, the reference surface strains are 

  

o  du° 1,02. o av? 02 ex =a ty Bx ; ey =~ ay + By 

° 0 (3.5) 
o _ du OV © 70 

where 

° 0 
po=- oe and py=- (3.6) 

are identified with cross-sectional rotations. The reference surface curvatures are given by 

0 Be og By og OBR BY 
Kx = Ky = ay Kxy = ay + . 

  

    (3.7) 
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The stresses in the energy expression are given by the relations 

oO, = Q41(ex _ ex) + Qua(ey ~ ey) + Qre(Vxy — Yyy) 

oy = Qia(ex 7 ex) + Qaa(ey ~ ey) + Qo6(?xy - Yxy) (3.8) 

Txy = Qre(ex — &) + Qa6(ey — ey) + Qee(7xy — Yxy)- 

These may be rewritten as 

a = = p 
Oy = Qy qe + Qyaey + HEY xy — Ox 

~ = = P 
dy = Qyae, + Qo2ey + Q26Y xy — Fy (3.9) 

= = = p 
Txy = Qigex + Qogey + Qeerxy — Txy: 

In eqn. 3.9, the stress components denoting preloading effects are 

Po = p,= P,= P 
Oy = Q44 ey + Qiaty + Qi6Yxy 

P =~ P,~> P,=— P 
Oy = Qype + Qorey + Q26Vxy (3. 10) 
P = P,> P,= P 

Txy = Qygex + Qo6ey t+ QE6Y xy: 

where ef, ef, and y§ are the strains due to preloading effects. 

Substituting the strains into the energy expression, eqn. 3.3, yields 

a ab ttt 
n(u°, v?, w°) = > j j I: {(o, - ax )(eX + ZKx) + (oy - oy \(ey + Zxy) 

20 (3.11) 

P 
+ (ty = tay (Sy + ZK xy) }dxdydz. 

Then, integrating with respect to z, through the thickness of the laminate, results in 

n(u?, v9, w°) = | | {(Nx — Nx )ex + (Ny — Ny ey + (Nay — Nay xy 12) 

+ (My — Mx )x3 + (My —My)icy + (Myy — Myy)xxytdxdy, 

where the stress resultants have the usual definitions for symmetric laminates, namely 
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+ =x
 

20 0 ° ° p 

xz 

3 

tH 
2 oO o o P Ny = [; oydz = Aygty + Aagty + Ar6Y xy ~ Ny 

=x
 

2 
+ 

—
 

“<
 ll 

I I 
fj oO ° 0 P 

TyydZ = Ar6&x + Argey + AgeY xy - Nuy 

(3.13) + 
| 

x 

Zo,dz = Dijky + Dioxy + Digkxy - Me = by 

il 

| x 
4 

+ 
| 

<I 

0 0 0 Pp 
Zoydz = Dyoky + Dooky + Dagkxy - My = 

< 

tl 

{ xr 
Ww 

+ 
| 

= 

Zo,dz = Digks + Dagxy + Desk xy - Myy- = 3 
ll 

| 
r
o
l
e
 

DS
) 

In the above, 
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+ <I + x 

p 2 2 P,m P,a P 
N. = [: o, dz = = [: (Qyrex + Qi2ey + Quer xy )dZ 

~2- “2 

+H tH 
P 2 Pp 2 P,.m~ P,m— P 

Ny = |; oydz = [; (Qyaex + Qa2ey + Qoeyxy)dz 

~2- “2. 

+H Ta 
P 2 p 2 

20 2 

+H +H G4) 
p 2 Pp 2 

M, = [; Zo,dz = [. 4 (Qrrex + Qyaey + Qy6y xy )2dz 

~2- “2. 

tH +H 
p 2 Pp 2 

My = [: Ze,dz = [. 4 (Qraex + Qooey + Qoey xy )29Z 

“2. 2” 

+H mask 
Pp 2 Pp 2 

Mxy = [: ZTyyZ = [. 4 (Qreex + Qoeey + Qee? xy )Zdz. 

“27 2) 

These are the equivalent preloading stress resultants. 

The notation 

n= nu’, v°, w°) (3.15) 

is being used to indicate that the total potential energy is a function of the displacements and 

that variations in the total potential energy will be taken with respect to these kinematic 

quantities. To this end, consider the increment, or variation, in the total potential energy due 

to increments in the displacements. Specifically, 

ues? + cup; Vovo + ev? ; wow? + ews. (3.16) 

The variables uf, vf, and wf are functions of x and y which satisfy the kinematic constraints 

of the reference surface displacements u®°, v°, and w*, respectively, and « is a small scalar 

parameter. The infinitesimal scale associated with variations can be considered to be asso- 

ciated with the parameter « The following interpretation can be given: 
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dv° = eve (3.17) 

dw? = ews, 

where 6 denotes the traditional variational operator. The increments in strain are given by 

substituting the increments in displacements into the basic definitions of strain. Specifically 

  

  

4 aga TOD | 1 (p04 908 3.18) 

with 

Bx, = — oni . (3.19) 

As a result of gathering powers of «, 

Acy = ce, tee, (3.20) 

where 

eX, = a + BB, 3 eX, => Ke. (3.21) 

Similarly, 

eh = of, + a2 
Ayxy = eV xy, + & Yay, . 

with 
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o av aws ° 1 070 , Oo 1 p02, ap 20 _ 1 
ty, = By + ByBy, + by, = 3 By, + with By =—     

  

dy 
and 

duf ava o _ 1 1 070 O79 , 9 __ pO pO 

Vays = Gy + Gy t BxBy, + ByBx, + Yxve = BxBy, (3.23) 
and 

0 0 ° ° 

° OB x, . o _ By, . ° Bx, By, 
    

xy Bx By Bava Gy tay: 

The increments in the stress resultants follow directly from eqn. 3.13. These are 

AN, = AqyAey + AygAey + ArgAyxy = Ny, + eo Ny, 

ANy = AypAey + AggAey + AggAyxy = eNy, + Ny, 

ANyy = AygexA + AngAey + Aggy ay = ENyy, + & Nyy, 
AM, = Dy Any + Dygdxy + DigAkyy = eM, 

AMy = Dy2Ax,y + DagAky + DogAryy = eMy, 

AMyy = DigAny + Dagny + DegAxyy = eMyy,, 

(3.24) 

where the superscript zero has been dropped for convenience. By gathering powers of «, 

convenient and alternate definitions of the increments in the stress resultants can obtained. 

These are 

Ny, = Arsex, + Argey, + Areyxy, 

Ny, = Araex, + Aaaty, + Arey xy, 

Nay, = Areex, + Arty, + Assy xy, 

Nx, = Artex, + Araty, + Ateyxy, 

Ny, = Arata, + Araty, + Are? xy, (3.25) 
Nxy, = Areex, + Argty, + Ase xy, 
My, = Darky, + Dyary, + Dygxyy, 

My, = Diary, + Doory, + Dagrxy, 

Muy, = Or6kx, + Dogxy, + Degtxy,. 

With the increment in the displacements, there is a variation, or increment, in the total po- 

tential energy of the form 
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m+ An = n(u° + uy, Vo + eve, Wo + ewW)). (3.26) 

By gathering powers of the parameter «, the variation in the total potential energy, Az, can 

be expressed as 

Ar = en, + en, + enn, + e T4. (3.27) 

The terms zi = 1,4 are the first, second, third and fourth variations in the total potential en- 

ergy. From these variations come the conditions for prebuckling, buckling, and postbuckling. 

The conditions which govern prebuckling and postbuckling are given by 

(U4, V4, Wy) = 0. (3.28) 

This equation states that the displacements u°, v°, and w°® are made stationary with respect 

to the variations uf, v?, and w%. The first variation of the total potential energy can be written 

as 

o ° ° 0 
t, = | Jin, + Nyey, + Nuyyxy, + Mxkx, 

(3.29) 
° ° 

+ Myxy, + MyyXxy,ydxdy. 

For buckling studies the Trefftz criterion, 

dm_(Us, V4, W4) = 0 (3.30) 

is used. This equation states that the second variation of the total potential energy is sta- 

tionary with respect to variations of the displacements uf, v7, and w?, when transition from 

stable to unstable equilibrium occurs. The first variation of the second variation of the total 

potential energy is given by 
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_ ° ° ° ° o 5m. = | [{n.8e9, + Nydey, + NyySygy, + Nx dex, + Ny dey, a3 
° ° ° o + Nyy dy xy, + My,dxx, + My,dxy, + Myy,dxiy, }dxdy. 

The Rayleigh-Ritz method will be used in conjunction with the first variation and the first 

variation of the second variation to study plate response. In either case, with a Rayleigh-Ritz 

approach, the variational process focuses on the variations of the amplitudes of the assumed 

functions used to approximate response. These variational steps lead to algebraic equations. 

For the prebuckling and buckling problems these equations are linear. For the buckling 

problem, these linear equations form the basis for eigentemperature extraction. For the 

postbuckling problem the equations are nonlinear and must be solved numerically for the re- 

sponse of the plate as a function of temperature. For determining the response in the pres- 

ence of imperfections, the algebraic equations are also nonlinear. 
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4.0 Buckling Response 

Due to the presence of edge restraints, the thermally-induced expansion of a composite 

plate may cause the plate to buckle. The thermal buckling problem consists, primarily, of 

finding the temperature at which this phenomenon occurs. In this chapter the buckling prob- 

lem is discussed in detail. Inherent in this discussion is a more detailed investigation of the 

prebuckling problem and its role in the buckling problem. The details of the various boundary 

conditions and temperature distributions are first discussed, then numerical results for the 

various cases are presented. 

4.1 Formulation 

For the buckling problem, the preloading effects are assumed to be due only to thermally 

induced deformations. In this case 
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ee = ey = a,AT 

ey = ey = ayAT (4.1) 
Pst 

Yxy = Yxy = &xyAT, 

where a,, ay, and a, are the coefficients of thermal expansion in the x-y-z coordinate system 

and the superscript “T” denotes the fact that the preloading effects are thermally induced. 

Likewise, the equivalent preloading stress resultants become equivalent thermal stress re- 

sultants: 

+H +H 
2 2 

Ny = Ny = {: o,dZ = [. 4 {Q 44a + Qyoay + Qrgaxy}ATdz 
2. “2. 
aH +H 

p T 2 T 2 
Ny =Ny = [; oydz =[_ 4 {Qyaay + Qopay + Qogtxy}ATdz 

20 “20 
+H +H 

p T 2 oT 2 
Nxy = Nxy = [? TyxydZ = [. 4 {Qi gay + Qagty + Qeetxy}ATAz 

2. 20 
+H +H (4-2) 

2 2 
Me = M! = [: olzdz = [. 4 {Q, 4,2, + Qioay + Qigaxy}ATzdz 

2 “2. 
+H +H 

p T 2 6T 2 
My = My = i oyzdz = [. 4 {Qi ney + Qaaay + Qog2xy}ATZdz 

“27 2 

+H +H 
p T 26T 2 

Myxy = Myy = [2 TyyZdZ = [. 4 {Qigay + Qagay + Qe6%xy}ATZdz. 

2) “2. 

In the above oj}, of and tJ, are the thermal stresses. These are the stresses at a point if the 

composite is fully constrained from any deformation. For these buckling studies it is further 

assumed that the temperature distribution is uniform through the thickness of the plate, i.e., 

AT = AT(x, y). For a symmetrically laminated plate, this implies that 

My =My = My, =0. (4.3) 
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In addition, only initially flat plates will be considered. As the only non-zero equivalent ther- 

mal stress resultants are inplane, no prebuckling out-of-plane displacements should occur. 

Hence, 

  B= =0 and fy=—-——=0. (4.4) x ax y 

This simplifies considerably the expressions for c8,,..., Ny, Specifically 

° ° ° ° 
0 Wy go My ° Ou, | Oy 
OR Ny On = By ta   (4.5) 

As a result of these simplifications, the first variation of the total potential energy equated to 

zero can be written as 

  ={ [4n ou vs N Guy | Ov dxdy =0 4.6 ™= x ax + Ny + Ney “ay * ox xy =" (4.6) 

for every u? and v7. This is the equation governing prebuckling. The first variation of the 

second variation of the total potential energy, when written in terms of displacements, also 

simplifies considerably. This simplification, equated to zero, becomes 

  

aw? Se awe dows aw? dow? daw} dow? sna = | [ny Set 20h gy, Sah SO ' 

  

Ox Y dy oy ox dy Gy ox 

ddus d6v> ddu; Adv 
+ Nx tN ay t Nyy, wt ax (4.7) 

a*5w? a°5w? a éwe — Mx, Sa My a Mays Syay pOXGY = 0 

This expression can be further simplified by considering the quantity 
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ddu; d6v5 abu; Adv; 
{J Nx, > 7 Ny Gy Nxy, ay + Ox dxdy. (4.8) 

In the context of a Rayleigh-Ritz formulation, ug and v@ will be assumed to be of the form 

u(x y) = >) Dus $4,069) 
(4.9) 

v4(x, y) = » ys mn‘ mani y), 

where u;,,, and v;,,, are the to-be-determined constants and ¢,,,, and W,,,, are known functional 

forms. With eqn. 4.9 the expression of eqn. 4.8 becomes 

    

DOs] Neg att + Nagy ett V8 ny ete yy etn \ d 
m on ™ Ox + xy dy Unt Ys ay + x1 x V4 dxdy |. 

(4.10) 

Since these are the only terms in eqn. 4.7 that involve du;,, and 6v;,,, it is clear that the ex- 

pression of eqn. 4.10 must be zero for dr; to be zero. This means 

Uy = 4 =O for all m and n (4.11) 

or 

us(x, y) = v4(x, y) = 0. (4.12) 

As a result, eqn. 4.7 can be reduced to 
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; | [dn owt 24 dw, déws dw; ddwS = dw? ddw; 

72 Y dy oy *Y\ ax ay + dy ox 

a*5w? a" sw? a°5w? 
— My, 32 - My, oye 2Mxy, cay Oxdy dxdy = 0. 

(4.13) 

This is the form that will be used to study buckling. To this point the equations developed are 

valid for any set of edge conditions, and any temperature distribution such that the thermal 

moments are zero. In this study, as mentioned previously, two boundary conditions, fixed and 

sliding simple supports, are considered. These boundary conditions were given previously 

and are repeated here for convenience. They are: 

Fixed: 

at x=0, a: 

i) u° =O 
ii) y? =0 (4.14a) 

iii) w° =0 

iv) M, = 0. 

at y=0, b: 

i) u°=0 

ii) v° =0 (4.14b) 
iii) w° =O 
iv) My = 0. 

Sliding: 

at x =0, a: 

i) u° =0 

iii) w° =0 
iv) M, = 0. 
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at y=0, b: 

i) Nyy = 0 

ii) vo =0 (4.15b) 

iii) w° =O 
iv) My = 0. 

The sliding boundary condition implies that there is no resistance to the inplane shear force 

at the edge. 

Two temperature distributions will be considered. The first, a uniform change in tem- 

perature, is actually a subclass of the second, a change in temperature which varies linearly 

in the x direction. These two conditions can be expressed as 

AT=c 

and (4.16) 
AT=c+dx, 

c and d being constants. With the second form, the temperature change at x=0 is c, while the 

temperature change at x=a is c + da. If d=0O the change in temperature is uniform. These 

two temperature distributions will be considered separately. Prebuckling and buckling for 

these temperature distributions and the various boundary conditions will be discussed next. 

4.1.1. Uniform Change in Temperature: AT = c 

4.1.1.1 Fixed Simple Supports 

In order to obtain solutions using the Rayleigh-Ritz method, the following forms are as- 

sumed for the prebuckling displacements u®°, v°, and w° in the case of fixed simple supports: 
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U(x, y)= Y oll )sin( = ) 

v°(x, y) = $ ss vsin( =X \sin( AY ) (4.17) 

w°(x, y) = 0 

These forms satisfy the kinematic boundary conditions of eqn. 4.14. These forms follow the 

This can work of Huang and Tauchert [9]. For this case, the prebuckling solution is trivial. 

be seen as follows: The prebuckling equation, 4.6, can be expanded to obtain 

    

du? adu° av? a@du° . du? Bdv° av? dé6v° 
in] fae ox a + Are ay > + a 3y + Ao V 

du° ddu° . av? adu° + du° ddu° 4, ou? 25 | 

    

  

  

  

        

+ Ave 2 ax + ax ox ' ax dy ox ox 

+ Aral an abe + wr aoe + a ou + a oe ) (4.18) 

+ Aes a + a Y( abu + dav } 

—Nx au” —Ny = - Ny au + wv ) pone 0 

where eqn. 3.5 and 3.13 have been used with eqn. 4.2 and 4.5. The expression 

    

9 oO ° o -ff 1" at Nat Ni au HE) ha (4.19) 

becomes the forcing vector in the system of linear equations resulting from substitution of the 

assumed function of eqn 4.17 into eqn. 4.18. It is clear that uy, and v, will only be non-zero 

when the expression of eqn. 4.19 is non-zero. 
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Prebuckling can be investigated more easily for each temperature distribution by first 

expressing the thermal stress resultants as 

Nl =N,AT 

Ny = NAT (4.20) 

Nay = NyyAT, 

where the barred quantities are thermal stress resultants per unit change in temperature. 

These quantities are constant for a specific laminate and consist only of layer material prop- 

erties and layer thicknesses. Using this scheme, it is clear that the expression of eqn. 4.19, 

and therefore u° and v*, are zero for the case of a spatially uniform change in temperature and 

fixed simple supports. The inplane stress resultants are then uniform within the plate and are 

given by 

T we y= N= NAT (4.21) 
T hI Nay = — Nyy = — NyyAT. 

Once the prebuckling problem has been solved, the buckling problem can be addressed. 

The inplane stress resultants of eqn. 4.21 are substituted into eqn. 4.13. This results in the 

following form for the first variation of the second variation: 

        

—r._ dw; ddw? 7 _ dw? dow,  — dw} déwy Owe déwy 
bea JJ) = Rar 1 ——t _ RAT + — + _ Natl —+— + += —4 

ax Ox dy dy ox by dy ox 

a 5w§ M a 5w§ OM a 5w§ xd 
Be ay? — &M'xv1 axay  (XC¥ 

(4.22) 
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where, again, NI, NJ, and NY, are known constants, and AT is the to-be-determined buckling 

temperature. A double sine series is then assumed for the buckling displacement, w?. This 

series is 

    

M ON 

wax, y) = y y Winnsin( mee )sin( “ ). (4.23) 
mMm=zin=1 

Note that while this satisfies the geometric boundary conditions of eqn. 4.14, it does not satisfy 

the moment boundary conditions. Substituting the expression of eqn. 4.23 into eqn. 4.22, and 

performing the spatial integration results in a set of M x N linear simultaneous homogeneous 

equations in Wm . Eigentemperature extraction is then performed to find the values of AT for 

which the coefficient matrix becomes singular. The smallest value of AT for which this occurs 

is the critical buckling temperature. 

4.1.1.2 Sliding Simple Supports 

Following the work of Huang and Tauchert [9] as before, the following forms are assumed 

for the prebuckling displacements in the case of sliding simple supports: 

) 
ny ) (4.24) 

Note that these assumed solutions satisfy identically the geometric boundary conditions, but 

not the force boundary conditions of eqn. 4.15. Again using eqn. 4.18 and considering the 

expression given in eqn. 4.19, it can be seen that, for plates with sliding simple supports, if the 

laminate is such that the material property Ni, = 0, the prebuckling solution is trivial. This is 
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the situation, for instance, for quasi-isotropic laminates. For these cases then, the prebuckling 

inplane stress resultants are given, as before, by eqn. 4.21. However for laminates such as 

the off-axis orthotropic laminate, for which NL is not zero, the prebuckling solution is not so 

simple. In these cases the inplane displacements, hence the prebuckling stress resultants, 

vary throughout the laminate. This nontrivial prebuckling problem is solved by substituting the 

assumed solution form of eqn. 4.24 into the expression for the first variation, eqn. 4.18. Per- 

forming the spatial integration leads to a linear set of algebraic equations for uy and vj. With 

these solved for, the stress resultants can be determined for use in eqn. 4.13. The stress re- 

sultants, as stated previously, vary with x and y. Also they are linearly proportional to the 

temperature change, AT. Thus they are of the form 

Nx(% y) = N(x, y)AT 
Ny Qs y) = Ny (x, y)AT (4.25) 

Nay ¥) = Nay(X, y)AT. 

The second variation of eqn. 4.22 now takes the form 

    

6 ax y dy dy ox = oy dy ox 

aw? a sw? Ta | 
M —_ — 

_ _ dw) ddwy — _ dw) déwe — dws ddwe aw) dows 
ény=| | N,AT —- —— + NyAT —— + NyyAT + 

  

(4.26) 

The double series of eqn. 4.23 is again assumed for the buckling displacement w9(x, y). With 

this form substituted into eqn. 4.26, and with the functional form of N,, Ny and N,, now known, 

the spatial integral can be carried out. An eigenvalue problem for AT results. It is important 

to note that since the assumed solution for w? and the prebuckling solution are the same for 

both fixed and sliding simple supports when the laminate is such that NI, = 0, these plates 
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have the same buckling solution for both sets of boundary conditions when buckling is due to 

a uniform change in temperature. 

4.1.2 Linearly Varying Change in Temperature: AT = c + dx 

4.1.2.1 Fixed Simple Supports 

For a linearly varying temperature distribution, the inplane thermal stress resultants can 

be written as 

NI = NLAT = Ni(c + dx) 
Tt TT 

Ny = NAT = Ny(c + dx) (4.27) 

nt NT Ny = NyyAT = Nyy(¢ + dx). 

Using eqn. 4.27, the expression in eqn. 4.19 can be expanded as follows 

      

oO ° 9 9° 

- J pre eng Sy + NY au + x“ )jo 

_ o _ o _ o 0 
=| | ir au + Ny yy + ni mu + ) jo (4.28) 

_ oO _ o ° ° = of [\R ey oy +Ny( au + a ) pa 

        

      

The series solutions for the prebuckling displacements are assumed to be the same for this 

case as for the case of fixed simple supports and a uniform change in temperature, given in 

eqn. 4.17. As a result, the coefficient of c has already been determined to be zero. The co- 

efficient of d, however, is nonzero. Because of the forms of eqn. 4.17 and 4.28, the assumed 

solutions for u° and v° can be expressed as linear functions of d, i.e., 
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u(x, y) = du°(x, y) ° - (4.29) 
v(x, y) = dv (x, y). 

The functional forms assumed for U°(x, y) and V°(x, y) are as in eqn. 4.17, namely 

1
M
-
 
1
M
 2 

jry 
b 

_ jy 
uysin( 2% =X sin( AY 

yysin( =) sin( 

¥ Dain 
j (4.30) 

yz ) 
Substituting eqn. 4.30 into eqn. 4.28, and those results into eqn. 4.18, and performing the spa- 

tial integration leads to a set of linear algebraic equations for u and V,. Note, at this point d | 

is not involved. 

With uy and v known, the prebuckling stress resultants are now known to within the pa- 

rameters c and d and are given by 

oe Nn au, aw —T 
Nada Ox + Ay = By + hu( +E )) e+ a 

a? —0 —O —O _ 
Ny = (a a + Ago 7 + Aoo( + =) — Ny(c + dx) (4.31) 

—O —O) —O _ 
Nyy = (a ar + Aog x + Aeo( + =) — Nyy(e + dx). 

To determine the buckling characteristics, these quantities must be substituted into eqn. 

4.13 along with the assumed solution for the buckling displacement, wf. The buckling dis- 

placements are again taken to be of the form of eqn. 4.23. When the spatial integrals in eqn. 

4.13 are carried out, an eigenvalue problem involving c and d results. For this situation, it is 

necessary to find the relation between c and d which will cause buckling. Operationally this 

means that either d is specified and the eigentemperature problem is solved for the lowest 

value of c necessary to cause buckling, or vice versa. 
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4.1.2.2 Sliding Simple Supports 

The case of a linearly varying temperature and sliding simple supports is the most com- 

plicated buckling condition studied. Equation 4.28 is again the key equation. For this case the 

first term on the right hand side of eqn. 4.28 is not zero and thus the prebuckling displace- 

ments are linear functions of both c and d, namely 

u(x, y) = cU°(x, y) + due(x, y) 
4.32 

v°(x, y) = ev(x, y) + dv°(x, y). 482) 

The functional forms in this equation are assumed to be as in eqn. 4.24, the form used for 

sliding simple supports and a uniform temperature. Specifically 

log , 
(U(x, y), U(x, y)) = 2, 2,04 G,)sin( inx. )cos( aa ) 

- a | | (4.33) 
(VC, y), V(x, y)) = 2, 2,6 ¥,)cos( ae )sin( a ). 

These functional forms are substituted into eqn. 4.18 and a set of linear equations for 

Uy, Uy, Vy, and Vy result. The inplane stress resultants are now known and are of the form 
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(4.34) 

      

The assumed solution for w? is again eqn. 4.23. Substituting eqn. 4.34 and eqn. 4.28 into 

4.13, and carrying out the spatial integrals, results in another eigenvalue problem involving c 

and d. The buckling characteristics are studied by solving, numerically, for a relation be- 

tween c and d, either by specifying d and solving for the lowest value of c to cause buckling, 

or vice versa. 

This completes the formulation of the buckling problems studied. As can be seen, some 

problems are quite involved, while others are simpler. In the next section, numerical results 

will be presented which illustrate the influence of lamination sequence, skewing angle, plate 

aspect ratio, boundary conditions, and temperature gradient on buckling. Convergence of the 

prebuckling and buckling solutions will be discussed, as will the sensitivity of the results to 

material properties. This latter study is useful because the material properties required for 

a buckling analysis are not always known with certainty. 
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4.2 Numerical Results 

Numerical results are given to illustrate the influence of various factors on the thermal 

buckling of symmetric composite plates. The material properties used in the following results 

represent a graphite-reinforced composite. These properties are: 

E,=22.5Msi E,=1417Msi Gy =0.66Msi v4. =0.22 
a, = —0.04 ppm/°F ag = 16.7 ppm/°F (4.35) 

These properties are defined in the principal material system of a layer and follow the usual 

notation. Lamina thickness is 0.005 inches. The laminates that will be discussed in particular 

are a quasi-isotropic ( + 45/0/90), and an orthotropic ( + 45/0.)s. Off-axis skew angles for the 

material axes are in the range —30°<«<30°. 

4.2.1 Uniform Change in Temperature: AT = c 

4.2.1.1 Convergence Characteristics: Trivial Prebuckling Solution 

Since the Rayleigh-Ritz method is used here to obtain approximate solutions, the first 

issue to be addressed is that of convergence. In order to study convergence in the buckling 

solution, the case of fixed simple supports is considered first. This is because the prebuckling 

solutions for this case are already known to be trivial. Thus only convergence of the series 

representing the buckling displacement wf? needs to be considered. As an example, the con- 

vergence characteristic of the solution for the buckling of a square, (+ 45/02); plate with fixed 

simple supports is given in Table 1. The other laminates considered here required the same 

number, or fewer, terms to be taken to obtain convergence of the buckling solution. This case 
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is thus used as an example. To obtain numerical results for this table, a 6 in. by 6 in. laminate 

is considered. The conclusions from the table are not limited by these specific dimensions. 

These dimensions are chosen based on future experimental considerations. In Table 1, 

M xN is the number of terms taken in the series for w?, AT, is the first eigentemperature (the 

critical buckling temperature), and AT, is the second eigentemperature. In all cases, N is 

taken to be equal to M, and the product of these numbers is reported. The product represents 

the actual number of terms in the series for wf. Both AT, and AT, are examined because when 

using the Rayleigh-Ritz method, the lower eigenvalues tend to converge more rapidly than the 

higher eigenvalues [19]. Thus AT; should be well converged at the point where AT, shows 

convergence. By the same reasoning, because the eigenvectors tend to converge more 

slowly than the eigenvalues, the largest elements in the first eigenvector, wi; and wz, are also 

given as an indication of convergence. The eigensolver subroutine (IMSL math library sub- 

routine G2CRG [20]) used in this study normalizes the eigenvector by its largest element, thus 

the largest term, wi, in this case, is always set to one. Attention should thus focus on w2e, the 

second element in the first eigenvector. As can be seen from Table 1, for this case of fixed 

simple supports reasonably accurate convergence is achieved for MxN=49. Using 

M x N = 49 results in a buckling temperature of 69.4°F. This will be considered the answer for 

the case. In addition, the value of AT = 69.4°F will be referred to as AT* in the remainder of 

the text. 

The convergence characteristic of quasi-isotropic (+ 45/0/90), plates with either fixed or 

sliding simple supports and any material axis skew angle, and of orthotropic ( + 45/02), plates 

for the case of no material axis skewing («a = 0°) with sliding simple supports is also given by 

Table 1. As discussed previously, these cases have a trivial prebuckling solution, and the 

same series for wf is used to represent buckling. Thus the convergence of these cases follows 

Table 1. 
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Table 1. BUCKLING CONVERGENCE STUDY FOR THE UNIFORM TEMPERATURE CASE: 
(+45/0,), PLATE, SQUARE, «=0°, FIXED SIMPLE SUPPORTS. 

  

  

            

Mx NM AT® AT? Wat Wes 

1 1.029 _ _ _ 

4 4.009 116.6 1.000 0.0400 

9 4.007 114.2 4.000 0.0420 

16 1.004 414.0 4.000 0.0412 

25 1.003 113.7 4.000 0.0417 

36 1.001 113.6 1.000 0.0414 

49 4.000 113.5 1.000 0.0415 

64 4.000 113.4 4,000 0.0416 
  

(1) Mx N is the number of terms taken in the series for w9. 

(2) Results normalized by AT*= 69.4°F, the temperature 
considered here as the converged value. This represents the buckling 
temperature for a 6 in. by 6 in. plate. 
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4.2.1.2 Convergence Characteristics: Nontrivial Prebuckling Solution 

To begin studying the convergence of a case for which the prebuckling solution is spa- 

tially nonuniform. it is natural to begin by using the number of terms in the buckling solution 

which resulted in convergence for the previous case. There are two approaches that may be 

taken to study convergence. One approach is to consider the convergence of the prebuckling 

solution separately from the buckling solution. The other approach is to consider only the 

effect on the buckling solution of increasing the number of terms taken in the prebuckling 

solution. The first approach requires a much larger number of terms to be taken in order to 

reach convergence. The lack of convergence of the prebuckling solution does not seem to 

have a serious effect on the buckling calculations. Therefore, because the buckling solution 

is the primary focus in this study, and in the interest of economy, the Jatter approach is taken 

here. The effect that the number of terms taken in the prebuckling solution, | x J, has on the 

critical buckling temperature, as well as the effect of increasing the number of terms, MxN, 

taken in the assumed solution for w?, are shown in Table 2. The specific case considered is 

a square (+ 45/0,), laminate with it’s material axes skewed by « = 30° and sliding simple 

supports. This case represents an extreme in the spatial variation of the prebuckling solution. 

The largest elements in the first eigenvector are again given as another indication of conver- 

gence. Table 2 indicates that the same number of terms in the assumed solution for w? which 

provided convergence in the case of fixed simple supports and/or no material axis skewing 

(Table 1, Mx N = 49) provides sufficient convergence in this case as well. Although a rela- 

tively large number of terms must be taken in the prebuckling solution for the buckling solution 

to converge, there is only about an 8% difference in the buckling temperature between using 

a 1-term prebuckling solution and a 100-term prebuckling solution! This supports the earlier 

statement that lack of convergence of the prebuckling solution is not a serious problem. 

Henceforth, all buckling results reported for the case of sliding simple supports and a uniform 

temperature change will use M x N = 49 and | x J = 81, a well converged solution. 
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Table 2. PREBUCKLING CONVERGENCE STUDY FOR THE UNIFORM TEMPERATURE CASE: 
(+45/0,), PLATE, SQUARE, «=30°, SLIDING SIMPLE SUPPORTS. 

  

  

  

  

  

  

                  

MxN = 25 MxN = 36 

IxJ ATS) Wi W22 IxJ AT wWi4 Wee 

1 0.719 1.000 0.0497 1 0.718 1.000 0.0496 

4 0.697 1.000 0.0477 4 0.694 1.000 0.0474 

9 0.679 1.000 0.0544 9 0.677 1.000 0.0540 

16 0.677 1.000 0.0534 16 0.674 1.000 0.0537 

25 0.671 1.000 0.0538 25 0.669 1.000 0.0533 

36 0.669 1.000 0.0534 36 0.667 4.000 0.0534 

49 0.667 1.000 0.0537 49 0.666 1.000 0.0531 

64 0.666 4.000 0.0535 64 0.664 1.000 0.0535 

81 0.662 1.000 0.0535 81 0.661 1.000 0.0530 

400 0.662 1.000 0.0535 100 0.661 1.000 0.0530 

MxN = 49 MxN = 64 

Ix J AT) Wa W22 Ix J ATs? Wa W22 

1 0.716 1.000 0.0496 1 0.715 1.000 0.0493 

4 0.694 4.000 0.0477 4 0.633 1.000 0.0475 

9 0.677 1.000 0.0542 9 0.677 1.000 0.0542 

16 0.674 4.000 0.0541 16 0.673 1.000 0.0538 

25 0.667 4.000 0.0535 25 0.667 1.000 0.0535 

36 0.666 1.000 0.0537 36 0.666 1.000 0.0534 

49 0.664 1.000 0.0535 49 0.664 1.000 0.0535 

64 0.662 1.000 0.0532 64 0.662 4.000 0.0532 

81 0.661 1.000 0.0533 81 0.661 1.000 0.0532 

100 0.661 1.000 0.0533 100 0.661 1.000 0.0531 

(1) Normalized by AT* = 69.4°F, 6 in. by & in. plate used to 
compute numerical results. 
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4.2.1.3 Sensitivity Study 

Having established the convergence of the buckling solution, the next issue to be con- 

sidered here is the sensitivity of the buckling solution to variations in the material properties. 

This gives an indication of the degree of uncertainty that may be present in the buckling sol- 

ution due to uncertainty in the material properties. It also gives an indication of how the 

buckling temperatures of plates with slightly different material systems would compare to the 

buckling temperatures of the laminates considered in this study. The variation in the buckling 

temperatures of four laminates with fixed simple supports resulting from varying each mate- 

rial property, except a,, by + 10% is given in Table 3. The range of values given for a, rep- 

resent the degree of uncertainty associated with a property value that is so close to zero. The 

resulting buckling temperatures for each laminate are normalized by the buckling temperature 

for that laminate which results from using the original material properties given in eqn. 4.35. 

This buckling temperature is denoted as AT". The value of AT” for each laminate is noted 

in Table 3. This normalization allows a direct comparison of the percentage change in 

buckling temperature, in each case, resulting from a percentage change in the given material 

property. It is clear from Table 3 that the buckling temperature is most sensitive to a2, varying 

by more than 10% as a result of a 10% variation in a. It is likely that if «, were a larger 

quantity, a similar relation might result, however, because «, is so small, even a change in 

sign results in less than an 8% variation in buckling temperature. Variations of + 10% in E, 

result in roughly a + 10% variation in buckling temperature, while the same variations in E, 

have the opposite effect, a +10% variation in E, resulting in roughly a -10% variation in 

buckling temperature. Variations of + 10% in Giz or in vz result in a difference of 2% or less 

in buckling temperature. Attention now turns to the influence of geometry, material axis 

skewing, support conditions, and lamination sequence on the buckling characteristics. 
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Table 3. SENSITIVITY STUDY FOR THE UNIFORM TEMPERATURE CASE: SQUARE PLATE, FIXED 
SIMPLE SUPPORTS. 

  

  

  

  

  

  

  

  

  

  

  

  

  

    

NORMALIZED BUCKLING TEMPERATURE 

(+ 45/0/90), ( + 45/0/90), ( + 45/02)s (+ 45/02)s 
VARIABLE a = 0° a = 30° a = 0° a = 30° 
PROPERTY AT = 69.40 AT™™" = 51.3 ATrom = 69.4 ATrom = 49.5 

E, +10% 1.099 1.091 1.099 1.092 

-10% 0.904 0.909 0.904 0.908 

E, +10% 0.909 0.911 0.909 0.910 

-10% 1.114 1.111 1.114 1.113 

Gre + 10% 1.001 1.006 1.001 1.006 

-10% 0.999 0.994 0.999 0.994 

via +10% 0.983 0.984 0.983 0.983 

-10% 1.020 1.016 1.020 1.018 

+ .04E-6 0.927 0.931 0.927 0.926 

a = 0 0.963 0.964 0.963 0.961 

-.04E-6 1.000 1.000 1.000 1.000 

as + 10% 0.895 0.895 0.895 0.895 

-10% 1.120 1.117 1.120 1.119             

(1) AT™™ = buckling temperature using the nominal materia! properties 
given in eqn. 4.35, 6 in. by 6 in. plate used to compute numerical results. 
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4.2.1.4 Buckling Characteristics 

The buckling temperatures of the two laminates as a function of principal material axis 

skewing angle, «, are shown in Fig. 2 for aspect ratio a/b=1 and both sets of boundary con- 

ditions. These results are based on 6 in. square plates and have been normalized by AT’, the 

buckling temperature of the quasi-isotropic (+ 45/0/90), laminate when a =0O°. The actual 

buckling temperature for this 8-layer 6 in. square laminate is AT” = 69.4°F. It is important to 

note that this buckling temperature is quite high as compared to the buckling temperatures 

of steel and aluminum plates for the same dimensions. For these materials the buckling 

temperatures are AT =8.7°F and AT =4.2°F, respectively. Several interesting features re- 

garding the buckling of the various cases are evident in Fig. 2. First, both laminates under 

either boundary condition experience a decrease in buckling temperature when the material 

axes are skewed, ij. e., «40. For the so-called quasi-isotropic laminate, the fact that the 

buckling temperature varies with « serves as a reminder that the term quasi-isotropic really 

refers only to inplane properties of the laminate. The out-of-plane properties are not quasi- 

isotropic and this results in a dependence of the buckling temperature on skew angle in much 

the same way that the buckling temperature of a ( + 45/02)s laminate depends on skew angle. 

As mentioned above, the buckling response for the quasi-isotropic laminate is the same for 

both fixed and sliding simple supports. This is due to the fact that for this laminate the ma- 

terial property NL = 0 is independent of «. Differences in the buckling temperatures due to the 

two types of edge conditions exist only for the orthotropic ( + 45/02); laminate with «#0°. This 

is because NJ,#0 for these cases, hence there is a non-zero prebuckling solution for N,, for the 

sliding simple support case. Indeed, the differences between the buckling solutions for the 

orthotropic plates with fixed and with sliding boundary conditions increase as the magnitude 

of «, and hence NJ, increases. However, even at « = 30° the difference between the buckling 

temperatures for the two sets of boundary conditions is only about 10%. Due to the influence 

of the prebuckling solution on the buckling problem, there is a greater difference between the 

buckling temperatures of the orthotropic laminate with fixed simple supports and the 
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Fig. 2. The influence of skew angle, boundary conditions, and lamination on the buckling tem- 
perature of square plates. 
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supports and the orthotropic laminate with sliding simple supports than there is between the 

buckling temperatures of the quasi-isotropic laminate and the orthotropic laminate, both with 

fixed simple supports. That all cases vary in roughly the same fashion with a is largely due 

to similarities in their D matrices. In fact, by examining the algebra associated with the 

eigenvalue problem, it can be seen that the buckling temperature of a square laminate with 

fixed simple supports depends strongly on the quantity 

D= D4 + 2(D49 + 2D¢6) + Doo. (4.36) 

This quantity has the same value for both laminates for all values of «. In Fig. 3 the variation 

with skew angle of this quantity normalized by D*, the value of this quantity at « = 0°, is illus- 

trated. It is seen that the variation of the above quantity with skew angle and the variation of 

the buckling temperatures of the fixed simple support plates with skew angle are very similar. 

The quantity defined in eqn. 4.36 is actually the the numerator in the expression for AT in the 

1-term buckling solution for a square plate, i.e., MxN = 1. By using the normalized values, 

the quantity D can often give an estimate of the buckling temperatures of these plates at var- 

ious skew angles as good, or better, than that obtained from the 1-term buckling solution. This 

estimate, like the 1-term solution [11], is less accurate for laminates in which Die, Dzs and NJ, 

are larger, and becomes more accurate as these terms become small when compared with 

D, and NI and NY, respectively. The small differences that do exist between the quasi-isotopic 

and orthotropic iaminates with fixed simple supports are due largely to differences in Dis, Dog 

and NJ, for the two laminates at various values of «. At a =0°, where NI, =0 and Dy and Des 

are the same for both laminates, the buckling temperatures are the same to three significant 

digits for both square laminates. 

Plates with rectangular planforms, a/b=2, are compared with square plates in Fig. 4. 

These results are based on a plate width of b = 6 in.. It is seen that rectangular planform 

plates have lower buckling temperatures than square plates. For rectangular geometry and 

zero skew angle the two laminates do not give identical results. This is in contrast to the 

identical results for square laminates. In addition, in each case for the rectangular plates the 
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buckling temperature is monotonically increasing with skew angle. The quasi-isotropic plate, 

as before, has the same buckling solution for both sets of boundary conditions, while for the 

orthotropic laminate the buckling temperatures corresponding to the two edge conditions dif- 

fer for «40°. Differences between the buckling temperatures of the orthotropic laminates with 

the two different boundary conditions increase with the magnitude of a. These differences are 

smaller for the rectangular plates than for the square plates. 

The out-of-plane buckling displacements for (a) quasi-isotropic, and (b) orthotropic square 

laminates with « =0° are given in Fig. 5. These displacements are equally valid for fixed or 

sliding simple support conditions. Although it is not readily apparent, because the laminates 

are not identical, the eigenvectors associated with each are slightly different. Thus their 

buckling displacements are not quite the same. Note that the buckling displacements are 

slightly asymmetric with respect to the square geometry of the plate. The displacements are 

not symmetric with respect to the lines x = a/2 or y = b/2. This asymmetry to the deforma- 

tion is due to the Dig and Dz bending stiffness terms. If these terms are artificially set to zero, 

the buckling temperature is given by the 1-term solution and the asymmetry of the deformation 

disappears, as shown in Fig. 6. For a = 30° this asymmetry is somewhat more pronounced, 

owing to the dependence of the bending stiffnesses on the angle a. The influence of « on the 

asymmetry of the buckling displacements is quite evident when studying the (+ 45/0.)s lami- 

nate. A comparison of the buckling deformations at « = 0° and at « = 30° is given in Fig. 7 for 

the (+ 45/0/90); laminate, and in Fig. 8 for the (+ 45/02), laminate. The asymmetry is also 

slightly more dramatic for the orthotropic laminate when a = 30° due to the presence of the 

nonzero shear stress resultant Ny = — NJ. 

Figure 7 is valid for either set of boundary conditions, while Fig. 8 applies only to the case 

of fixed simple supports. The difference between the two sets of boundary conditions for the 

orthotropic laminate with «40° lies in prebuckling solutions. In comparing the deformations 

associated with each simple support condition, it is seen that, overall, the influence of the 

prebuckling solutions produces little difference in the solutions for the out-of-plane buckling 

displacements. These out-of-plane buckling deformations are given in Fig. 9 for the 
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Fig. 5. Buckling displacements for (a) (+45/0/90),, and (b) (+45/0,), plates, «=0°. 
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Fig. 6. Buckling displacements for (a) (+45/0/90), plate, and (b) (+45/0/90), plate with Di6= D26=9, 

a=0°, 
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Fig. 7. Buckling displacements for (+45/0/90), plate with (a) <=0°, and (b) «=30°. 
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Fig. 8. Buckling displacements for (+45/0,), plate with (a) 2=0°, and (b) a= 30°, and with fixed 

simple supports. 
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(+ 45/02), laminate with « = 30° for (a) fixed simple supports, and (b) sliding simple supports. 

These appear to be very similar, but the asymmetry evident in both cases is slightly less for 

the case of sliding simple supports. 

in all cases note that neither half-plane nor quarter-plane symmetry exists for this type 

of problem. For all skew angles, the buckled shapes of the square laminates consist of just 

one half-wave in each direction. The same is true for the rectangular quasi-isotropic and 

orthotropic plates with either simple support boundary condition. 

Although the prebuckling solution does not have a large effect on the buckling temper- 

ature or the buckled shape of a laminate, it is quite complicated itself. Contour plots are given 

in Fig. 10 of the prebuckling stress resultants, N,,N, and N,,, for the (+ 45/0,), at a = 30° with 

sliding simple supports. This is the only case studied with nontrivial prebuckling stress re- 

sultants. In Fig. 10 each prebuckling stress resultant has been normalized by the value of that 

prebuckling stress resultant for the same laminate with fixed simple supports. Since for the 

case of fixed simple supports all prebuckling stresses are spatially uniform, there would be 

no contours for that case, or, rather, there would be one contour encompassing the entire 

planform and the value of that contour would be unity. As can be seen from Figs. 10a and 10b, 

there is a large central region of the plate within which the prebuckling stress resultants N,. 

and N, are quite uniform and nearly equal to their values for the fixed simple support case. 

in two opposite corners the values of N, and N, increase beyond their fixed support values, 

while in the two other opposite corners, the values of N, and N, decrease below their fixed 

support values. The variation of N,, with spatial location is quite severe. The value of N,, on 

the four edges for the case of sliding simple supports must be zero. On the other hand, in the 

center of the plate the value should approach that of fixed simple supports. The density of 

contours reflect this rapid change of conditions. 
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Fig. 9. Buckling displacements for (+45/0,), plate with a= 30° with (a) fixed, and (b) sliding simple 
supports. 
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Figure 10 (continued) 
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4.2.2 Linearly Varying Change in Temperature: AT = c + dx 

As mentioned previously, the problem of a linearly varying temperature change may be 

approached operationally either by specifying c and solving for the value of d to cause 

buckling, or by specifying d and solving for the smallest value of c necessary to cause 

buckling. In obtaining the following numerical results, d has been specified and the value of 

c is sought. The buckling of plates in the presence of a linearly varying change in temper- 

ature, AT =c + dx, will be studied for the range of gradients 

da 
—1.5<¢ AT $1.5. (4.37) 

The quantity da represents the difference in temperature between the two ends of the plate. 

The quantity AT*, as has been observed, is the buckling temperature of both the quasi- 

isotropic and orthotropic laminates when « = 0° and the plate is heated uniformly. It has been 

a characteristic and important temperature for this study. Equation 4.37 states that the tem- 

perature difference between the two ends of the plate will be up to 150% of this characteristic 

temperature. The sign of the quantity da/AT* will essentially dictate which end of the plate is 

warmer than the other. 

4.2.2.1 Convergence Characteristics 

Proceeding as with the case of a uniform change in temperature, the first issue to be 

addressed is that of convergence. The convergence of this case for d=0 (the case of uniform 

temperature change) has already been established in the previous section and this will be 

used as a Starting point to study the convergence of cases in which d#0. The convergence 

of both the prebuckling and the buckling problem must be considered. This will be ap- 

proached in the same manner as in the case of a uniform change in temperature and sliding 
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simple supports in the previous section. Using a large gradient, da/AT* = 1.5, a severe situ- 

ation, the convergence of a (+ 45/02)s rotated by a = 30° for the case of fixed simple supports 

is considered first. Compared to the other laminates and other values of «, this situation re- 

quires as many, or more, terms in both the prebuckling and the buckling solutions as the other 

cases in order to reach convergence. 

The effect that the number of terms taken in the prebuckling solution, | x J, has on the 

buckling solution, as well as the effect of increasing the number of terms M x N taken in the 

assumed solution for wy, is shown in Table 4. In Table 4 the buckling temperature, c, has 

again been normalized by AT*. From this table, it is obvious that buckling temperature is in- 

sensitive to the details of the prebuckling solution, there being a small difference between 

IxJ = 1 terms and |xJ = 144 terms. The results of Table 4 indicate that solutions with 

Ix J = 100 and MxN = 64 are converged. Considering the computational costs, values of 

|x J < 100 and M x N < 64 can be used with a high degree of accuracy. The numerical results 

of Table 4 are again based on a 6 in. by 6 in. laminate. 

The convergence of the buckling and prebuckling problems are considered for a 

(+ 45/02), with a = 30° for the case of sliding simple supports in the same manner. In this 

case, however, |xJ = 81 is used as the starting point for studying the influence of 

prebuckling. This is the number of terms which were required in the prebuckling solution in 

order to reach convergence of the buckling solution in the case of uniform temperature 

change and sliding simple supports. The results of this convergence study are given in Table 

5. Although an even larger number of terms, | x J = 256, must be taken in the prebuckling 

solution to reach convergence of the buckling solution, the buckling temperature, c, is again 

seen to be fairly insensitive to the prebuckling solution. The results in Table 5 indicate that 

all solutions with |x J = 256 and MxN = 100 are converged. Series with less than these 

terms provide reasonably accurate answers, however. 
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Table 4. PREBUCKLING CONVERGENCE STUDY FOR TEMPERATURE GRADIENT CASE: (+45/0,), 
PLATE, SQUARE, «=30°, FIXED SIMPLE SUPPORTS, da/AT*=1.5. 

  

  

  

  

  

  
  

  

                
  

MxN = 36 MxN = 49 

IxJ = Wu Wat IxJ = Wit Was 

1 -0.186 4.000 -0.2309 1 -0.176 4.000 -0.2309 

4 -0.190 4.000 -0.2338 4 -0.190 4.000 -0.2339 

g -0.187 1.000 -0.2315 9 -0.187 1.000 -0.2315 

16 -0.190 4.000 -0.2333 16 -0.190 1.000 -0.2333 

25 -0.205 4.000 -0.2402 25 -0.207 1.000 -0.2402 

36 -0.197 1.000 -0.2368 36 -0.197 1.000 -0.2378 

49 -0.200 1.000 -0.2382 49 -0.203 1.000 -0.2382 

64 -0.199 4.000 -0.2375 64 -0.199 4.000 -0.2374 

81 -0.200 4.000 -0.2384 81 -0.196 4.000 -0.2386 

100 -0.199 4.000 -0.2321 100 -0.202 4.000 -0.2306 

421 -0.200 4.000 -0.2388 121 -0.202 4.000 -0.2388 

144 -0.200 4.000 -0.2383 144 -0.202 4.000 -0.2383 

Mx N 64 MxN 81 

IxJ W141 Wat Ixd — Wi Wat 

-0.184 1.000 -0.2310 1 -0.189 1.000 -0.2310 

-0.192 1.000 -0.2339 4 -0.192 1.000 -0.2339 

9 -0.189 1.000 -0.2316 9 -0.189 1.000 -0.2316 

16 -0.192 1.000 -0.2334 16 -0.192 1.000 -0.2334 

25 -0.206 1.000 -0.2403 25 -0.216 1.000 -0.2403 

36 -0.199 1.000 -0.2370 36 -0.199 1.000 -0.2370 

49 -0.205 1.000 -0.2383 49 -0.202 1.000 -0.2384 

64 -0.200 1.000 -0.2375 64 -0.200 4.000 -0.2375 

81 -0.199 4.000 -0.2385 81 -0.202 4.000 -0.2385 

100 -0.203 1.000 -0.2380 100 -0.203 1.000 -0.2380 

421 -0.203 1.000 -0.2389 121 -0.203 1.000 -0.2389 

144 -0.203 1.000 -0.2384 144 -0.203 1.000 -0.2384 

(1) Numerical results computed based on a 6 in. by 6 in. plate. 
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Table 5. PREBUCKLING CONVERGENCE STUDY FOR TEMPERATURE GRADIENT CASE: (+45/0,), 
PLATE, SQUARE, x=30°, SLIDING SIMPLE SUPPORTS, da/AT*=1.5. 

MxN = 64 MxN = 81 

Ix J — Wis Wo Ix J = Wit Wor 

81 -0.268 1.000 -0.1839 81 -0.271 1.000 -0.1841 

100 -0.271 1.000 -0.2333 100 -0.274 1.000 -0.1856 

121 -0.272 1.000 -0.1861 121 -0.277 1.000 -0.1862 

144 -0.273 1.000 -0.1871 144 -0.278 4.000 -0.1873 

169 -0.277 1.000 -0.1877 169 -0.280 1.000 -0.1878 

196 -0.278 1.000 -0.1884 196 -0.281 4.000 -0.1885 

225 -0,280 1.000 -0.1888 225 -0.282 4.000 -0.1889 

256 -0.281 1.000 -0.1889 256 -0.284 4.000 -0.1895 

289 -0.281 4.000 -0.1891 289 -0.284 4.000 -0.1897 

MxN = 100 M x 121 

Ixd — Was Wot Ixd <= Wi Wat 

81 -0.277 1.000 -0.1840 81 -0.280 1.000 -0.1840 

100 -0.281 1.000 -0.1855 100 -0.284 1.000 -0.1855 

124 -0.285 1.000 -0.1862 121 -0.285 4.000 -0.1872 

144 -0.287 4.000 -0.1872 144 -0.285 4.000 -0.1878 

169 -0.287 4.000 -0.1878 169 -0.287 1.000 -0.1878 

196 -0.288 1.000 -0.1883 196 -0.288 1.000 -0.1886 

225 -0.290 1.000 -0.1889 225 -0.290 1.000 -0.1889 

256 -0.291 1.000 -0.1894 256 -0.291 4.000 -0.1895 

289 -0.291 1.000 -0.1898 289 -0.291 1.000 -0.1898 

(1) Numerical results computed based on using a 6 in. by 6 in. plate. 
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4.2.2.2 Buckling Characteristics 

One convenient way to represent the results for the case of a linearly varying temper- 

ature gradient is shown in Fig. 11. In this figure the functional relationship between c and d 

is illustrated for square quasi-isotropic and orthotropic laminates with a =0° and with both 

fixed and sliding simple supports. In this figure c is normalized by AT’, and d is normalized, 

as explained above, using the length of the plate, a, and AT’. The form of this graph is largely 

due to the choice of placing the origin of the coordinate system at the corner of the plate. One 

of the observations that can be made from this figure is that rotating the problem by 180° 

makes no difference to the overall buckling solution. For instance, for the ( + 45/0/90), plate 

with a = 0° and fixed simple supports, when da/AT* = 1.5, in order for the plate to buckle, at 

one end of the plate c/AT* = 0.09 while at the other end of the plate (c + da)/AT* = 1.59. When 

da/AT* = —1.5 for the same case, the buckling solution is that c/AT* = 1.59, so that, again, in 

order for the plate to buckle, we must have at one end (c + da)/AT* = 0.09 while at the other 

end c/AT* = 1.59. In other words, it does not matter which end of the plate is heated relative 

to the other. The case of d=0 corresponds to the uniform temperature case and the values 

of c for this situation reiterate data shown in the previous section. As noted in the previous 

section, for a uniform change in temperature the buckling temperature for the quasi-isotropic 

and orthotropic laminates, with fixed and with sliding simple supports, is the same when 

a =0Q°. In the presence of a change in temperature which varies linearly with x, d#0, the 

buckling temperatures for these cases are no longer the same, but are very close to one an- 

other, as is evident from the figure. In particular, the buckling solution for the quasi-isotropic 

laminate with fixed simple supports is not identical to the solution for the quasi-isotropic 

laminate with sliding simple support conditions, when d<0. The same is true for the 

orthotropic laminate. This is because the prebuckling solution for either laminate with fixed 

simple supports is not identical to the prebuckling solution for the same laminate with sliding 

simple supports. The differences among solutions, though minimal, do change with «. 

Buckling Response 62



  2.0 

C/
aT
 

* 

  

  

        
  

: | 1 I 2 2 | ._ | ‘ 

05 50 -1.00 -0.50 0.00 0.50 1.00 1.50 
da/aT” 

[+45/-45/0/0]s [+45/-45/0/0]s [+45/-45/0/90]s [+45/-45/0/90]s 
Fixed S.S. Sliding S.S. Fixed S.S. Sliding S.S. 

      

Fig. 11. The influence of a thermal gradient on buckling temperature, AT=c+dx, square plates, 
“a=0°, 
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The effect that skewing the material axes of these laminates by «= 30° has on the 

buckling temperatures for the case of a linearly varying change in temperature is shown in 

Fig. 12. For comparison, the case of a =0°, just discussed, is included on the figure. The 

buckling temperatures, c, for the (+ 45/0/90), and ( + 45/0), laminates with « = 30° and either 

set of boundary conditions also have values which are very close to one another for a given 

value of d. In the case of a uniform change in temperature, the buckling temperatures for both 

laminates under either boundary condition decrease when the material axes where skewed. 

As can be seen from this figure, the same is true for the case of a linearly varying temperature 

gradient. Several other observations can be made. First, for d<0, the situation where the 

right end of the plate is cooler than the left end, c is always positive. This is interpreted to 

mean the when the right end of the plate is cooler than the left end, the left end of the plate 

must always be heated in order for the plate to buckle. Second, for the quasi-isotropic and 

orthotropic laminates with no skewing, this is actually the case for any d in the range illus- 

trated. However, for the laminates with skewing and with d positive and near the high end 

of the range shown, meaning the gradient is such that the right end of the plate is warmer than 

the left end, the left end must actually be cooled to buckle the plate, i.e., c<0. 

The buckling temperatures of the orthotropic plate with no skewing and rectangular 

planform, a/b=2, are compared with those for the square orthotropic plate (a/b=1) with 

a =0° in Fig. 13. As was the case for a uniform change in temperature, the rectangular plates 

have a lower buckling temperature, c, than the square plates. Differences between the 

buckling temperatures of the taminates with the two different boundary conditions are small 

for both the square and and rectangular plates. Unlike the square plates without skewing, 

however, for d positive and near the middle to high end of the range studied, the plate must 

be cooled on the left end to buckle, i. e., c<0. Although not shown, the results for the quasi- 

isotropic laminate are similar. 

The effect of skewing the material axes by « = 30° on the rectangular orthotropic plate is 

shown in Fig. 14. It was seen in Fig. 12 that for square plates the cases of « =0° and 

a« = 30° fall into two distinct groups. In contrast to the results for square plates, for rectangular 
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Fig. 12. The influence of a thermal gradient and skew angle on buckling temperature, 
AT=c+dx, square plates. 
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Fig. 13. The influence of a thermal gradient and plate geometry on buckling temperature, 
AT=c+ dx, (+45/0,),, «=0°. 
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plates, the results for the (+ 45/0.), laminate with « =0° and « = 30° and with either set of 

boundary conditions, are very similar. Again, although not shown, the results for rectangular 

quasi-isotropic laminates are similar. 

Figure 15 shows the out-of-plane deflection contours for the orthotropic laminate with 

a = 0° and fixed simple supports for (a) da/AT* = 0, and (b) da/AT* = 1.5. As can be seen, the 

temperature gradient causes the maximum deflection to move toward the warm end of the 

plate, x=a. As was seen previously, in Fig. 5b, for the (+ 45/02)s laminate, with « =Q° and 

no temperature gradient there was an asymmetry to the out-of-plane deflection due to Dig and 

Das. These bending coefficients also cause an asymmetry for the nonuniform temperature 

case. When Dy and Dz are artificially set to zero for the case of a nonzero gradient, the de- 

flection is symmetric about the line y=b/2. This is illustrated in Fig. 16 where the buckling 

displacements of the ( + 45/02), laminate with a = 0° and Dy, and Dz. set to zero is compared 

with the case where Di, and Dz. are not zero. 

In Fig. 17 the buckling displacements for the orthotropic laminate with fixed simple sup- 

ports and (a) « =0°, and (b) a = 30°, and a linear temperature gradient of da/AT* = 1.5 are 

compared. For the uniform temperature case the asymmetry of the buckled configuration was 

more pronounced in the ( + 45/02); plate with a = 30° than with a = 0°. This was seen in Fig. 

8. As can be seen from Fig. 17, this greater asymmetry is also more exaggerated in the 

presence of a thermal gradient. Thus it can be concluded that the presence of a temperature 

gradient exaggerates the asymmetry caused by Dig and Dz. For the case of the (+ 45/0.) 

plate with « = 30°, however, part of this asymmetry is also due to the presence of a nonzero 

NE, as was discussed for the uniform temperature case (Fig. 8). 

A comparison of the buckling displacements of the ( + 45/0), plate when a = 30° (a) with 

fixed simple supports, and (b) with sliding simple supports, is given in Fig. 18 for 

da/AT* = 1.5. For the case of a uniform temperature change these deflections were very 

similar, although the asymmetry was slightly more for the case of sliding simple supports. 

As can be seen from this figure, for the case of a gradient in temperature, the asymmetry is 

much more pronounced for the case of sliding simple supports. 
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Fig. 14. The Influence of thermal gradient, support conditions, and skew angle on buckling tem- 
perature, AT=c+dx, (+45/0,), plates. 
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(b) 

Fig. 15. Buckling displacements for (+45/0,), plates with 2=0° and fixed simple supports (a) no | 

gradient, and (b) da/AT* =1.5. 
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Fig. 16. Buckling displacements for (a) (+45/0,), plate, and (b) (+45/0,), plate with D146 =D26=9, 

a=0°, fixed simple supports, da/AT* =1.5. 
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(b) 

Fig. 17. Buckling displacements for (+45/0,), plate with (a) «=0° and (b) «=30°, fixed simple 

supports, da/AT*= 1.5. 
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Fig. 18. Buckling displacements for (+45/0,), plates with a=30°and (a) fixed simple supports, and 

(b) sliding simple supports, da/AT* = 1.5. 
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Although the prebuckling solutions do not have a large effect on the buckling temper- 

atures of these laminates for the case of a thermal gradient, the prebuckling solutions are 

themselves quite complicated. Contour plots are given of the prebuckling stress resultants, 

Nx , Ny and N,, for the (+ 45/02). plate for « = 30° when da/AT* = 1.5 in Fig. 19 for the case 

of fixed simple supports and in Fig. 20 for the case of sliding simple supports. In both figures, 

each prebuckling stress resultant has been normalized by the value of that prebuckling stress 

resultant for the same laminate with fixed simple supports and no temperature gradient. For 

the case of fixed simple supports, Fig. 19, the values of N, and N, increase from the cooler to 

the warmer edge of the plate, while the variation of N,, with spatial location is quite severe. 

Specifically, the point x/a=0, y/b=0.5 has N,=0. The locus of points for N, forms an ‘S’- 

shaped contour from that point. The normalized value of N, exceeds 3 on the opposite, 

warmer, edge. The normalized value of N, is close to unity on the line x/a=0.5 and the zero 

contour is to the left of that. It reaches about 1.8 on the warmer edge. The locus for N,, =0 

covers a large area of the plate, the normalized value of N,, covering the approximate range 

+5. For the case of sliding simple supports, Fig. 20, the value of N, increases rather uniformly 

from the cooler to the warmer edge of the plate. The resultant N,, varies rapidly on the left, 

cooler edge, varies less rapidly and quite uniformly on the central 80% of the plate, then 

varies rapidly again on the right, warmer edge. For N,, there are what might be termed 

boundary layers at the left and right edges. The resultant N, exhibits rapid changes in the 

corners, particularly near the corner x/a=1, y/b=1. 

This concludes the investigation of thermal buckling and prebuckling in this study. These 

linear analyses have provided insight into the influence of boundary conditions, material axis 

skewing, degree of orthotropy, and aspect ratio on thermal buckling for both a uniform change 

in temperature and a change in temperature which varies linearly across the plate. The 

nonlinear problem of determining the plate response as the temperature increases beyond the 

buckling temperature, thermal postbuckling, is discussed in the next chapter. 

Buckling Response 73



 
 
 
 

T
I
E
 

Y, 

MAS 
  

    
   
 

  
 
 
 
 

  
 
 

 



  

Figure 19 (continued) 
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5.0 Postbuckling Response 

Plates are usually able to resist increasing loads subsequent to the onset of buckling [21]. 

The ability to resist loads beyond the buckling load is an asset in that the buckling load is not 

as critical, and it is possible to utilize the postbuckling load capacity to improve structural ef- 

ficiency. Because plates may also be able to resist deflections at temperatures beyond the 

critical buckling temperature, thermal postbuckling is investigated. In this chapter the thermal 

postbuckling problem is formulated, a solution scheme presented, and numerical results dis- 

cussed. 

5.1 Formulation 

As in the buckling problem, in the postbuckling problem, as it is studied here, the so- 

called preloading effects, of,0f and 7%, in eqn. 3.10 are assumed to be due only to 

thermally-induced deformations, and the temperature distribution is assumed to be spatially 

uniform. As a resuit, eqns. 4.1 - 4.3 apply. However, although the plates are still assumed to 

be initially flat, the effects of moderate rotations can no longer be neglected in the expressions 
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for the reference surface strains. Thus, from eqns. 3.5 and 3.6, the reference surface strains 

are given by 

2 2 
O= du? yt aw? a av° at aw? 
x éx 2 ox "fy dy 2 dy 

o _ due , W° , dw°® aw 

      

(5.1) 
  

The equations governing the postbuckling are obtained by setting the first variation of the total 

potential energy equal to zero. Using eqn. 5.1, the first variation of the total potential energy, 

eqn. 3.29, using the notation of eqn. 3.17, is given by 

    
° 0 o 0 ° 0 

sem | f]n,( 262 4 24° 2) (262 » Oe abu” 
du. Gév° Ss GW? Bbw? | Aw? Bbw? 

1 Ne 250" 4 25% 4 Du ab ay 

a*dw? a*6w? a*6w° 
—M, ——— 2M dxdy, ax yey xY ~ Bxdy y 

(5.2) 

    —M, 

where the stress resultants, expressed in terms of the reference surface displacements, are, 

from eqn. 3.13, 
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My = — 04, x M2 By 216 oxy 

a°w° aw? dw? 
My = — Dip Px D22 py 2026 ax ay 

M aw? a°w° a?w° 
  =—Dig——-D — 2D . xy oe ay 86 axdy 

In the above expressions, the thermal stress resultants are 

Ni = NIAT 
T tr Ny = NAT 

T TTT Nyy = NYT, 

  

  

(5.3) 

(5.4) 

where the barred quantities were defined in Ch. 4 as the thermal stress resultants due to a 

unit temperature change. Substitution of the expressions of eqn. 5.3 into eqn. 5.2 leads to a 

rather complex equation for the first variation of the total potential energy. Closed-form sol- 

utions are difficult to obtain. As an alternative, using the Rayleigh-Ritz method, substitution 

into eqn. 5.2 of the assumed forms for the displacements u°, v° and w® results in a coupled set 

of nonlinear algebraic equations. These coupled equations can be solved numerically for the 
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coefficients of the assumed displacement functions in order to obtain the response of the plate 

as a function of temperature. Here the assumed forms for u?, v°, and w® for the case of fixed 

simple supports are given by 

u(x, y) = y Y uysin( )sin( 

)sin( 
aida ) 

“Y) (5.5) v°(x, y) = > Y vysin( 2 

i=1j=1 

M oN 
w°(x, y) = » >, Wmnsin( 

m=in=1 

    x )sin( — ). 

The assumed forms for the case of sliding simple supports are given by 

    

v°(x, y) = SS meas (5.6) 

w(x, y) = s S" winrsin( EX )sin( = ) 

mazin=1 

The form for w°(x, y) follows from the form used for studying the buckling response. The forms 

for u(x, y) and v°(x, y) follow from the forms used for the prebuckling computations. Despite 

this similarity between the prebuckling and postbuckling problems, the postbuckling problem 

is computationally more involved. Substitution of either eqn. 5.5 or 5.6 into eqn. 5.3 and eqn. 

5.2 leads to the nonlinear coupled equations for u,, vj, and wi). 

Due to the complexity of this problem, the specific issues discussed here will be more 

limited than for the buckling problem. Specifically, only square plates undergoing a uniform 

change in temperature will be considered. However, the influence of both sets of boundary 

conditions, material axis skewing, and quasi-isotropic and orthotropic stacking arrangements 

on the thermal postbuckling response will be discussed. 

Postbuckiing Response 81



5.2 Numerical Results 

The nonlinear, coupled equations for the postbuckling response of a laminate are solved 

using a nonlinear equation solver (IMSL subroutine N2QNF [20]). A continuously increasing 

change in temperature from an ambient temperature is represented by a sequence of incre- 

mental temperature changes. At each increment in temperature a new solution must be found 

such that each nonlinear equation is equal to zero. This is equivalent to solving for 

dr(u°, v°, w°) =. At each step the search for a new solution is begun by taking as an initial 

guess the solution calculated for the preceding temperature step. Because derivatives of u°® 

and v° are added to squares of derivatives of w°, in order to allow a full amount of coupling, 

more terms need to be taken in the series for u® and v° than in the series for w°. To determine 

the relation between the number of terms taken in u° and v° and the number of terms taken 

in w° the following trigonometric relations are considered: 

sin?@ = + (1 — cos2@) 

cos’0 = + (1 + cos2é@) (5.7) 

sin@cosé = $ sin2é. 

In light of these relations and the expressions in eqns. 5.5 and 5.6, in order to allow the highest 

harmonic in u® and v° to match the highest harmonic in w, we must have | = 2M and J = 

2N, where | and J are the upper limits in the series for u° and v°, and M and N are the upper 

limits in the series representing w°. 

5.2.1 Convergence 
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To study the convergence of these series solutions to the postbuckling problem, the re- 

sponse of a (+ 45/02)s laminate with « = 30° is calculated using different numbers of terms in 

the series expressions for u°, v? and w*. As with the buckling response, this particular situ- 

ation requires as many, or more, terms in the postbuckling solution, compared to the other 

cases, in order to reach convergence. In the figures to follow, the relationship between the 

deflections at the center of the plate, normalized by the plate thickness, and AT/AT* are il- 

lustrated. Recall from Ch. 4 that AT* is defined to be the buckling temperature of a quasi- 

isotropic plate with fixed simple supports, a = 0°, and a uniform temperature distribution. The 

numerical value of AT* is 69.4°F. In Fig. 21 the convergence characteristics for the fixed 

simple support case are illustrated. The temperature-deflection relationship as a function of 

the number of terms in the series are shown. Note that the plate remains flat until the buckling 

temperature for this particular plate configuration is reached, AT/AT* =0.71. From this figure 

it can be concluded that the use of Mx N = 9 leads to a converged solution. In fact, the use 

of MxN = 1 provides an excellent estimate of the postbuckling response. The results of 

Fig. 21 show that at temperatures five times the buckling temperature, plate deflections less 

than twice the thickness of the plate occur. In Fig. 22 the convergence characteristics for the 

case of sliding simple supports are illustrated. Convergence for this case is not quite as rapid 

as for the case of fixed simple supports. The casesofMxN = 1andMxN = 4 are not good 

estimates of the response as they were for the fixed boundaries. However, MxN = 9 ap- 

pears to lead to a converged solution. {t is important to note that compared to the fixed simple 

support case, the postbuckling deflections for this case are not as large. The results in these 

figures are again based on a 6 in. by 6 in. laminate. 

With convergence issues addressed, the next section focuses on some of the 

postbuckling responses for various physical situations. For these cases MxN = 9 will be 

used. 
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Fig. 21. Postbuckling convergence study: (+45/0,), plate with 2=30° and fixed simple supports. 

Postbuckling Response



  

    
     

  

          

  

  

  

2.5 

- r [+45/-45/0/0]s 

er a = 30° 

Sliding S.S. ae 
15 - — 

Ty 
Y 

asl Lia. 
x 

0 —_—~i j 4 } = | ___t 

0 1 2 3 4 5 6 

AT/aT 

M°N=1 M°N=4 M*N=9 M*°N=16 

    
  

Fig. 22. Postbuckling convergence study: (+45/0,), plate with «=30° and sliding simple supports. 
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5.2.2 Postbuckling Characteristics 

The postbuckiing deflections at the center of the plate, normalized by plate thickness, 

versus AT/AT* for the quasi-isotropic laminate with a =0° and fixed simple supports are il- 

lustrated in Fig. 23. As would be expected, the laminate begins to deflect out-of-plane at the 

critical buckling temperature predicted by the buckling solution, AT/AT* = 1. Beyond this point 

the deflection increases rapidly until nearly twice the buckling temperature, AT*, and then in- 

creases more slowly with increasing temperature. Although the slope of the temperature- 

deflection relation appears to be somewhat steep, even at five times the buckling temperature 

the deflection of the laminate is less than two plate thicknesses! It should be noted that the 

negative of these deflections is a possible postbuckling solution, as is the case w° = 0. 

Though stability of the postbuckling configurations was not addressed in this study, the case 

of w° = 0 is not believed to be stable. 

The normalized postbuckling deflection at the center of the plate for the quasi-isotropic 

laminate with « = 30° and fixed simple supports is shown in Fig. 24. A comparison with the 

previous case, shown by a dotted line, shows that the postbuckling responses of the quasi- 

isotropic laminate with a =0° and the quasi-isotropic laminate with a = 30° are distinct. The 

buckling temperature for the (+ 45/0/90), laminate with « = 30° is lower than the buckling 

temperature for the ( + 45/0/90), laminate with « = 0°, so the postbuckling deflections of these 

laminates begin at different normalized temperatures. However, even if the postbuckling re- 

sponse for the a = 30° case were shifted to the right so that its starting point coincided with 

that for the «=0° case, the two responses would still not coincide. With «= 30°, the 

postbuckling deflections are greater than with a =0°. This serves again as a reminder that 

the term ‘quasi-isotropic’ refers only to the inplane properties of the laminate, the laminate 

acting softer when a =0°. 

The postbuckling response of the orthotropic laminate with « =0° and fixed simple sup- 

ports is shown in Fig. 25. Again the quasi-isotropic case is shown for comparison. Although 
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Fig. 23. Postbuckling response of a (+45/0/90), plate with 2=0° and fixed simple supports. 
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Fig. 25. Postbuckling response of a (+45/0,), plate with x=0° and fixed simple supports. 
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the buckling temperatures for the orthotropic and quasi-isotropic laminates with « =0° are the 

same, the postbuckling responses of these two laminates are different. The normalized 

deflection-temperature relations for both laminates begin at the same point and follow similar 

paths until nearly twice AT*, after which the deflection for the (+ 45/02); laminate with « = 0° 

increases less rapidly, reaching less than 1.5 plate thicknesses at AT/AT* = 5. 

As was seen in ch. 3, Table 3, the buckling temperatures of the (+ 45/02); laminate with 

a = 30° and the ( + 45/0/90); laminate with « = 30°, both with fixed simple supports, are within 

a few degrees of each other. The postbuckling responses of these laminates are also very 

similar, as shown in Fig. 26. Indeed, referring to Fig. 24, it is observed that the postbuckling 

responses of the (+ 45/0.), and the ( + 45/0/90), laminates with a = 30° are much more similar 

than are the responses of the same laminates with a = 0°. Skewing tends to be an equalizer 

as regards the postbuckling responses of these two laminates. 

The postbuckling response of the quasi-isotropic laminate with a = 0° and sliding simple 

supports is shown in Fig. 27. The case of fixed simple supports from Fig. 23 is included for 

comparison. The buckling solutions for the on-axis quasi-isotropic laminate with fixed simple 

supports and with sliding simple supports are identical, and thus both postbuckling responses 

remain flat until the normalized temperature is unity. However, while the postbuckling re- 

sponses for these two cases are initially close to one another, they soon diverge. The out- 

of-plane deflection at the center of the plate for the quasi-isotropic laminate with sliding simple 

supports at AT/AT* = 5 is about 20% less than the deflection of the quasi-isotropic laminate 

with fixed simple supports. Comparison of this figure with Fig. 24 shows that a change in 

boundary conditions can have as much influence on the postbuckling response of a laminate 

as skewing of the laminate’s material axes. 

In Fig. 28 the postbuckling response of the quasi-isotropic laminate with « = 30° and 

sliding simple supports is shown. The case of a =0° is shown for comparison. Once again, 

it is seen that the response of the quasi-isotropic laminate with « = 30° is distinct from the 

response of the quasi-isotropic laminate with «a =0°. This was the case for fixed simple sup- 
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Fig. 26. Postbuckling response of a (+45/0,), plate with «=30° and fixed simple supports. 
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ports, Fig. 24. That deflections for the fixed support case are greater is evident by comparison 

of Fig. 28 with Fig. 24. 

Figure 29 shows the postbuckling response for the ( + 45/02), laminate with a =0° and 

sliding simple supports. The postbuckling response for this case is quite different from those 

seen previously. While the response for this case is initially almost identical to that for the 

same laminate with fixed simple supports, for changes in temperature beyond AT/AT* = 3 the 

out-of-plane deflection at the center of the plate actually decreases with increasing temper- 

ature! In all of the previous cases examined, the postbuckling response consists mainly of the 

deflections associated with the Rayleigh-Ritz coefficient w., In the present case, for 

AT/AT*>1.5 the deflection associated with Wi3, and, to a lesser extent, the deflection associ- 

ated with Ws, begin to influence the postbuckling response more and more as wi; and Wa 

rapidly approach the magnitude of w,,. The change in the character of the response with in- 

creasing AT can be interpreted as modal interaction, the modes being the buckling modes 

associated with the higher eigentemperatures in the buckling problem. This interaction can 

be better understood by examining contour plots of the deflection, w, normalized by the plate 

thickness, H, at AT/AT* = 2, 3, 4, and 5. These contour plots are given in Fig. 30. At 

AT/AT* = 2 the postbuckling deflection is similar to the buckling deflection for this case given 

in Fig. 5b. The location of the maximum deflection is the center of the plate. As the temper- 

ature increases, at AT/AT* =3 and AT/AT* = 4, the contours become more oval shaped, with 

the regions of maximum deflections moving toward the edges y=0 and y=b. At AT/AT*=5, 

this process has continued to the point that the maximum deflections no longer occur at the 

center of the plate. This shift in the point of maximum deflection is largely due to the fact the 

four 0° layers make the laminate much stiffer in the x direction than in the y direction, and the 

fact that NI is less than one half of NI. This latter relationship is due to the negative value of 

the thermal expansion coefficient «,. A similar but less pronounced trend can be seen for the 

( + 45/02)s laminate with fixed simple supports and « =0°. The postbuckling response for this 

case was shown in Fig. 25. The deflection contours at various temperatures are shown in 
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Fig. 29. Postbuckling response of a (£45/0,), plate with 2=0° and sliding simple supports. 
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Fig. 30. Postbuckling deflections for a (+45/0,), plate with a=0° and sliding simple supports at 
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Fig. 31. It is evident that the points of maximum deflection move away from the center as the 

temperature increases for this case as well. 

As shown in Fig. 32 when the material axes of the ( + 45/02)s with sliding simple supports 

are skewed by a = 30° the postbuckling response once again is such that the deflection as- 

sociated with w,, dominates with increasing temperature. 

In conclusion, it can be stated that the thermal postbuckling response can be complex. 

The dramatic change of the deflection pattern with increasing temperature for certain physical 

conditions attests to this fact. Also it is clear that the support conditions have an influence 

on the thermal postbuckling response, as do the skewing angle and degree of orthotropy. 

While an understanding of the postbuckling response is important, as mentioned in ch. 1, it 

represents an ideal situation. Generally, imperfections in the plate, support conditions, and 

even imperfections in the temperature field prevent observation of true postbuckling response. 

Rather, postbuckling response is taken as the limit of behavior, imperfections causing the 

deflection-temperature relations to deviate from those just discussed. The next chapter ad- 

dresses the influence of imperfections and compares the response in the presence of 

imperfections with the ideal postbuckling case. 
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Fig. 31. Postbuckling deflections for a (+45/0,), plate with «=0° and fixed simple supports at 

ATIAT® = 2, 3, 4, and 5. 
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6.0 Response in the Presence of an Imperfection 

In this chapter the influence of two forms of imperfections on the thermally-induced re- 

sponse of the plates are considered. One imperfection considered is a slight through-the- 

thickness temperature gradient. The other imperfection considered is a lack of initial plate 

flatness. Both of the imperfections represent very realistic deviations from the ideal. While 

they do not include all the forms of imperfections that might be encountered, a study of their 

influence provides insight into possible explanations of differences between observed and 

ideal behavior in actual experiments. Numerical results are presented for both cases. 

6.1 Formulation 

6.1.1 Temperature Gradient Through the Thickness of the Plate 

In the testing of plates in a thermal enviroment, achieving a perfectly uniform temperature 

within the entire volume of the test chamber may be difficult. In a previous chapter the influ- 
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ence of a temperature gradient in the plane of the plate was examined. Here, the influence 

of a temperature gradient through the thickness of the plate on the thermal response will be 

examined. This is a reasonable deviation from the ideal since if a plate is tested in a hori- 

zontal position within the test chamber, convection and conduction effects may result in the 

top surface of the plate being a slightly different temperature than the bottom surface of the 

plate. Accordingly, the imperfection considered here is a temperature gradient through the 

thickness of the plate which is of the form 

AT =c(1 +22), (6.1) 

In the above equation, e represents the magnitude of the gradient and H is the total thickness 

of the plate. Because the reference surface, z=0, is the midplane of the plate, c is the tem- 

perature at the midplane of the plate. Referring to the coordinate system in Fig. 1, the tem- 

perature at the top of the plate is then c(1+e/2), and at the bottom of the plate the temperature 

is c(1-e/2). Thus, if e is positive the plate is warmer on the top than on the bottom. This will 

cause the plate to begin to deflect out of plane as soon as the temperature is increased rela- 

tive to the reference temperature. 

For this form of an imperfection the preloading effects, of, of, and ty, are again due only 

to thermally-induced deformations. As a result, eqn. 4.1 - 4.2 are valid. Equation 5.2 still 

governs the nonlinear response. However, MJ, Mj, and MJ, are no longer zero, thus the stress 

resultants are given by 

° ° ° T 
Ny = Aggex + Aqaty + Areyxy — Nx 

° oO ° T 
Ny = A42&y + Aa2ey + A267 xy - Ny 

Nuy = Arges + Anges + Aggyey — Nu xy = Argéx + Argey + Ageyxy — Nxy 
T 

M, = Dy4xo + Dyox? + Diageo, — M ©) x = 044K, + Dagny + Digkyy — My 

oO T 
My = Dioks + Dooxy + Dogkxy - My 

° 3 oO T 

where, 
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(6.3) 

Using the reference surface strains and curvatures from eqns. 3.5 - 3.7, the stress resultants 

of eqn. 6.2 become 
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(6.4) 

Substitution of eqns. 6.3 and 6.4 into eqn. 5.2 results in an expression for the first variation of 

the total potential energy for this case. Proceeding as in ch. 5, the Rayleigh-Ritz method is 

used to obtain a coupled set of nonlinear algebraic equations which can be solved numerically 

for the response of the plate, for a given value of e, as a function of the plate’s midplane 

temperature, c. The assumed series of eqns. 5.5 and 5.6 are used to determine the responses 

for the two boundary conditions. 
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6.1.2 Lack of Initial Flatness 

Because of the lack of ideal alignment of the fiber directions in all of the layers, the lack 

of uniform processing conditions, and even slight variations in the prepreg used to fabricate 

the plates, a composite plate rarely is perfectly flat. Generally the plate has an initial out-of- 

plane deflection. Here the influence of the imperfection on the thermal response of the plate 

will be studied. Such an imperfection will cause the thermal response to deviate from the 

ideal postbuckling response. Because the Rayleigh-Ritz method will again be used to solve 

this problem, the initial out-of-plane deflection is given by a double sine series similar to the 

one used to represent w? in ch. 5, namely, 

    

M oN 

w(x, y)= > » Winnsin( mex )sin( —s ). (6.5) 

mai n= 

This represents the deviation from initial flatness of the reference surface. The displacement, 

we, as before, is the total out-of-plane deflection, including wi’. 

For this case the preloading effects are now due to more than just thermally-induced 

deformations. In this case the reference surface strains of eqn. 3.5, due to the preloading ef- 

fects, are 

  

  

2 
1 { dw aw! 

£-+() —2 $ + a,AT 

2 

p_if ow) _, aw oar (6.6) 
oy =O | ay 272 Tt 4y 

p _ aw’ aw dw 
Yxy = Bx ay — 2z axa + &yyAT 

From eqn. 3.8, the preloading effects are given by 
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The stress resultants are the same as in eqn. 3.13. Namely, 

° o o P 
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In the present situation the preloading stress resultants are given by a combination of effects 

due to lack of initial flatness, and thermal effects. The preloading stress resultants are, from 

  

eqn. 3.14, 
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For this case the change in temperature will be assumed to be uniform, both with x and y, and 

also with z. The thermal stress resultants are thus once again given by 

Ny = NIAT 
T wt Ny = NAT 

Nyy = NyyAT 

My = My = My = 0. 

(6.10) 

Using the reference surface strains and curvatures, the stress resultants of eqn. 6.8 become 

        

  

      

      du° 4 aw? ° +A we A awe ° 

&x 2\ éx 2) ay 2\ day 
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a°w? aw? aw? M, = — Dy, 2% — Dy, 2 - 2p,, 2% ~ x 11 ax 12 ay 16 axdy 

aw? a*w? a°w? p =—D,, 2” _p,, 2” _ 2p,, 2” = y 1272 22 ey 28 axay y 

a°w? a7w? a*w? Pp 
M,., = —D4g —~— — Dog —~— — 2Dgg ——— — My, xy 16 32x 26 ay 66 axdy xy 

  

My 

(6.11) 

where the preloading stress resultants are those of eqn. 6.9. The governing equation for this 

problem is again the expression for the first variation of the total potential energy, given in 
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eqn. 5.2. However, substitution of the expressions for the stress resultants, eqn. 6.11, leads 

to an even more complex set of equations than before. 

6.1.3 Assumed Displacements 

For both the response due to a through-the-thickness temperature gradient and the re- 

sponse due a lack of initial flatness, the assumed displacement functions used are the same 

as those employed in ch. 5. These are: 

for fixed simple supports, 

u(x, v= Sos x sin( 4 ) 

v°(% y) = y Y vasin( 2 )sin( 22) (6.12) 

[aijod 

w°(x, y) = s 5" winsin( mee )sin( 7 J, 
m=tn=1 

  

and for sliding simple supports, 

    

1 oJ 

rene S Son (4 
I oJ 

9° = inx Jey | 

v(x, y) 2 Reels )sin( ) (6.13) 

w(x, y)= s > vn max )si j n( ay ). 

m=ain=1 

In addition, for the case of initial out-of-plane deflections, the series representation for w' is 

given in eqn. 6.5. 
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6.2 Numerical Results 

The nonlinear, coupled equations for the imperfection analyses are solved in the same 

manner as were the equations for determining postbuckling response in the previous chapter. 

The continuously increasing change in temperature is represented by a sequence of incre- 

mental temperatures, and, at each step, the search for a new solution is begun by taking the 

values of the displacement coefficients calculated in the previous step as an initial guess. 

Because derivatives of u° and v° are added to squares of derivatives of w°, as was the case 

for the postbuckling response, the relation between the numbers of terms taken in the series 

for u°, v°, and w® is the same as for postbuckling: | = 2M and J = 2N, where | and J are the 

upper limits on the series representing u° and v°, and M and N are the upper limits on the 

series representing w’. 

Numerical results will be presented for two specific cases. For the case of a temperature 

gradient through the thickness of the plate, results will be presented for e = 0.05. This value 

of e means that the plate is 5% warmer on the top than on the bottom. The form of this tem- 

perature gradient is 

AT =c(1 +0.05 2), (6.12) 

For the case of an initial deviation from flatness, the initial deflection is taken to be 

w(x, y) =0.1H sin( 2% )sin( = ). (6.13) 

This represents an initial deflection which has an amplitude equal to one tenth of the laminate 

thickness and is composed of one half wave in x direction and in the y direction. 

The results to follow consider only square plates, a 6 in. by 6 in. plate being used to 

compute the numerical results. 
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6.2.1 Convergence Characteristics 

the convergence characteristics of the reponse of a square (+ 45/02); laminate with 

a = 30° and with 5% temperature gradient through the thickness of the plate are given in 

Fig. 33 for the case of fixed simple supports, and in Fig. 34 for the case of sliding simple 

supports. In these figures the relation between the deflections at the center of the plate, 

normalized by plate thickness, and c/AT" are illustrated. Likewise, convergence studies for 

the reponse to an initial out-of-plane deformation of a square (+ 45/02), laminate with 

« = 30° are given in Fig. 35 for the case of fixed simple supports, and in Fig. 36 for the case 

of sliding simple supports. In the figures relating to convergence in the presence of an initial 

imperfection, the deflections at the center of the plate minus the initial deformation and nor- 

malized by the plate thickness are plotted as a function of c/AT*. These results were calcu- 

lated using different numbers of terms in the series expressions for u°, v° and w®. In all four 

studies the case of the (+ 45/0), laminate with « = 30° requires as many, or more, terms in 

the imperfection response solution, compared to the other cases, in order to reach conver- 

gence. These figures indicate that for both imperfections and with both sets of boundary 

conditions, convergence is reached when MxN=9. 

Attention now turns to a discussion of the influence of laminate properties, skew angle, 

and boundary conditions on the response. 

6.2.2 Imperfection Response Characteristics 

The deflection response of a square ( + 45/0/90); laminate in the presence of each of the 

two imperfections with a =0° and fixed simple supports is shown in Fig. 37. The deflection 

at the center of the plate, minus any initial deflection and normalized by the laminate thick- 

ness, H, is plotted as a function of c, the change in temperature at the midplane of the lami- 
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Fig. 33. Convergence study: thermal gradient imperfection, (+45/0,), plate with a=30° and fixed 
simple supports. 
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Fig. 34. Convergence study: thermal gradient imperfection, (+45/0,), plate with a= 30° and sliding 
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Fig. 35. Convergence study: Initial deformation, (+45/0,), plates with «=30° and fixed simple 
supports. 
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Fig. 36. Convergence study: initial deformation, (+45/0,), plates with «= 30° and sliding simple 
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nate, normalized by AT*. Note that for the case of initial out-of-plane deflection, c represents 

AT, the temperature change at every point in the plate, not just the midplane. Also, in this 

figure the ideal postbuckling response is indicated for comparison. Unlike the postbuckling 

response of a laminate under ideal conditions, the out-of-plane deflection of a laminate with 

an imperfection begins as soon as temperature is applied. The deflections increase slowly 

at first, then more quickly in the neighborhood of the critical buckling temperature, in the case 

of this plate, AT*. Furthermore, as the deflections increase, the response of a laminate in the 

presence of an imperfection asymptotically approaches the postbuckling response. In the 

case of a temperature gradient through the thickness of the plate, the imperfection response 

becomes virtually indistinguishable from the postbuckling response for c/AT*°>1.25. The 

imperfection response in the case of an initial deflection shows much greater deflections at 

the outset, but then falls just below the postbuckling response of the laminate. The case of 

the initial out-of-plane deflection must be viewed in context, however. As was noted, it is the 

normalized increment in displacement, i. e., (w — w')/H, that is being plotted. If w/H were 

plotted, the postbuckling relation and the relation for the temperature gradient would remain 

unchanged from the way they appear in the figure. The relation for the case of initial lack of 

flatness would be shifted upward by 0.1 and beyond a certain temperature the postbuckling 

response and the response due to an initial out-of-plane displacement would also be indis- 

tinguishable. Thus the deflection-temperature relation for the case of an initial deformation 

would approach the postbuckling response from above, just as the deflection-temperature 

relation does for the case of a temperature gradient. 

The results look very similar for all the other cases involving the quasi-isotropic laminate. 

Attention will thus focus on the response of the orthotropic laminate for the remainder of this 

chapter. 

The responses of the ( + 45/02), laminate in the presence of imperfections with « = 0° and 

fixed simple supports are shown in Fig. 38. As in the case of the quasi-isotropic laminate, the 

deflections of the orthotropic laminate with either imperfection begin as soon as temperature 

is increased and they approach the postbuckling response as the increase in temperature 
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Fig. 38. Imperfection analyses: (+45/0,), plate with a= 0° and fixed simple supports. 
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continues. As the temperature is increased, the response for the case of the thermal gradient 

in the z direction quickly coincides with the postbuckling response, while the laminate with 

an initial deviation from flatness deflects much more at the outset, but then falls just below the 

postbuckling response. Note also how flat the relationships are, compared to the same re- 

lationships for the ( + 45/0/90), plate, Fig. 37, when c/AT* exceeds four. 

In Fig. 39 the responses of the ( + 45/0.), in the presence of imperfections with « = 0° and 

sliding simple supports are given. As seen previously, the postbuckling response for this case 

begins primarily with the domination of the deflection associated with wy, but changes when 

c/AT* = 3. At temperatures greater than this, the deflection at the center of the plate actually 

begins to decrease due to the influence of the deflections associated with the wiz; and ws 

terms. As in the previous cases, the response of the laminate with a temperature gradient 

through the thickness of the plate approaches the postbuckling relation very closely. It is in- 

teresting to note that even when the plate has an initial deformation including only wi,, the 

influence of the wi; and the wz, terms in the solution still become important and cause the 

deflections at the center of the plate to decrease for c/AT* > 3. The imperfection response still 

follows the postbuckling response. The shift in the importance of the terms wi3 and Ws, influ- 

ences the overall deflection pattern of the plate, as was illustrated in Fig. 30. 

The responses for the (+ 45/02); laminate in the presence of imperfections with a = 30° 

are shown in Fig. 40 for the case of fixed simple supports, and in Fig. 41 for the case of 

sliding simple supports. To avoid clutter, other boundary or skewing conditions are not shown 

for comparison. However, these figures should be compared with Fig. 38 and Fig. 39. For 

both sets of boundary conditions, with a = 30° the imperfection responses approach the 

postbuckling response more swiftly than « =0°. The response for the case of a thermal gra- 

dient through the thickness of the plate lies even closer to the postbuckling response for a 

(+ 45/02), laminate with « = 30° than for a ( + 45/02), laminate with « = 0° under either set of 

boundary conditions. For both sets of boundary conditons, the deflections prior to the critical 

buckling temperature for a ( + 45/02), with « = 30° in the case of an initial deformation are also 

smaller than those for a (+ 45/0.); laminate with « =0°. Also to be noted is that whereas the 
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Fig. 39. Imperfection analyses: (+45/0,), plate with «= 0° and sliding simple supports. 
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Fig. 40. Imperfection analyses: (+45/0,), plate with a= 30° and fixed simple supports. 
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temperature-deflection relation for the case of fixed simple supports and a = 0° tends to flatten 

as c/AT* exceeds 4, rotating the laminate material axes by « = 30° eliminates this flattening. 

This effect is even more pronounced for the case of sliding simple supports. For sliding simple 

supports and «a =0°, the relationship indicates decreasing deflections with increasing tem- 

perature beyond c/AT* = 3. Rotating the laminate by a = 30° eliminated this tendency. 

In all of the cases examined above, the responses in the presence of imperfections ap- 

proach the postbuckling response for a given laminate. This indicates that the presence of 

these small imperfections do not greatly affect the response of heated laminates, so that the 

postbuckling response obtained for laminates under ideal conditions can be considered valid 

for laminates with minor imperfections. 

This chapter concludes what can be considered an extensive study of the influence of 

boundary conditions, material axis skewing, and lamination properties on the buckling, post- 

buckling, and imperfection response of composite plates that result from increases in tem- 

perature. A large amount of information has been presented. This information will be 

summarized shortly, and recommendations for future study made. However, before closing 

the study, an important issue must be addressed. That is the issue of experimental confir- 

mation of the findings. In all that has been presented, it has been assumed that, for example, 

fixed boundary conditions can be achieved. In reality, any fixturing that is to be used to sup- 

port the plates in experiments would not have infinite stiffness, and it may have its own ther- 

mal expansion, or contraction, characteristics. Hence, the next chapter is a brief look at the 

influence of the lack of ideal conditions on the predicted response. Though no experimental 

results are presented here, it is quite important to at least evaluate how important the lack 

of ideal conditions are in contributing to the response of the composite plate. This information 

can then be used to put the results of the previous chapters into context, and it can be used 

as the starting point when considering the design of experiments. Two important deviations 

from the ideal will be addressed here. Those issues are: The influence of boundary compli- 

ance, and; The influence of thermal deformations at the boundary due, presumably, to the 

thermal deformations of the fixture or frame supporting the composite plate. 
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7.0 Experimental Considerations 

To study the lack of ideal conditions, for simplicity only the ( + 45/0/90), and ( + 45/0,); 

laminates with «=0° will be considered. Also, it is assumed that the fixturing or support for 

the composite plate is made entirely of isotropic materials. In addition, only the buckling 

temperatures will be studied. The issue of interest will be to determine how the lack of ideal 

conditions contribute to deviations of the buckling temperature from those associated with 

ideal conditions. Recall that for these two laminates under the condition «=0°, the 

prebuckling solution was trivial. With experience, it is possible to anticipate that these cases 

would indeed lead to trivial prebuckling stress resultant calculations and it would be possible 

to correctly anticipate that the stress resultants are simply the negative of the thermal stress 

resultants NI, NJ, and NJ. In that context, then, the approach to determining the prebuckling 

stress resultants resembles a strength of materials approach. That is the approach that will 

be used here to evaluate the influence of the lack of ideal conditions on the buckling temper- 

ature. This is opposed to the variational approach, where, for example, contributions to the 

total potential energy due to compliance of the boundary would be included and a series sol- 

ution assumed. 
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7.1 Influence of Fixture Thermal Expansion 

If the frame or fixture supporting the plate is not ideal, the boundary conditions given in 

eqn. 4.14- 4.15 are no longer valid and new boundary conditions must be formulated. This is 

accomplished as follows: If the frame can expand, then when the temperature is increased, 

the supports for the edges of the plate, which are assumed to be part of the frame, will sepa- 

rate from one another by 

A, = aa,AT 

Ay = ba,AT, (7.1) 

where a, denotes the coefficient of thermal expansion of the frame, and a and b are the length 

and width of both the interior of the frame and of the plate, since it is assumed that the frame 

fits the plate snugly. A schematic of the frame deformation is given in Fig. 42. The conditions 

at the edges of the plate can then be given by 

at x =O,a 

(i) U= FS aAT 

(ii) v=OorN,, =0 7 

at y=0,b (7.2) 

{i) u=OorN,, =0 

(ii) v=F 2 a,AT, 

where the minus is associated with the edge at x or y = O, and the plus is associated with the 

opposite edge in each case. Whereas the prebuckling displacements throughout the plate for 

either the (+ 45/0/90), or the ( + 45/02). laminate with « = 0° were Zero in the case of an ideal 

frame, the displacements at the edges of the plate are now the same as those of the frame, 

given in eqn. 7.1 and eqn. 7.2. Thus, in the presence of frame thermal expansion, the 

prebuckling strains in the plate are given by 
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Schematic of frame deformation. Fig. 42. 
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gy =>3 = a,AT 

A y 7.3 
by =~ = a AT (7.3) 

Yxy =0 

Using these expressions for strain and the fact that for the (+ 45/0/90), and ( + 45/02)s lami- 

nates with « =0°, Aw = Az = N3, = 0, the prebuckling stress resultants can be written as 

TIT Nx = (Aggary + Aygay — Ny AT 
TTT 

Ny = (Arca + Anas - Ny )AT (7.4) 

N 0. xy 

Substituting the expressions in eqn. 7.4 into the first variation of the second variation of the 

total potential energy, eqn. 4.13, results in an equation for the thermal buckling of the 

(+ 45/0/90), and (+ 45/02), laminates with a =0° which includes the the effect of a thermally 

expanding frame. The thermal buckling solution then proceeds as before. Note, though they 

are not needed, it can be determined that the prebuckling displacements are linear functions 

of x and y. 

In Fig. 43 the buckling temperatures of square (+ 45/0/90), and (+ 45/02); laminates, 

normalized by AT*, the buckling temperature for either laminate with an ideal frame, are 

plotted versus a,. These results correspond to a6 in. by 6 in. plate. This figure indicates that 

the thermal buckling temperature is highly sensitive to a thermally expanding frame. For ar 

as low as 0.5 ppm/°F the buckling temperature for both laminates more than doubles. For ar 

greater than this, increasing a, affects the buckling temperature of the ( + 45/0/90), laminate 

much more than the buckling temperature of the ( + 45/02); laminate. Referring to eqn. 7.4, it 

can be seen that for a ‘quasi-isotropic laminate, since Ai, = Az and NI = NI, at some value of 

a, both N, and Ny, will simultaneously become equal to zero. This value of « occurs at roughly 

1.0 ppm/°F. When a, is greater than this value, with increasing temperature the frame expands 

more rapidly than the (+ 45/0/90), laminate, so that the laminate can only be buckled by 
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by lowering the temperature! Note that this would be the case for a steel or aluminum frame, 

as the coefficients of thermal expansion for both of these materials are much greater than 

‘ 1.0 ppm/°F. Fixture design must clearly take this important effect into account. 

7,2 Influence of Frame Compliance 

Assuming a, has a value such that the expansion of the plate could actually exert com- 

pression force resultants on the frame, if the frame has finite stiffness then an equivalent 

spring constant, K;,, can be determined for the frame such that 

A, 
DN, =— Kr 

A (7.5) 
y 

aNy =_— Kr ' 

where A, and A, are as shown in Fig. 42. Note that the minus sign is necessary because a 

+N, causes the frame to contract. In the above, the quantites DN, and aN, are forces, and 

hence kK; is a classic stiffness with units of force/length. Including the thermal expansion of 

the frame, when temperature is applied, the edges of the frame separate by 

  

  

2bN,, 
A, = aa,AT - K 

f DaNy (7.6) 
Ay = bayAT——™. 

The conditions at the edges of the plate are then be given by 
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at x =0O,a 

, fa 2bN, 
gun #( ST K } 

(ii) v=OorN,, =0 . 

at y =0,b 
(7.7) 

(i) u=QOorN,, =0 

2aN 
il b — y (ii) v= F (+ a,AT K; ) 

where, as before, the minus sign is associated with the edge at x or y = O and the plus sign 

  

  

with the opposite edges. As a result, the strains in the plate can be written as 

  

  

A 2bN o Sx _ x 

A 2aN o 7Y_ Y (7.8) 
yy = AT OK, 
° 

Yxy = 

Once again, using the fact that Aw = Az = NL = 0 for both ( + 45/0/90), and ( + 45/02); lam- 

inates with «a = 0°, and considering only square laminates, a = b, the prebuckling stress re- 

sultants can be expressed as 

  

2N, 2Ny TT 
Ny = Aa, a,AT — + Ado aAT - -_ N,AT Ky K 

2N 2N _— 7.9 
Ny = Are( at _ * ) + hao st ~_ | -_ NyAT ( ) 

xy — . 

  

Rearranging the first two expressions in eqn. 7.9 yields 

2A44 2As2 —T 
(1 + et + Ga Ny = {(Ar + Ayo)ay _ N,}AT 
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Using eqn. 7.10 the prebuckling stress resultants can be written 

  

  [terran torn) 
    

  

  

      

Ny = 9 AT 

2A44 2A29 2Ar2 
(1 + Nl + Ky - K 

— 2A —1, {2A (7.11) 
+ Agg)ar— m)( + ) — (Any + Araday - m( a ) 

ye 2A 2A 2A, \" hor 11 22 12 

(1+ Ky Jr Ky )-( Ky 
Nyy = 0. 

Substituting these expressions for the prebuckling stress resultants into the buckling 

equation, eqn. 4.13, results in an equation for thermal buckling which includes the effects of 

a frame with finite stiffness and a non-zero coefficient of thermal expansion. In Fig. 44 the 

buckling temperatures of square (+ 45/0/90), and (+ 45/0.); laminates, normalized by AT’, 

are plotted as a function of the equivalent spring constant of the frame, Ky. These results were 

obtained for 6 in. by 6 in. plates with a, assumed to be zero. As can be seen, the buckling 

temperature is sensitive to a lack of infinite stiffness in the frame. For frames with 

K,> 1 10’ Ib/in., there is very little change in the buckling temperature for either laminate. 

However, the buckling temperature increases rapidly for both laminates as K, decreases be- 

low this value. When designing fixtures, the value of K, must be determined based on how 

fixture components are fastened together, ij. e., bolt diameters, weld sizes, etc., as well as the 

fixture material. 

From the results presented, it appears that the thermal expansion of the frame could be 

the more serious of the issues. Increased stiffness can be achieved with increased thickness 

or redesign of supports. However, thermal expansion of a material is independent of its 

thickness. Thicker frames expand the same as thinner frames. It would seem that material 

for fixturing would focus only on materials with very low thermal expansion coefficients. To 
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do otherwise would have a profound influence on correlation between experimental findings 

and predictions. 
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8.0 Summary, Conclusions and Recommendations 

In this thesis the prebuckling, buckling, postbuckling, and imperfection response of sym- 

metrically laminated composite plates in the presence of increasing temperature are studied 

under a variety of physical conditions. This is accomplished using the Rayleigh-Ritz method 

in conjunction with variational methods. This analysis has been applied to a graphite- 

reinforced composite with (+ 45/0/90), and ( + 45/02)s lamination sequences. Numerical re- 

sults have been obtained for these laminates and also for the cases of the material axes of 

these laminates being rotated inplane by an angle a. 

The first case to be studied here is the simplest, a spatially uniform change in temper- 

ature. Sensitivity studies have been conducted for this case to determine the sensitivity of the 

buckling temperature to variations in material properties. The buckling temperature is found 

to be sensitive to variations in «;, a2, E;, and E2, and to be insensitive to variations in G,z and 

viz. TWO boundary conditions, fixed and sliding simple supports, have been considered. For 

the case of fixed simple supports, the prebuckling solution is the trivial solution. This is also 

true for the case of sliding simple supports if the laminate in question is such that Nj, = 0. 

For this situation, the buckling solutions for fixed and sliding simple supports are identical. 

When N3,+#0, for a laminate under sliding simple support conditions, the prebuckling stress 

resultants are found to vary throughout the laminate. However, even though the prebuckling 
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solution does vary throughout the laminate, it makes only a small difference in the buckling 

solution as compared to the buckling solution for the same laminate with fixed simple sup- 

ports, a condition that produces a prebuckling solution that is constant throughout the lami- 

nate. Hence the buckling solution for the case of sliding simple supports is relatively 

insensitive to the number of terms taken in the prebuckling solution. 

Square laminates under either boundary condition experience a decrease in buckling 

temperature when the material axes are skewed, «#0. Nevertheless, the buckling temper- 

atures of these laminates are quite high as compared to the buckling temperatures of steel 

or aluminum plates of the same dimensions. The buckling temperature of square laminates 

is strongly dependent on the term D = Dy, + 2(Dy2 + 2Des) + Daz, thus the (+ 45/0/90), and the 

(+ 45/02), square laminates have very similar buckling solutions because the term D is the 

same for both laminates at all values of «a For these laminates with rectangular planform, 

a/b=2, the buckling temperatures are lower than for square laminates and increase 

monotonically as the skew angle ranges from a = 30° to a = —30°. The buckled shapes in all 

cases consist primarily of just one half-wave in each direction, however, the buckled shape is 

slightly asymmetric with respect to the plates’ square or rectangular geometry. This 

asymmetry is due to the Dig and Dz, bending stiffness terms, and in some cases, to the thermal 

stress resultant NJ, as well. 

The buckling of laminates in the presence of a linearly varying temperature gradient, 

AT = c + dx, is also studied. For this case the prebuckling solution is never trivial, and is 

in fact quite complicated. The buckling solution, however, is relatively insensitive to the 

number of terms taken in the prebuckling solution. The solutions for laminates with fixed 

simple supports and with sliding simple supports are never the same. However, the buckling 

temperatures, c, of rectangular plates are lower than the buckling temperatures of square 

plates, and the buckling temperatures of square pates with « = 30° are lower than the buckling 

temperatures of square plates with a =0°. An interesting feature of this situation is that for 

rectangular plates or for plates with « = 30°, when d is fairly large and positive, meaning that 

the right end of the plate is much warmer than the left end, the left end must actually be cooled 
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in order for the plate to buckle, i. e., c<0. Furthermore, the asymmetry of the buckled shape, 

seen for a uniform change in temperature, is exaggerated by the presence of a thermal gra- 

dient. 

Thermal postbuckling is investigated for square plates under a uniform change in tem- 

perature. All of the laminates studied show considerable resistance to thermal postbuckling, 

deflecting by less than two plate thicknesses at changes in temperature as much as five times 

the buckling temperature. In all cases, laminates with fixed simple supports exhibit greater 

deflections than laminates with sliding simple supports. Laminates with skewed material 

axes, « = 30°, also deflect more than on-axis, « =0°, laminates. The postbuckling response 

can be complex. In most cases, the postbuckling response consists mainly of the deflections 

associated with the Rayleigh-Ritz coefficient wi, however, for the (+ 45/0.); laminate with 

a = 0° with temperatures greater than 1.5 times the buckling temperature, the deflections as- 

sociated with Wi, and, to a lesser extent, Ws, begin to influence the postbuckling response 

more and more with increasing temperature. For the (+ 45/02), laminate with a =0° and 

sliding simple supports, this influence becomes so great that the deflections at the center of 

the plate actually begin to decrease as the temperature increases beyond three times the 

buckling temperature. The influence of orthotropy on postbuckling response depends strongly 

on the skew angle, a. For a =0° there is a significant difference between the postbuckling 

response of the (+ 45/02); laminate and the (+ 45/0/90), laminate. For « = 30°, there is a 

minimal difference in the responses. 

The influence of imperfections is also studied for square laminates. Two specific forms 

of imperfection have been studied: a thermal gradient through the thickness of the laminate; 

and a lack of initial flatness. In all cases, the presence of a 5% temperature gradient 

through-the-thickness of the laminate results in a response which, with increasing temper- 

ature, swiftly approaches the postbuckling response. With a lack of initial flatness, the re- 

sponse increases much more at the outset, but also approaches the postbuckling response. 

It is interesting to note that even when the plate has as initial deformation of the form asso- 

ciated with wi, the influence of the w,,; and the w3, terms in the solution still causes the de- 
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flection at the center of the plate to decrease as the temperature increases beyond three 

times the buckling temperature, the imperfection response following the postbuckling re- 

sponse. 

Lastly, the influence of a lack of ideal fixturing conditions on the buckling temperatures 

of square ( + 45/0/90), and ( + 45/02); laminates with a =0° is considered. The two issues of 

interest are the fixturing compliance and thermal expansion which would occur in any real 

set-up. Both of these factors raise the buckling temperatures obtained for ideal conditions. 

Of the two, the presence of fixture thermal expansion has the greatest impact on buckling 

temperature. Indeed, for fixtures with coefficients of thermal expansion greater than 

1.0ppm/°F, the quasi-isotropic laminate cannot be buckled except by lowering the temper- 

ature, while so long as the equivalent spring constant of the fixture is greater than 1 x 10? Ib/in. 

there is very fittle change in the buckling temperature for either laminate. In planning an ex- 

perimental fixture, sufficient stiffness could be achieved in the design of the supports, by pro- 

viding enough thickness, for example. However, the thermal expansion of the fixture can only 

be controlled through material choice. To avoid a profound impact on correlation between 

analytical and experimental results, candidate materials would have to have extremely low 

coefficients of thermal expansion. This severely limits the choices available. A fixture could 

be constructed of composite materials designed to have near zero thermal expansion in the 

appropriate direction, but the difficulty of designing such a fixture, and the possibly prohibitive 

cost of manufacturing it, make this option unattractive. The remaining materials to choose 

from with low enough thermal expansion coefficients generally fall into the categories of 

glasses or glass ceramics. Due to the brittleness usually associated with such materials, the 

next most important consideration in material choice would then have to be strength and 

machinability. Even so, the laminates to be tested would have to be designed to have fairly 

low buckling temperatures under ideal conditions so that the presence of compliance and 

thermal expansion in the experimental fixture would not necessitate the use of unreasonable 

high temperatures to obtain buckling. 
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should be conducted to confirm analytical results. No such data appears to be available at 

this time. However, the design and implementation of thermal buckling experiments is non- 

trivial. Also of importance would be the inclusion of time- and temperature-dependent mate- 

rial properties in the formulations. Understanding these effects will be particularly important 

if polymer-based composites are to be used in elevated temperature environments for sus- 

tained periods of time. Other recommendations for future research include extending the 

analysis to unsymmetric laminates, studying the effects of other boundary conditions and the 

effects of including transverse shear deformations in the analysis. Finally, the philosophy of 

the computational scheme, namely, the Rayleigh-Ritz approach, could be re-evaluated. 

Though the buckling calculations do not seem to be very sensitive to the prebuckling problem, 

it is important to understand this aspect of the problem. A finite-element approach might lead 

to a more efficient examination of the influence of temperature gradients and a variety of 

boundary conditions on the prebuckling response. Details of the buckling response might be 

more efficiently studied with a finite-element formulation of that aspect of the problem. The 

postbuckling response, and the response in the presence of imperfections, are nonlinear 

problems and finite-element schemes can be just as computationally intense as the 

Rayleigh-Ritz approach. Again, the effects of a variety of boundary conditions and temper- 

ature gradients might be more efficiently studied using a finite-element approach. The effect 

of imperfect boundaries could perhaps be incorporated into response prediction with this al- 

ternate approach. 
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