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An approximate method,

calculating the deflections

ject to thermal buckling is

the deflections of a simply

SUMMARY

based on large-deflection plate theory, for

of flat or initially imperfect plates sub-

outlined. The method is used to determine

supported panel subJected to a tentlike

temperature distribution over the plate surface. Experimental results

for a particular panel are in good agreement with the theoretical

results for the range of temperatures and deflections considered in

the test.

In supersonic aircraft,

INTRODUCTION,

deflections of plate elements out of the

plane of the plate may be c&sed by aerodynamic heating. Deflections

;ay occur without the%al stresses-appear;ng if the pl.&e is unre-

strained and if the temperature distribution is linear throughout the

volume of the plate. If the plate is restrained or if the Temperature

distribution is nonlinear, however, thermal stresses are induced.

Deflections of the plate occur at the beginning of heating if the tem-

perature varies throughout the plate thickness but do not appear until

a critical temperature is reached if the temperature is constant

throughout the plate thickness. This last type of distortion is an

example of buckling of a flat plate by middle-surface forces that vary

throughout the plate and is the subject of the analysis of the present

paper.

Since buckling of aerodynamic surfaces may have an adverse effect

on aircraft performance, the temperature distributions for which buck-

ling will occur should be known. In many cases it may not be feasible

to design a structure which will not buckle and for these cases the

magnitude of the distortions should be known in order that their effect

on aircraft performance may be estimated.

For initially flat plates, solution of the Von K&&n large-

deflection equations for plate buckling, modified to take into account
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the effect of thermal stresses, is required for the determination of

the buckle magnitude. A procedure for the approxtiate solution of these

equations is outlined in the present paper end is illustrated by the

determination of the buckle magnitude of a simply supported plate that

is subjected to a tentlike temperature distribution. This temperature

distribution was chosen because it was easily obtained experimentally.

An approximate method for readily extending the results for initially

flat plates to plates with initial imperfections is also presented.

The effects of plasticity and of variations in material properties due

to temperature are excluded from the analysis.

The over-all validity of the assumptions made in the present analy-

sis is tested by experimentally determining the variation with tempera-

ture of the deflections of an initially imperfect plate subjected to a

tentlike temperature distribution and comparing these expertiental

results with the theory.
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SYMBOLS

half-plate length in x-direction

coefficients in series expansion for plate deflection

half-plate width in y-direction

coefficients in stress function F1

E@
plate flexural stiffness,

12(1- pz)

E*t*3

transformed plate flexural stiffness,

12(1 - pa)

Young~s modulus of plate material

transformed Youngts modulus of plate material, J -%7

stress function

F =FO+Fl

stress function

.—

defining

defining

.

.

stress distribution in plate,

/

thermal stresses in unbuckled plate

#
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stress function defining stresses due to stretching of

plate middle surface during bending

plate thickness

N

Wic
transformed plate thickness, t 1 + —

Wc

integers

temperature distribution in plate

temperature differential, difference between center and

edge temperatures in a tentlike temperature distribu-

tion (see fig. 2)

critical value of To

uniform edge temperature (see fig. 2)

potential energy of an initially flat buckled plate

plate deflection

initial deflection

initial deflection at plate center

center deflection

plate deflection shape given by small-deflection theory

coordinate axes (see fig. 1)

temperature-differential parameter

1

critical-temperature-differentialparameter

plate aspect ratio

coefficient of thermal expansion
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fJ/* transformed coefficient of thermal expansion, a

Wic
2

1 .—
2

‘c

shear strain in plane of plate

normal strains in plane of plate in x- and y-directions.

respectively

Poisson?s ratio

normal stresses

respectively,

shear stress in

,

of plate material

in plane of plate in x- and y-directions,

positive for tension

plane of plate

thermal stresses in unbuckled plate

# ~~
differential operator, —

~x2 3Y2

~4 ah ah
differential operator, —

3X4 + 2 ~x239 + ~

ANALYSIS

Statement of Problem

●

“-

-—

.

.

The studies of thermal buckling presented herein are made for the

panel shown in figure 1. The panel is heated along the longitudinal

center line by a uniform line source of heat and cooled along the edges
—

by two uniform and equal line sinks of heat. This arrangement supplies
—

temperatures in the plate which are constant through the thickness and

distributed in a tentlike manner over the faces as shown in figure 2.

All edges of the panel are restrained in a direction normal to the plane

of the plate by simple rigid supports but axe free to slide in the plane
—

of the plate.
—

The investigation is made in steps corresponding to the stages

thrcn@ which an initially flat plate passes as temperature is gradually .

Incrsased. First the thermal stresses at temperatures below the critical

are determined; next the critical temperature is found; and then the
*
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. behavior of the plate at temperatures above the critical is obtained.

The effects of initial imperfections throughout the entire temperature

range are considered in a concluding step.
.

The procedure is presented in the succeeding s=ctions together

with pertinent results of the mathematical study, the details of which

are given in appendixes. Specific numerical results are given for a

panel with aapect ratio a/b equal to 1.57 which is the aspect ratio

of the panel described in the section entitled ~iExperimentalResults.”

Thermal Stresses in the Unbuckled Plate

Details of the calculation and experimental verification of the

thermal stresses in the unbuckled panel are given in reference 1. The

calculations of reference 1 employ the first-order approximation that

on any cross section normal to the x-axis the stress ax is distributed

as shown in figure 3. The thermal-stress function FO can then be

expressed as the product of a known function of y and an arbitrary

function of x. The principle of minimum complementary energy is then

used to determine an ordinary linear fourth-order differential equation

for the function of x. The resulting approximate expression for F.

is

( )(1b21%Tol-3~ +2@ B1sinh Rl~sin R2FO== ~+
b2 bs a

B2 cosh RI

)

:COSR2:+1 (bSySO) (1)

where % B2, RI> and % are defined ti appendix A.

The stress distribution in the plate is given by
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(
9 Y3)(=& FaTol-3-+2— Dlsinh Rl:sin R2:+

b2 b3

D2 cosh R1 : COS R2 :
)

(2b)

a2F0
-—T~yo .
ax by

= +“OF-3W3‘i+ “ $C”s‘2=+‘4 Cosh“ :Si”‘23
(b $ y$ O) (2c)

.

where Dl, D2, D3, and D4 are defined in appendix A. The stresses in

the region -b ~y~O are identical with those given by equations (2).
●

The stresses thus are a function of the temperature differential Tn

for the tentlike

edge temperature

temperature distribution and are independent of the

T1.

Critical Temperature Differential

As the temperature differential To of the heated plate increases,

a value Tocr is reached at which the plate buckles under the action of

the induced thermal stresses. If only small deflections of the buckled

plate are considered, the assumptions can be made that the middle sur-

face of the plate does not stretch and hence that the stress distribu-

tion in the plate does not change after the onset of buckling. The ~

stress distribution then is given by equations (1) and (2). The deflec-

tion of the buckled plate is governed by the differential equation

(ref. 2)

-.

.-

.
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.

(3)

.

and the critical temperature differential may be found by methods

appropriate for the investigation of the stability of flat plates with

internally varying stresses.

One such method is the Rayleigh-Ritz energy method which employs

the principle of minimum potential energy (see ref. 2). For the present

probzem a buckle pattern symmetrical about

chosen

which,

energy

v=

as

W=x% %n Cos
m=l,3,5 n=l,3,5

the center of the plate is

mm my
— Cos —
2a 2b

(4)

together with equations (2), is substituted into the potential-

expression (ref. 2) to yield

(5)

Equation (5) is then minimized with respect to the unknown coeffi-

cients ~. This procedure leads to a set of simultaneous equations

which constitute a characteristic-value problem, the solutions of which

give sets of relative values of the coefficients ~ and associated

values of the critical temperature. The simultaneous equations are

1

%@% ‘ = Z ‘pqmn%n = 0
%2ECLT0 t m=l,3,5 n=l}3J5

(P = 1,3, 5,...;

q =1, 3, 5, ● ● . ) (6)
%

Equations for the coefficients Kpq ad Kpqmn are given in 8.ppendixA.

.
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One method of solving equations (6) is a matrix iteration process

which is described in reference 3. The lowest critical temperature

coefficient thus obtained for a panel with aspect ratio of 1.57 is

b2EuJTocrt

T?D
= 5.39 (7)

.

.

Since E appears in both the nunerator and denominator (in D) of the

critical-temperature-differentialparameter the critical temperature

differential is independent of Youngfs modulus E.

The approximate buckle pattern associated with this critical tem-

perature is given by the equation

Wc

(
37W ~

‘Y + 0.0365 COS ~ COS ~w 2??sCcjs— Y’fx

= —Cos 2a1.1767 2b

3mI Cos q
0.1360 cos —

)

3~ C08 ~+ 0.0042 COS — (8)
2a 2b 2a . 2b

in which Wc is the deflection at the center of the plate

A pictorial representation of equation (8) for one quarter

is shown in figure 4.

Post-Buckling Behavior

and
!= 1“57’

of the plate
A—

.

In order that the post-buckling behavior of the heated plate may

be.obtained, stretching of the plate middle smface due to bending must

be taken into account. Because of this stretching, the stresses in the

plate change as the plate deflects and are determined by the equations

(9)

and

(lOa)
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●
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‘r
%

~y=-—

ax ay

in conjunction with the condition that the

The stress function is also related to the

of equilibrium

(lOb)

(1OC)

boundaries are stress free.

deflections by the equation

2
a2F %

)

— —

ax ay ax ay

so that equations (9) and (11) must be solved simultaneously.

Equations (9) and (11) are the Von l&’rm~nequations (ref. 2) for

large deflections of a plate, modified for the effects of thermal

expansion (see appendix B). Exact solutions of these equations are in

general difficult to obtainj and approximate methods of solution must

be used. A procedure using the Galerkin method (ref. k) is used in

the present paper.

The stress function F is obtained as the sum of two parts

F =FO+F1 (12)
●

The stress function F. is the thermal-stress function for the unbuckled

plate which satisfies the equation

V4F0.=-E@% (13)

and the boundary conditions on stresses. This solution is given by

equation (l). The stress function F1 is the solution (satisfying

the boundary conditions on stresses) of the equation

,%l=E[&)2-~~ (14)

m

in which w is the buckle pattern given by equation (4). An approximate

.
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solution for F1 is obtained by the Galerkin method as set forth in

reference 4. The stress function F1 is chosen aa the sum of a series

of functions for which the boundary stresses vanish, suggested in

reference 5 as

Fl = (x2 . a2)2(y2 “.b2)2(cl + C2X=’+ C3y2 + .

The coefficients cl) C2, C3, . . . are

cients ~ by the equations

L

found in terms

.

. .) (15)

of the coeffi-

(i=l,2,3, . . .) (16)

The resulting stress function F is substituted into equation (11).

The Galerkin method may again be used to determine the values of the

coefficients amn of the deflection function w. A set of simultaneous

equations is obtained

a

11
b

~os m=

(

COa my DV4W - b% a2w a% a2w

S7 ax2 ax2 a~ +

—-— —

-a -b
2a 2b t

●

✎

.

a a2F a2w

)
——dxdy=O
ax ay ax ay

(m=l,3,5, ...;
n= 1, 3, 5. . . .) (17)

which can be solved for values of the coefficients ~n.

Equations (17) are nonlinear and their solution beqomes difficult

if many terms are retained in the deflection function. Experience has

shown that very good results may be obtained if the shape of the

deflected surface of the plate for large deflections is taken as the

one existing at the critical temperature - that is, only the coeffi-

cient all is left arbitrary and the ratios ~/all are assumed to be

those given by the small-deflection solution previously described.

The Galerkin equation from which the coefficient all can be determined

e

.
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where

and the values of ~/all obtained from the small-deflection solution

are also substituted into the stress function F. This procedure yields

a relationship between the coefficient all and the temperature dif-

ferential To. For a plate of aspect ratio a/b equal to 1.57, the

relationship found in this manner is.shown in appendix C to be

b2EaTot

n?D
= 5.39 + 1.12(1

where Wc is the plate-center deflection

It can be seen that the plate deflections

modulus E, since E appears in both the

(20)

and is equal to 1.1767a11.

are independent of Youngts

numerator and denominator
.

of the temperature-differential parameter.

Effect of Initial Imperfections

Since actual plates are not usually flat, initial imperfections

should be taken into account in the previously developed analysis.

The analysis of the thermal bucklin ~f initially tiperfect plates

involves the solution of the Von d rman large-deflection equations

for initially imperfect plates modified for the effects of nonuniform

temperature distributions (appendix B):
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a% a2w + aa a2w ~ aa a2w
!@(w. -wi). —— ——- —— (22) ‘

by2 bx2 3X2 as ax by ax ay

The solution of these equations could be effected in much the same

manner as was done for the equations for flat plates. The outlined

process, however, is tedious, and an approximate method for assessing

the effect of initial imperfections would be more advantageous. Such

a method is developed in appendix D.

In order to analyze an initially imperfect plate, a flat plate

having the same aspect ratio is first analyzed, the quantities E, a,

and t being left arbitrary. Then everywhere in the resulting expres-

()
2

wic
sions, E is replaced by E 1 - — a by a

9 , and t by
~c2 wic~

1 -—

t
WC2

r

. This relatively simple procedure yields the stresses and

Wic
l+—

Wc

deflections of an initially imperfect plate.

For the problem of thermal buckling of a flat, simply supported

plate of.aspect ratio 1.57, subjected to a tentlike temperature dis-

tribution, the relationship between the temperature differential To

and the center deflection of the plate Wc has been found to be

#EaTOt W2
— = 5.39 + 1.12(1 - P2)A

rt2D
t2

(23)

.

When a and t (note that t also appears in D) are replaced by

a
(no substitution need be made for E

-;and+

Wic
1

Wc

the relationship is

written as

b2EctTOt

#D

independent of

() Wic
=5.391-—

Wc

E) the resulting equation

Wc2 - Wic2

+ 1.12(1 - @)
t2

since

may be

(24)

e
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● which is the relationship between the temperature differential and the

plate-center deflection for an initially imperfect plate.

.
This method of analysis may be expected to be fairly accurate for

plates for which the initial deflected shape is stiilar to the shape

of the first buckling mode of the corresponding flat plate. If the

first buckling mode does not predominate in the initial deflected shape,

no recourse appears possible except to solve equations (21) and (22)

for the large deflections of an initially deflected plate.

EXPERIMENTAL RESULTS

In order to check the applicability of the theoretical analysis to

actual plates, the deflections of a simply supported rectangular plate

subjected to a tentlike temperature distribution were obtained experi-

mentally and were compared with the theoretical results. The panel

was tested under conditions which gave virtually complete boundary

freedom in the plane of the plate and simple support.

A plate (see fig. 7) having an over-all length of 36 inches, an

over-all width of 24 inches, and a thiclmess of 0.25 inch was used;

this plate is stiilar to the panel of reference 1. The length and

width between simple supports were 35.25 inches and 22.50 inches,

respectively, which correspond to the plate aspect ratio of 1.57 used

in the numerical calculations previously reported. The coefficient of
. thermal expansion a and Poissonts ratio v for the 75s.T6 alwninun-

alloy plate material were 0.127 x 10-4 ~ and 0.33, respectively,
.

for the range of temperatures of the test. The plate was initially

imperfect and had a center deflection of 0.045 inch.

The arrangement and operation of the heat source and sinks are

the same as for the panel of reference 1. Deflections of the plate

along the longitudinal and transverse center lines of the sheet were

measured by dial gages. These deflections are the difference between

the total deflections and the initial deflections of the plate.

Figure 6 shows the experimental and theoretical plate-center

deflections Wc - wic plotted as a function of the temperature dif-

ferential To. The

v) a) tj b, and

theoretical curve is given by equation (24) with

Wic replaced by their respective values. With

a= o.127x 10-4+
● -
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t = 0.25 in.

b= 11.25 in.

Wic = 0.045 in.

●

✍✍

and

P = 0.33

equation (24) becomes

TO=19401~-~)+573.6~C2 -(0.045)~ (25)

where To is in degrees Fahrenheit and Wc is in inches. Figure 6

shows that good agreement exists between theory and experiment for the

range of temperatures and deflections considered in the test.

Also shown in figure 6 is the theoretical variation of center

deflection with temperature for an initially flat plate (wit = O).

The additional deflection caused by initial imperfections of the plate

can be seen to be appreciable.

The deflections measured along the longitudinal and transverse

center lines of the plate for various values of the temperature dif- ,

ferential To are shown in figure 7. The theoretical deflections

calculated for the same values of To are also shown in the figure.

Although the measured and calculated initial deflection shapes (To = O°F) “

are not in very good agreement, the measured and calculated deflection

shapes tend to come into closer agreement as the temperature differential

becomes larger and thus tend to fulfill the assumption of the theoretical

analysis that the plate deflections have the same shape as the shape of

the first mode of buckling of the corresponding flat @ate.

CONCLUDING REMARKS

Good agreement exists between experimentally determined center

deflections of an initially imperfect panel subjected to a tentlike

temperature distribution and the center deflections calculated from

an approximate solution of the large-deflection equations for an

initially imperfect plate. Other cases of thermal bending or buckling
*.

.
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b
of plates can very likely be calculated with good accuracy by the

methods developed in the present paper if the temperature distribution

and initial imperfections of the plate are known.
.

Langley Aeronautical Laboratory

National Advisory Committee for Aeronautics

Langley Field, Vs., May 12, 1952

.
..-

.
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APPENDIX A
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EQUATIONS FOR CRITICAL TEMPERATURE AND BUCKLE PATTERN

The equations for the critical temperature and buckle pattern for

symmetrical buckling of the panel subjected to the particular tempera-

ture distribution considered herein are as follows (eqs. (6)):

T?D

(P =1,3,5,”””;
q=l,3,5)** . ) (Al)

The coefficients I$q and ~Wn are defined as follows:

KPqmn
[( )= P ~nq BIDmp + %#%p + Fmp j+ %q@3Gmp + D@mp +

r(q nCnq %ImP + D2Jmp) ( g+ ~qn D3~m + D4Hpm

(A2)

(A3)
J--

The constants in equation (A3) that apply also in the formulas for

direct thermal stress (eqs. (1) and (2)) are given by

kl sinh R1 cos R2 - k2 cosh R1 sin R2
B1 = (Ak)

kl sin ~ cos R2 + ~ sinh RI cosh R2

kl cosh R1 sin R2 - ~ sinh R1 cos R2
B2 =- (Abb)

.

.

—
kl sin R2 cos R2 + ~ sinh R1 cosh R1
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.

.

Dl
(

= B1 k12 .
%2) - 2%%%

!2 = %@2 - %?) + %%%

D3 = Bl~ + ~kl “

D~ = Blkl - B2~

where

.

.

The other coefficients are

h.= ~b~ - $)’0” ~ Cos ~ ‘:

17

(A4c)

(Ah’)

(A4e)

(Akf)

1
Anq = -

II

n- q
if — is odd

(:.)
2 2

1

(A5a)

II is even or zero

‘nq=-r4”Yif ‘;q
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%lq =
a/b n- ~

3
if — iS odd

()

n- qfl
2

2

%q =

1

a/b
if

()

n+q 3

2fi

II
n- q

2
is even or zero

)

(A5b)

a2
Cnq = — 1

II
if y iS odd

(Y

b2 n-q

—7(

2

\2

1 a2 a2
cnq’— —-—

h.8b2 b2

c
a2 1

I

n- q
nq =-— if — is even

(3 )
b2n+ ~k 2

n- q

2 I
is zero

1
if

()

n+q 4

2fi

> (A5c)

.

,

.
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‘+ +1

= (-1)
[
(Cl + C2 + C3 + C4)sinh Rl cos R2 - (C5 + C6 +

(A5d)C7 + Ce)cosh R1 Sti ~]

%p = J x
cosh R1

pm ~~
~ cos R2 ~ sin ~ sin —

o 2a 2a z

m-D

= (-1)~~~ + C2 + C3 + C4)cosh RI Sin R2 + (C5 + C6 +

1C7 + Ce)Sinh RI cos R2

J
a

F
mp = sin

o

Fmp =0 if

‘mp =$ if ‘=
I

=0
2 J

= (-l)%’E1- c2+c3- c4)-h R1 COS R2 - (C7 -C6+

CT - 1Ce)COSh RI SillR2

(A5e)

(A5f)

(A5g)



= (.1)%El - c2+c3- C4)cosh Rl

CT - 1Ca)sinh RI CO’ R2

J
a

Imp =
mnx

sinh RI ~ sin R2 : Cos — Cos

o
2a

= (-l)+pl+c~ - c~ - C~)sinh RI

C7 - 1Ca)cosh RI sin R2

Jmp =
f

cosh RI ~ COS R2 f
mmx

‘0s — co’

o 2a

‘+ +1

= (-1)
[
(C1+C2-C3 -Ck)’osh

C.7 - 1C@inh R1 ‘0S R2

NACA TN 2771

sin R2 + (C5 - C6 +

~ ~g

2a a

COS R2 - (C5 + C6 -

(A5h)

(A5i)

RI sin R2 + (C5 + C6 -

(A5j)

where

R2 + ‘n+- I I
-1

( )R12+ R2+rn~fi

.

.
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C2

m+pfi
%-~

=—
:

(

m+p
R12+R2-—

2

C3=$

C4+

C7

R2+m&YC

( )

2
-Pfi

R12+ R2+~
2

RI

(

m+p
2

R12+R2-+—
)2fi

RI

( )

2
m- Pfi

R12+ R2+~

RI

(

2

)

R12+ R2-m~fi
2
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If only the terms all) a13~ a31~ and a33 are retained in the

deflection function (eq. (4)), equations (Al) may be written in matrix

form, for a plate having an ~pect ratio of -1.57;as

-15.73 22.52 14.88 -5.92

0.504 1.426 0.871 0.377

1.35 3.54 7.42 7.69

-0.0735 0.208 1.043 0.437

mall

Ux)

b2EaTocrt

fi2D

The solution for the largest value of

b2Eh!TOcrt
smallest value of.

#D
? is obtained from matrix

of equation (A6). The critical-temperature parameter

b2EaTo t

+=5”39

The relative values of the four coefficients retained
function are found to be

[1{1
%1

1

a13 0.0365

=

a31 o.136@

’33
0.0042

. .

all

%3

’31

a33

(A6)

and hence for the

iteration (ref. 3)

so obtained is

(A7)

in the deflection

(A8)

.

“

in which case the deflection function may be written as

(m
3Try

all C08 ~ COS
3JrX .08 g+

w= ~ + 0,0365 cos ~ cos ~ + 0.2360 cos ~
2b

)zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0042 COS ~ COS $ (A9) ,

.
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. The deflection at the center of the plate is 1.1767a11. Let this

quantity be denoted by Wc; then

.

Wc
w. (Cos = Cos — 3KY+v + 0.0365 cos ~ cos —

1.1767 2a 2b 2a 2b

311X=08 ~+
0.1360 cos —

2a 211

which is the fozm of the deflection

3= ~08 ~0.0042 Cos —
2a 2b )

(A1O)

function presentedas equation (8).

The choice of the particular coefficients allj a13T a31j ad a33

depends on the fact that these are the most important coefficients in
the series for the deflection w (eq. (4)). The following table shows
the convergence of the critical-temperature parsmeter as more

taken in the deflection function:

I

I Terms retained

all

all) a31

I all> a31J a13

I all> a31? a133 a33

b2EuZOcrt

#D

6.35

5.65

5.40

5.39

terms are

The retention of terms other than the four chosen has a negligible

effect on the critical temperature and on the buckle pattern.
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with

(see

APPENDIX B

//

MODIFICATION OF VON KARMA.NLARGE-DEFLECTION EQUATIONS

FOR EFFECTS OF THERMAL EXPANSION

The condition of compatibility of strains for a deflected plate

initial imperfections is represented by the following equation

refs. 2 and 6):

%x+a%x a27XY a% 2

()

a% a%

()

a%i 2 a%i a%i
—- —= —- —— -— + —— (Bl)

aY2 aX2 ax ay ax & ax2 ay2 ax ay ax2 ay2

When

caused by

may arise

heat is applied to a plate, strains 6X, cy, and 7= are

thermal expansion of the material as well as by stresses that

from various sources. The strains are given by

6X = *(UX- I.llsy) + aT

Cy = *((7Y- Pax) + CLT

2(1 + P)

Yxy =
E

~xy
1

With the introduction of a stress function F defined by

a2F

“X=2

1

(B2)

(B3)

.

.

.
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u the strains are given by

%=i(’(?’(?-,$)+d’

2(1 + V) a2F
7xy=- ~ —

aX by J

25

(B4)

Substitution of equtions (@t) into equation (Bl) gives the compatibility

condition in the form

[)*W 2 ()a2w a2w ~wi

1
2 + wwi aawi

v% = -E&T+E— -——- — —— (B5)
ax ay # a$ ax ay a~ as

This is the first of the Von fi’ma% equations, modified for effects of

thermal expansion. The stresses derived from the stress function F

. satisfy equilibrium in the plane of the plate because F, as defined by

equations (B3), identically satisfies the equilibrium equations

(B6)

The second Von I&m& equation, the equation of equilibrium of forces

normal to the plate middle sufacey remains unc~ged as

.

.

(
a2F #w + a2F %w a %F a<

)
d(w-w~)= —— ——- ——

as ax2 a~ as ax ay ax ay
(B7)



APPENDIX c

APPROXIWUX SOLU1’Im OF THE VON W&& LAIWE-D~ION EQUTIONS

D=temination of the Stress Distribution in the Plate

The first Von K&& equation for flat pl.atearelates the stress distrLbutIon in the plate

to the plate deflection w as follows:

(cl)

The streaa function F can be separated h-to two parts, the Prm stress function Fo, Which

satisfies the equation

and is given by equation (1) for the present problem, and a stress ~Ction Flj Which satisfies

the equation

+,=.[+2-? 33] (C3)

and the given condition of stress-free edges. For the buckle pattern given by equation (k),
equation (C3) becomes

(C4)

. . * . .
I



.

Equat tOXI

taken aB

Each function

(C4) may be solved

f+ is a function

. ,

approximately by the Galerkln method. A solution for F1 1s
g

boundary conditi&s. The m’bitruy

1=1

X and y that

coeffi.cienta ci

ob

dy=j J f~~(x,y) dxtw

-a -b

3
yields ,dweaaes which 6atisfi the Riven

“

are then obtained frcm the equatiom

(s =1,2,3, . . .) (c6)

(ck).where G(x,y) denotes the tenna on the right side of equation

For the present problem the boundary conditions to be satisfied are those of atreBs-free

edges of the-plate. ‘Furthermore, the s~rees distribution is symmetrical about the x- and y-axes.

A series for F~ that satisfies these conditions ia mggeateil ta reference 5 aa

F1 = (X2 -

22
a ) (# -b2)2(cl+c2x2+c& + . . .) (C7)

In the present solution only the fimt

The substitution of equation (C7)

the determination of the coefficients

three terms of the series are considered. ‘

into equatlona (c6) yielti the following equations for

c,
1

C2, and c3:

1863

1—alyq+...
.4



1$%9’’’’’3+(:+3-%)’3’’”+--- (c8b)

(
36 ~ + 1701

)

3&25—-
5#

— - — anal’ +

# 2116

)

60750
— alsa’l +

d

1+...

, ● ✃
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.
The assumption is now made that the buckled shape of the plate does

not change as the deflections increase, in which case relative values

of the coefficients ~n for large deflections are the same as those
4

at the critical temperature. For the plate of aspect ratio a/b equal

to 1.57, these relative values are given by equation (A8). Only the

coefficients allY a139 a31Y and a33 are considered. The solutions

of equations (c8) are then

.

E@
c1 = -0.01337 —

b8

Ea112
ct2 = o.oo685—

blo

Ea112
C3 = o.oo389—

blo
I

(C9)

The stress function for stresses due to stretching of the middle

surface of a plate with aspect ratio 1=57 iS therefore given approxi-

mately by

.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(Clo)

where Wc

The stress

is the plate-center deflection and is equal to 1.~767a11.

function F is given by the sum of equations (1) and (C1O).

Determination of Relationship Between Temperature

and Center Deflection

With the stress distribution in the plate kno~,as a function of.
the plate-center deflection Wc, the second Von Karman large-deflection

.
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equation for flat plates can be solved to determine the relationship

between temperature and deflection for temperatures above the critical.

Equation (B7) can be satisfied only on an average over the plate when

the buckle pattern for temperatures above critical is assumed to have

the same shape as at the critical temperature. Use of the Galerkin

method (ref. 4) for this averaging process gives the following equation

governing the relation between temperature and center deflection:

where

Ws =

and the values of

of appendix A.

For the plate

(c12)

%n/aU are given by

of aspect ratio a/b

the small-deflection solution

equal to 1.57,

~COS ~+ 0.0365 cos ~COS ~
3YW YIy

3V + 0.1360 Cos ~w,
= Cos 2a Cos m +

3~ COE~
0.0042 Cos —

2a 2b
(C!13)

and the stress function F is given by the sum of equations (1) and

(clO). Equation (Cll) then yields the following relationship between

the temperature To and the center deflection w=:

b2EuTot W2

#D
= 5.39 + 1.12(1 - @)~

t2
(C14)

.

.
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The deflection at any other point of the plate with stress-free edges

and of aspect ratio a/b equal to 1.57 is given by

r

%Tot
— -5.39

w Y?D
-= 0.723
t

Ws

1.12(1 - &)

(C15)

where WS is given by equation (C13).
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APPENDIX D

CORRECTION FOR INITIAL IMPERFECTIONS

The large-deflection equations for bending of an initially imper-

fect plate subjected to thermal stresses are derived in appendix B as

(Dlb)

The assumption is made that the bending deflections of the plate are

merely a magnification of the initial deflections wi; that is, the

deflections w have the same shape as the initial deflections w,.

This assumption may be written as

Wi vi=
_—

—-WCw

The substitution of equation (D2) into equations

L

(D2)

(Dl) yields

(D3a)

.

--

() ~2F %W + a2F #w z ~2F‘~+w =___ ——- ——:1-—
a2w

(D3b}

‘c 3Y2 ~x2 bx2 b$ ax ay ax ay

.

.
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If the following substitutions are made:

i

()

wic
2

# E* =E l-—
WC2

a~* =

1 “%2.—
WC2

t*= t

r

Wic
l+—

Wc

.

equations (D3) become

(D4)

(D5a)

(D5b)

Equations (D5) are identical with the large-deflection equations for.
buckling of a flat plate with Young:s modulus E*, coefficient of

thermal expansion a*, and thickness t*. If the initial deflections wi

are assumed to satisfy the same homogeneous boundary conditions as

would be satisfied by the deflections of an initially flat plate, the

solution of equations (D5) is identical with the solution for the

deflections of a flat plate having the same aspect ratio but with E

replaced by E*, a by a*, and t by t*.

As an example of this method of correction, consider the relation-

ship between the temperature

of aspect ratio 1.57

b2EaTOt

and the center def~ction

WC2
5.39 + 1.12(1 - @)-

t2

for the plate

(D6)

.

.
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To find the corresponding relationship for a plate with aspect ratio 1.57 -

but having initial deflections of the same shape as the initial buckling

deflections of the flat plate, a is replaced by a* or
a

b
Wicz

1 .—
WC2

/r
and t (note that t also appears in D) by t* or t 1 + ‘$.

(E need not be replaced by E* since the relationship is independent

of E.) Equation (D6) then becomes

b%cdlot

()

Wi ~c2 - wic2

= 5.391- & + 1.12(1 - P2) t2
Ira

(D7)

In order that the validity of the foregoing method of analyzing

plates with initial deflections be checked, the method was used to
calculate curves of center deflection plotted against average edge
compressive stress for the problem considered in reference 6, the
bending under edge compressive stress of simply supported square
plates with initial imperfections, These curves were in excellent
agreement with the numerical results of reference 6 whichzare obtained
from an approximate but accurate solution of the Von K&man large-

deflection equations for initially tiperfect plates. The agreement

was found to exist for all cases in which the initial imperfection
was a half-sine-wave deflection in both directions.

.

.

.

.
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Uniform heat
source

x

Figure 1.- Thermal-buckling pr,oblemtreated in present paper.

1.

.

Figure 2.- Tentlike temperature distribution.
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Figure 3.- Asswned variation of primary normal stress ax.

I
WC

Figure 4.- Small-deflection buckle pattern in

aspect ratio 1.57.

. .

one quadrant of a plate of
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