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Abstract: Steady shear 3-D simulations of electro- and magnetorheology in a uniaxial

field are presented. These large scale simulations are three dimensional, and include the

effect of Brownian motion. In the absence of thermal fluctuations, the expected shear

thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form

in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of

Brownian motion increases, the fluid stress decreases, especially at lower Mason

numbers, and the striped phase eventually disappears, even when the fluid stress is still

high. To account for the uniaxial steady shear data we propose a microscopic chain

model of the role played by thermal fluctuations on the rheology of ER and MR fluids

that delineates the regimes where an applied field can impact the fluid viscosity, and

gives an analytical prediction for the thermal effect.
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I. INTRODUCTION

The rheology of electrorheological (ER) and magnetorheological (MR) suspensions is

characterized by a shear thinning viscosity, but the mechanism by which this occurs is

still at issue, especially when thermal fluctuations play a significant role. To investigate

this, we have conducted 3-D Brownian dynamics simulations of the field: induced

rheology of suspensions subjected to uniaxial fields. When thermal fluctuations are small

the formation of a striped phase is observed, in which sheets form orthogonal to the axis

of fluid vorticity of the shearing fluid. But as thermal fluctuations increase in a uniaxial

field, the striped phase disappears well before the fluid stress does, and the stress is

reduced most greatly at the lowest shear rate. A thermal chain model is developed to

describe these data, which is an extension of the athermal chain model [1].

There have been a number of interesting simulation studies of field-induced rheology

in a uniaxial field. Whittle [2] developed a 3-D Brownian dynamics simulation method

with N=216 particles in steady shear and found the formation of a striped phase, which

was thought possibly an artifact of the cyclic boundary conditions in these small scale

simulations. Melrose [3] conducted free draining (no hydrodynamic interactions) 3-D

Brownian dynamics simulations in steady shear with 108 particles at 31 VO1.YO,and

determined a phase diagram in A, Pe space, where 2 is the dimensionless ratio of the

dipolar interaction energy to the thermal energy, and Pe is the Peclet number, the ratio of

the hydrodynamic forces to the thermal forces. Melrose found that when the Mason

number - the ratio of the hydrodynamic to dipolar forces - exceeded the critical Mason

number, above which particles cannot chain, a sheared string phase formed. At lower Mn

and for large A, a layered flowing crystalline phase formed, which is also known as a

striped phase. At low values of A, and low Pe, only a disordered liquid phase was found.

Stress computations showed a shear thinning viscosity. This work was later extended [4]

to larger system sizes (N=256), with similar conclusions, and finally to particle volume

fractions of 10% and 50%, still larger systems (N=500), and hard sphere interactions [5].
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Melrose found that the smaller-than-expected shear thinning exponents sometimes

observed in experiments at low A[6] were due to thermal fluctuations. At the volume

fraction of 50% a layered phase was not found. The work of Melrose was continued by

Guo et al. [7] who obtained consistent results.

Bonnecaze and Brady [8] conducted 2-D athermal “Stokesian” dynamics simulations,

with a highly accurate treatment of the hydrodynamic and electrostatic interactions.

System sizes were consequently small -25 particles - and of course, a striped phase could

not form, but they did find the expected shear thinning viscosity. Thermal fluctuations

were later added, [9] and shear thinning exponents smaller than 1.0 were observed, in

agreement with the results of Melrose. A phenomenological description of the thermal

effect was argued, in a physical picture where shear flow is caused by particles hopping

out of potential wells.

Work on oscillatory shear appears to be restricted to Parthasarathy and Klingenberg,

who, in addition to work in steady shear [10], conducted 2-D athermal dynamics

simulations in oscillatory shear with N=250 particles [11]. Simulations with and without

hydrodynamics interactions demonstrated that hydrodynamic interactions do not play a

significant role. At large strain amplitudes they found nonlinearities that agree well with

the results of light scattering measurements [12] and with the Kinetic Chain Model [1].

II. SIMULATION METHOD

To study field-induced rheology we have extended the 3-D Brownian dynamics

simulation method reported for structure formation in quiescent induced dipolar

suspensions [13] to include steady shear flow. Particles are treated as essentially hard

spheres with induced dipolar interactions, Stokes friction against the solvent, and

Brownian motion. Hydrodynamic interactions are not included, so these simulations

correspond to the so-called “free-draining” limit. The results presented here are obtained

from a simulation method developed to predict the evolution of large, N= 10,000 particle
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systems over short times. This method has time complexity O@), but gives coarsening

results that are indistinguishable from a separate, more direct 0(N2) simulation developed

to predict the evolution of smaller systems over longer times. Cyclic boundary

conditions are used in the x and y directions, and semi-hard boundaries (discussed below)

were used normal to the z-axis, which is the direction of the applied field. Because image

charges were not included, these simulations correspond more closely to

magnetorheological fluids, but we doubt that image charges play a significant role in real

systems - even though the image charges do eliminate the capping charge - because the

role of defects appears to be much larger. The size of the simulations led to structures

whose scale of coarseness was much smaller than the simulation volume, minimizing the

effect of the cyclic boundary conditions.

A. Brownian dynamics

To describe our simulations we start with the equation of motion for the ith particle,

nzai=Fk(vi) +~Fh(~j) +~F~(~j) +F~oun~(zi)+F~ (1)
j#i j#i

where F~ is the hydrodynamic Stokes force, Fh is the quasi-hard sphere force, F~ is the

dipolar force, F~Ou~~is the interaction force of the particles with the bounding surfaces

normal to the applied field, which is in the z direction, and FB is the Brownian force,

discussed below, and qj is the vector between the centers of spheres i andj.

The Stokes force on a sphere of radius a is F,,(vi)= –g(vi – Vf ), where Vj is the fluid

veloci~, vi is the particle velocity, and the ftiction factor is g = 6mqOa, assuming stick

boundary conditions, with qo the solvent viscosity. In steady shear the fluid velocity is

Vf =2)%. The particles are modeled as quasi-hard spheres, with a repulsive force
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essentially dependent on the gap between particles, Fh,(qj) = A /(~j – cd)”, where d is the

particle diameter and a = 6 and c = 0.97 are constants. The parameter A is then chosen

in order to give zero interaction force when two particles aligned along the z axis, and

interacting with the dipolar force, are separated by ~j = d. This choice of parameters

gives a good compromise between run time and the precision by which particle

boundaries are defined. For example, if one were to choose c = 0.99, and ZI accordingly,

the particle boundaries would be slightly more precise, but the gradient of the force

would be much larger at contact, which would require a smaller discrete time step. This

parameter A depends on the magnitude of the dipolar interaction, so we will not specifj it

until we convert to a dimensionless equation.

In the point dipole approximation, [14] the potential of interaction between two

polarizable spheres i andj whose line of centers makes an angle $ti to the applied field,

and whose centers are separated by a distance ~j.is

()
3

V(rti) = –a ~ (3cos2 (9V– 1).
qj

(2)

For dielectric particles in an electric

moment is p = 4m3&olcc@lo ,

field a = ~p2/4?ZZZ3&OKCwhere the particle dipole

and the dielectric contrast factor is

~ = (K, - K.)/(K, + 2KC) in terms of the dielectric constants of the particle and

continuous (liquid) phases, and E. = 8.854x10-12 F/m is the vacuum permittivity [14].

Combining gives the standard result a = ~nzOeCa3j?2E~. For a suspension of spherical

magnetic particles in a magnetic field, a = ~poK#Z2/47i%3. For magnetically soft

particles the magnetic moment is m = 47ra3f?PH0, in terms of the magnetic contrast factor

is PY = (KP,P– Kfl,c)/(KP,P + 2KV,C), where KWCis the relative permeability (to the vacuum)
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of the continuous (liquid) phase, Kw pis the relative permeability of the particles, and ~ =

4nxl 0-7 H/m is the vacuum permeability [14]. Combining these gives an expression

analogous to the dielectric case, a = ~z/.10Kv,Ca3~~2H02. (Note in the magnetic case that

although the expression for a is perfectly analogous to the electric case, the expression

for the magnetic dipole is not, due to the fact that the magnetization has the units of the

magnetic field H, whereas the polarization has the units of the displacement field D.)

Differentiating the potential gives the interaction force

()[F~(rti)= -~ $4 ‘(3cos2@ti- 1)$+ sin2f3ti~j]. (3)

where ~Cis the force at contact between two spheres aligned with the field. Note that

although the radial component of the dipolar force is attractive only when tk54.7°, the

tangential component of the force will always lead to chaining in a system with finite

noise. Here ~Cis the interaction force between two particles, where ~C= ~m&OlcCa2~2E02

for dielectric particles and ~ = ~?iy.JoKp,ca2~f12H02for magnetic particles.

The interaction force with the boundaries is intentionally weak to reduce the effect of

finite simulation volume. This force increases linearly as the particle enters the electrode,

e.g. at the lower boundary it is given by the relation F~Ou~~= ct(l – Zi/ a) for Zi S a, where

a is a stiffness parameter that is adjusted to be just large enough to prevent particles

from passing through the boundary.

Finally, the fluctuating Brownian force is given by FJt) = fBRT(t), where z is the

correlation time of this force, as described in Appendix A. This force gives a particle

diffision coefficient D, = (~~/~)2 z, and the relationship of the Brownian term to the

dimensionless parameter A = ~ at /kBT will be described below.
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B. Dimensionless units and temperature scale

Dropping the inertial term leads to a set of coupled Langevin

shear can be expressed in terms of the dimensionless variables,

equations that for steady

(4)

The Mason number is defined as Mn = q07/2SOKC~213~ for a suspension of dielectric

particles and as Mn = ?70~/2#OKU,c~~2~~ for a suspension of magnetic particles. The

spatial variables are normalized such that the particle diameter is unity, r’= r/ d, and the

time variable t ’= t 1 T1 is normalized by the characteristic time -rI = 32A4n / ~, which is

independent of particle size. This choice of normalized variables gives

f~(r;)= –q..4[(3cos26ti– 1)$ + sin2(3ti~j ]. The dimensionless hard sphere force for the

uniaxial case is given by fk (L;)= 3.0x 10-9 /(q~ – 0.97)6, and the boundary force at the

lower boundary is given by f~OU~~= o?(1 - z:) for z:< 1/2 where dimensionless stiffness

parameters of cx’ - 10.0 prevent particles from escaping the simulation volume, yet are

soft enough to reduce finite size effects.

The dimensionless time we use is At’= At / ~1. For the electric field case

~1 = .eO~c~2Z302/ 16q0 which for a viscosity of 1.0 cp, an applied field of 1.0 kV/mm, and

Kc~2 = 2, z, = 10-3s, so one dimensionless time unit is about a millisecond. For the

magnetic field case the dimensionless time is ZI = 16q0 / jJoKp,c~g2H02. For a suspending

liquid with a viscosity of 1 cp, an applied field of H. = 3.58 A/m (45 Oe), PC = 1 and

p,= 1 one dimensionless time unit is the same, about a millisecond. Throughout this

paper we use the convention that one dimensionless time unit is 1.0 ms.
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In Eq. 4 the Brownian motion enters as J’RZ,Z,, where the dimensionless constant

J’= 2~~ /~C. In terms of the dimensionless parameter A = $a~ / kBT the dimensionless

thermal force is thus J’= 4a-1~- where the characteristic diffusion time is

z~ = a2~6D,. Using the easily derived relation z~/z = ~ J’-* (ZI/z)2 then gives

A = ~ J’-2(r1 /z). To remove the effect of the correlation time on temperature we define

the parameter J = J’/ ~ to obtain I = ~ J-2. The simulations we report are over the

range J=O. 10-0.45, which thus corresponds to the range ~=66.7 -3.3.

In our simulation method we drop the effect of particle inertia, which raises the issue

of determining over what regime of particle sizes we can expect this approximation to be

correct. When a suspended particle in a fluid is acted upon by an constant external force,

the time needed for the particle to accelerate to a fixed terminal velocity is to= m/6nzzqo,

where m is the particle mass; in terms of the particle density p this time is to = 2pa2/9qo.

For an ER fluid consisting of 1 ym diameter particles of density 2.5 g/cm3, in a

suspending fluid with a viscosity of 1.Oxl 0-2 poise, this acceleration time is to = 0.14 p.s.

Now consider how far a particle might move, relative to its own diameter, in this time.

The terminal velocity of the particle is obtained by balancing the electrostatic force acting

on it by the hydrodynamic drag. The electrostatic force between two particles is at a

maximum when the two particles are in contact along the z axis, and in this case

L = :W$%a2P2E: - The distance Az a particle under this force can travel in the time tois

Az/2a = ~C/12mz2qO)t0. In an applied field of 1.0 kV/mm, with Kc~2 =2, we obtain Az/2a

= 1.5x10-4. Thus in this circumstance the particle has reached terminal velocity after

moving only 0.0 15°/0 of its diameter, and inertia can be safely ignored. Because Az/2a cc

p(aEdqO)2 inertial effects can become significant for very large, dense particles, exposed

to large fields in a low viscosity fluid, such as can occur in MR fluids.

8



.<.

,!

A simple argument

velocity of the fluid

C. Fluid stress

for the fluid stress is as follows [15]. Let v: be the unperturbed

at the location of the k-th particle. The work done per unit time by

the fluid on this particle is w~ = –Fk . v;. The increase in energy loss per unit time is, per

unit volume, w = (3@/4m23)(–Fk” v! ). In simple shear the unperturbed fluid velocity

field is given by V“ = @ so w = (3@j/4ru3)(-Fx,~ z~). TO relate this energy dissipation

per unit volume to the suspension viscosity consider two parallel plates of area A

separated by a distance h are moving relative to each other at a shear velocity Iv 1=@.

The frictional force on the moving plate is F = qyA and the total work per unit time on

the volume hA is F Iv I= ~y2hA. Thus the excess work per unit volume due to the

particles is w = (q – qo)~2 = A@, which combined with the above expression for the

work gives the expression for the excess stress AC = (3@/4mz3)(–l?x,kzk ). In terms of the

normalized coordinates in Eq. 4, the stress is

Ao = (3~C/4nn2)(-~X,,z:), (5)

which is independent of particle size. The dimensionless}eld-specljic viscosity [1] is

which is the relative viscosity increase due to the applied field per unit volume fraction of

particles, with ~0 s ~o(l + 2.5@) the Einstein viscosity of a particle suspension.
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Simulations in steady shear were done by first allowing the suspension to structure for 25

ms in the field without shear. The shear was then turned on at the maximum Mason

number and held for 25 ms. The Mason number was then progressively reduced over the

next 950 ms to explore a range of Mn, and the stress was computed every 0.1 ms.

Results of steady shear simulations in a uniaxial field are shown in Fig. 1 for a 30

VOl.O/Osolution and show that the stress is essentially independent of Mason number over

the range investigated in the absence of Brownian motion, indicating the expected shear

thinning viscosity TIF- Mn-l. In the dimensionless units of this plot, the stress is about

0.25, which is somewhat lower than one would expect from the chain model, where this

amplitude would be about 0.5-1.0, depending on whether polydispersity is taken into

account. (In these simulations the stress per unit particle concentration is essentially

constant until 95=40VOl.O/O,whereupon it decreases with concentration.) As Brownian

motion is introduced the stress decreases at low Mason number, with the apparently

logarithmic dependence Acr = AOO[l + co in cllkfn] in the region where a dependence on

Mn is observed. This will cause the apparent shear thinning exponent b of the field-

specific viscosity q~ - Mn-b to be significantly less than 1, perhaps accounting for the

trends seen in experimental data, where values as small as bs2/3 are found [6]. In fact, it

was suggested in these studies that the small exponents were due to the importance of A,

and the simulations of Melrose [5], Guo [7] and Baxter-Drayton and Brady [9] have

concluded this as well. In the following we present a detailed model of thermal

fluctuations, based on chain dynamics.

A prominent feature of these simulations is the emergence of a striped phase [2-5,7]

at large A and at concentrations up to 40 VOl.O/O,Fig. 2. These sheet-like structures are in

the plane of the field and flow direction, i.e. orthogonal to the axis of fluid vorticity, and

have also been observed experimentally [16]. At small A this phase is not observed, even
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when there is substantial fluid stress. The thermal effects in these simulations are

undoubtedly very complex, but the striped phase seems to consist of a sheets of dense

chains, so in the discussion below we will simply ignore the overwhelming structural

complexities and attempt to gain some insight into why the thermal effects are greatest at

the lowest Mason numbers by considering a simplified chain model, justified in part by

the fact that the striped phase only exists at high 1, where thermal effects are not strong.

DISCUSSION

To obtain an understanding of the effect of thermal fluctuations, we consider the

elementary model of a chain of particles in shear flow, a description that is quite

reasonable given that the striped phase does not form when thermal effects are strong.

Rather than attempt to develop an accurate description of thermal fluctuations, with the

associated algebraic complexities, we focus on the simple case of induced point dipoles

and Stokes friction against the solvent. Local field effects, multipolar interactions, and

hydrodynamic interactions, though useful in developing a quantitative model, are not

included, since we do not believe they will change the conceptual description we present.

A. Athermal chain model

A few basic aspects of a!hermal chains [1] must be reviewed. We are specifically

interested in computing the tension in the chain as well as the “bond” angle relative to the

applied field along the contour length of a chain. This problem should be solved self-

consistently, but an iterative method, which starts with a straight chain, is quite accurate.

Consider an initially linear chain of 2N+1 spheres, numbered from -N to N, in steady

state (zero velocity) inclined at an angle 60 to the applied field. The shear flow is in the x

direction, and the fluid velocity at position z is given by Vf = Z%. The hydrodynamic “
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drag on each particle is f,=gvf where assuming stick boundary conditions on the

particles, the friction factoris g=6zqOa, with qOthesolvent viscosity andathe particle

radius. The hydrodynamically induced tension in the chain between particles i+ 1 and i is

t,= ~f,,k -F, = 6nqOa2~sin@i COSOO(N2- i’) (7)
k=i+l

The Stokes friction will also introduce a force tangential to the chain, of magnitude

s,= ~f,k ~i = 67c970a27cos6,cos60 (N2 -i’) (8)
~zj+l ‘

which also has a strong maximum near the chain center. To determine the chain angle in

the absence of thermal fluctuations these forces are balanced against the dipolar forces.

The angle at the chain center can be computed by balancing the tangential

hydrodynamic forces with the tangential dipolar force in Eq. 3.

tan (30= 8ikfnN2 (9)

The variation of the chain angle along its contour length is also obtained by a force

balance, with the first-order result

sin@j =sin OO(l– i2/N2) (lo)

12

Finally, to insure chain stability the radial component of the dipolar force must exceed

the hydrodynamically induced tension, which at the chain center gives the maximum

chain angle
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A chain at this tilt angle we call a critical chain, since it is at the brink of failure, and its

length is given by 2N = (~Mn)-1’2.

At fixed Mason number, and ignoring thermal fluctuations, the chain length will

increase until the maximum tilt angle is attained, at which point fiuther growth will cause

the chain to break at the center, where the tensile forces are a maximum. The presence of

chains increases the stress in the fluid by an amount that is approximately the torque

density in the fluid, as can be shown from Eq. 5, if one uses tan O = 16MnZV2/ 3, which

insures that the field-induced torque balances the hydrodynamic torque (Appendix B)

Aa=(3@~/2nzz2)tan6cos26 (12)

In an athermal system one can expect that the system will evolve to a steady state where

chains aggregate to their maximum stable length, attain the critical angle of Eq- 11, then

fi-agment by breaking in the middle, to form chains of half maximum length that tilt at an

angle that is roughly 1/4 of the maximum, then reaggregate, etc.

B. Fluctuation-induced fragmentation

The above description ignores the effect of thermal fluctuations, with the result that the

chains are assumed to have an infinite lifetime if they are beneath their critical angle. In

reality, chains will fragment, due to the combined effects of shear and thermal

fluctuations. At low particle concentrations, where the collision processes that allow

chains to form have long collision times, one would expect that thermal fluctuations

would start to prevent the formation of critical chains when the lifetime of a chain
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becomes significantly shorter than the time it takes to create a critical chain athermally.

If the suspension is reasonably concentrated, these collision times become very short, and

the rate limiting step for the generation of a critical chain, and thus stress, is the time it

takes a chain to reach its maximum angle of inclination relative to the applied field,

which is roughly the reciprocal shear rate ~-’. For such concentrated suspensions we

thus invoke the stipulation that a chain cannot contribute filly to the fluid stress unless its

thermal lifetime ~ is greater than the reciprocal shear rate of the solution:

@21. (13)

This condition is reasonable because of the strong, quadratic dependence of the chain

angle on the chain length, Eq. 9: when two half chains aggregate, hey are at a very small

angle relative to their maximum angle, and it will take a time proportional to ~-] for this

rotation to occur. Still, we will ultimately find it necessary to modifi this relation.

Thermal fluctuations can cause a chain to break anywhere along its length. If a chain

fragments between nodes i and i+l it will break into two pieces, one of size N-i and one

of size roughly N+ i. The rate at which the remaining larger chain loses the smaller

fragment of size N-i we call 17i. The mass-weighted overall fragmentation rate is then

(14)

The fragmentation rates are then just given by the inverse thermal lifetimes, 17i= Z{T1,

where we expect a standard activation process to determine

ri = ZO,,exp(Alj / kBT).

14
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The computation of the activation energy A~ will be pursued below. The prefactor zO,i

can be estimated as the time it takes the two chain fragments to diffise away from each

other by a distance of roughly the particle radius a, TO~= a2/6D,,i, where the diffision

coefficient D~,i= D~_i + D~+i is the sum of the diffusion coefficients of the fragments.

Summing the Stokes friction along the chain, without hydrodynamic interactions, gives

D~_i + D~+i = (kBT/q)[(zV – i)-l + (N + i)-] ] = 2DfZV/(N2 – iz), where D, is the diffusion

coefficient of a particle. Again calling the time it takes a particle to diffuse its own radius

~. = (a2/6Df) = (~Oa3/kBT) we obtain the chain lifetime

(16)

In terms of the Peclet, number Pe = 3zr/0a3y / kBT = 6M4n

fiD=;pe (17)

To make fiu-ther progress in this model of parallel decay channels, we must estimate the

activation energies along the chain.

C. Activation energies

Rather than laboring to determine the potential energy surface of a chain in shear, we

shall consider two elementary rupture mechanisms - tensile and shear - and simply take

the lowest activation energy. Implicit in the following is a subtle point: because the

prefactors in Eq. 15 are just the chain rotational diffision times, which are also the

15
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consider, the chain has had time to come to mechanical equilibrium.

Radial fluctuation -- In a tensile break the energy required is that energy needed to

separate the particles sufficiently such that the radial component of their dipolar

interaction force equals the tension on the chain [1]. The chain will then rupture because

the negative curvature of the dipolar interaction insures that the interaction force

monotonically decreases with separation, allowing the hydrodynamic tension to pull the

chain apart. The chain tension at particle i, Eq. 7, is exactly balanced by the radial

dipolar force, Eq. 3, at a particle separation we call r*, and it is readily shown, using Eqs.

9&10, that

d

-r

sin2 tli

‘4 l–~sin20i
(18)

$*

This result gives r*= d when tan 19i= ~, so that when the center of the chain is at its

critical angle it will rupture at contact, just as it should. And as the chain angle decreases

to zero, rupture will occur only at infinite separation, since in this case the hydrodynamic

tension is zero. The reduced activation energy for this rupture mode is then

A~/k,T = [V(q*) - V(d)]/kBT = ~l(3cos2 6i - 1){1- [sin’ Oi/(l - ~sin2 6i)~’4} (19)

and the maximum value is A

Tangential fluctuation -- A tangential fluctuation will cause chain fragmentation if

the fluctuation causes the radial component of the dipolar force to be less than the

hydrodynamic tension. Balancing the chain tension, Eq. 7, with the radial component of

the dipolar force, Eq. 3, gives an expression for the rupture angle f3i*

16
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(3cos26, *-l)/sin@i * = 2sin6,,i (20)

where e~,i is the unperturbed chain angle at the i-th particle, given horn Eqs. 9&210 by the

relation sin @,,i= 8Mrz(N2 – i’ ) cos 00. If the chain is near its critical angle then

COS26,* = 315, whereas if the chain angle is near zero then COS20,*=113. The reduced

activation energy for this fluctuation is

A~/kBT = [V(d,f3i*) - V(d,Oi)]/kBT = ;%(COS’ de,, – COS2 6, *) (21)

and is actually comparable to, but somewhat smaller than, the reduced radial fluctuation

activation energy, Eq. 19, again having a maximum value of A.

To proceed, we note, Fig. 3, that a direct comparison shows that these complex

expressions for the fi-agmentation activation energies are very closely approximated by

the simple expression

A~/kBT = A(l - tanO~,i/tanflC) = A[l - (tan @~/tan6c)(l - i2/N2)] (22)

where 8, is the equilibrium chain angle at the chain center, in the presence of thermal

fluctuations and shear, and is the quantity that we now wish to obtain.

D. Chain angle and size

The chain angle and size can now be obtained. Substituting Eq. 22 into Eq. 7 gives

r = ~exp[A(l - tan @c/tan OC)]

17
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where we have passed to the continuum limit to obtain the integral

‘1
Q=4J,1+a—exp(–c2AtanO~/tan 13c)do.

o

(24)

Using the condition in Eq. 13, we obtain, with Eq. 17

tan@~/tanOC = 1+ Z’ ln(Pe/3Q) (25a)

fve = N+n (3Jtanec (25b)

An exact analytical solution to Eqs. 248z24 is not apparent, but asymptotic and iterative

solutions to this problem are possible. It is helpfi-d that !2 appears in the logarithm.

Small 1-- For small A, Q = 2.75 – 0.75~tan @,/tan f3C. To zero-th order

tan dJtan 6= =1+ A-’ln(c&e) (26)

where the parameter a = 1/8 in our calculation, but really should be treated as a free

parameter, since we have used several estimates in obtaining this, including Eq. 13. Note

that this approximation is only valid when A + ln(tie) <e 1. This severe constraint

limits the practical utility of this result to very small 1, where it is doubtfid that an ER or

MR effect occurs.

Large 2--- For large Awe make the approximation that the chain angle will be close

to the critical angle for reasonable Mason numbers, giving

(27)

18
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tanO,/tan@C = 1+ 2-’ ln(~~em) = 1+ A-’ln(Mn~%). (28)

This solution is surprisingly accurate, as we shall demonstrate, but one should note that

for the purpose of comparison to experimental data, an adjustable parameter should be

put into the log. Note that the simple dependence on the Peclet number in Eq. 26 is

significantly altered.

Iterative solution -- It is possible to solve Eqs. 24-25 numerically, but this would

require solving the integral in Eq. 24 a tremendous number of times. A better approach is

to use the approximation, which is exact for p = Atan @~/tanOc>>1,

‘1
!2=4J 1+0—exp(–c2p)do = 4~exp(–02p)dcr = 4f~=. (29)

o 0

This numerical approximation is really better than it looks, because the factor dropped

from the integral decreases roughly linearly from 1.0 to 0.5 on the interval [0,1], and

becomes completely unimportant when p>> 1. Solving Eqs. 25a&29 iteratively shows

that Eq. 28 is a good approximation.

Limits -- We first note that the ER/MR effect, within the context of the chain model,

,~ = 0.1. Then note that ouronly occurs for Mason numbers smaller than iWn* = 1

two approximate

that the ER/MR

solutions, Eqs. 26&28, are identical when A = 1.77. Eq. 29 indicates

( )
effects become negligible when 1+ a-l in Mn * ~~ = O, that is

1 = 1.9. Eq. 26 at best has a very restricted domain of utility, and we will now focus on

Eq. 28.

One can expect to observe a field-induced rheology that is not reduced by thermal

fluctuations when

19
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A full ER/MR effect is possible

w’ SA4ncikf.”— (30)

when these limits are equal, A = 6.7. Eq. 30 seems

counter-intuitive, because it shows that the regime where temperature plays no role is

quite modest, even for reasoriable values of A. The regime where an ER/MR effect can

be observed, but is affected by thermal fluctuations, is

(31)

This range of Mn can be quite large for large A, making the slope of the thermal effect

difficult to measure. For large A the slope of the thermal effect will be so small as to be

unobservable. Let us suppose an experimental criterion of at least a 10°/0 change in stress

per decade change in A&z. Roughly speaking, Eq. 31 shows the range of the ER/MR

effect to be over A12.3 decades of Mn. Thus our criterion is 2.3/A 20.1, or As 23.

E. Self-consistent model

The simple description we have presented is not self-consistent, because Eq. 13 stipulates

that the thermal lifetime be independent of the equilibrium chain angle. The self-

consistent condition is

20
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tan6~/tan$C + 1-1 ln(tanf3,/tan 0=)=1+ %-’ln(~ Pe/Qtan 8C) (33)

and Q is still given by Eq. 29. An immediate consequence of this is that when

Atan$, c< tan 13C,the relationship tan 13ccc Pe x exp(l) obtains, using Eq. 26. (Thus at

very low Ah the viscosity is proportional to q~ cc lexp(L).) This linear in M%

relationship is followed by a logarithmic dependence of the chain angle on Mn, as before.

The effect of this self-consistency on the tan 9= curves is quite significant, as shown in

Fig. 4. The largest changes occur at small 1, which is where experiments will most

readily detect thermal effects. To some extent, this condition of self-consistency is

problematic; when the equilibrium chain angle becomes very small, the lifetime in Eq. 32

will be much shorter than the chain collision times, so that chains will not form in the

first place. From primitive considerations of shear-driven aggregation we deduce that the

chain collision time is of order @ = ~-], suggesting that using the self-consistency

condition at low chain angles might not be appropriate.

F. Comparison to simulations

The Thermal Chain Model does a good job of predicting the trends seen in Fig. 1,

including the logarithmic dependence on Mn. A parameter-free collapse of all the

simulation data on axes suggested by Eq. 28 is also reasonably successful, as shown in

Fig. 5. To scrutinize the agreement in fi.u-ther detail would require the compilation of

more simulation data, to obtain better statistics. Still, it must be emphasized that a

complete description of thermal effects should address the issue of the chain growth

kinetics.
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In steady shear a striped phase readily forms for large L, and when Mn is large. For small

A, the striped phase does not form, even at the highest Mn. For A---15a striped phase only

forms at the highest Mn. The effect of thermal fluctuations on the uniaxial field-induced

rheology is essentially logarithmic in Mn, and can be accounted for by the Thermal Chain

Model.

APPENDIX A: Correlated thermal fluctuations

There are a number of problems in implementing Brownian motion into a simulation

where one is integrating a first order differential equation, so a description of how we

chose to do this is useful. This is not the only possible approach, but it is a method that

allows one to mimic the effect of particle inertia without resorting to a second order

differential equation.

The equation of motion of a Brownian particle is [17]

mv = –{v + F~(t), (Al)

where v is the particle velocity, m is the particle mass, and ~ = 6WOa is the friction

coefficient of a particle of radius a against a liquid of viscosity f10. FB(t) is a stochastic

force that is normally considered to have a time correlation function that is a delta

function. The time correlation function of the diffusing particle is [17]

(v(0). v(t)) = (3&?’/m)exp(-t/z)

where the relaxation time is ~= m/Cj. Using the Kubo relation [17]

22
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q = ;J(v(o).V(t))d

o

(A.3)

then gives the Stokes-Einstein relation for the translational diffusion coefficient

D, =kBTl~. Thus it is the persistence of motion of a particle acted upon by a

uncorrelated stochastic force that is responsible for a finite diffusion coefficient. In some

sense the situation is subtle; the diffision coefficient of a particle is independent of the

particle mass, yet the relaxation time is proportional to the mass, and the amplitude of the

velocity autocorrelation function is inversely proportional to the mass.

The relaxation time for a 1 ~m diameter silica sphere in water is 5.5x10-7 s, but we

would expect an applied field of 1.0 kV/mm to structiire silica spheres in such a solution

on millisecond time scales. In our simulations we set the discrete time step to a

maximum of 2.OX10-5 s, so the natural time scale for Brownian motion is much faster

than the time scales we wish to investigate. A completely physical simulation of field-

induced rheology with Brownian motion is not feasible and a practical method is needed.

We start with the first order differential equation <v= F~(t), obtained by dropping the

inertial term. If F~(t) is considered to be a stochastic force with a delta function time

correlation function, then the diffision coefficient of a particle will now depend on the

discrete time step used to solve the equation. For example, consider the simple one

dimensional case where FB(t) =~~ si, and St is a simple uncorrelated random variable that

is either +1 during the i-th time step. Then during the time At the particle will move a

distance Ax= (~~/~)At. Over a total time t the number of steps will be N = t/ At and

from the theory of random walks the mean square displacement will be

<X2 >= NAx2 = (~~/<)2At” t. Thus the diffusion coefficient D, = ~(fB/~)2 At has an

unphysical dependence on the discrete time step. A simple way to handle this is to scale

the amplitude of the Brownian force by fBC=At-1’2. However, because the time step is

23
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allowed to vary in our simulation method, this can lead to divergent force amplitudes that

can potentially create stability problems when two “hard” spheres are nearly in contact.

To avoid stability problems we have taken a different approach. Let us write the

Brownian force as F~(t) = fBRr(f) where Rz(t) is a time-correlated random variable

whose autocorrelation function has a decay time z Using the Kubo relation we then have

D, = (fB/~)2 ~< R.,X(0)~,X (t) > dt where we have used the isotropy of space to obtain
o’

e R7 (0). R7 (t) >= 3< %,x (0)~,x (t) >. If our time correlated variable is normalized such

Jthat e Rz,X(0)~,X(O) >= 1, then the relaxation time is z = < ~,, (0) R~,X(t)tit, and

o

D, = (fB/~)2 z. The amplitude of the Brownian force is now ~~ = kBT~ I z, and so can be

controlled by a judicious selection of c

To construct the correlated random variable we start with the primitive uncorrelated

random variable si, with <sjsj> = 6U. Define the function l_i =(1 – E)ri.l + .EXiand note

that by a straightforward calculation the exponential correlation

c riri+~ >= [s/(2 – s)](1 – s)~ is obtained. If we let Z?i= ~~- then

< Ri~.+~ >= (1 – E)~ and z = E-l. In practice, the correlation time is chosen to be larger

than the maximum discrete time step of 2 ps, but smaller than the ms time scale of

structuralevolution. We chose 10 US, so on times scales short compared to this ballistic

motion occurs and the effect of particle inertia on diffision is obtained without resorting

to a second-order differential equation.

The use of Eq. 5 to compute the stress of a chain is sufficiently subtle as to warrant

clarification. It is often a convenient simplification to represent a chain as linear, with

nearest neighbor dipole interactions. But if this is done, one can easily show that the

APPENDIX B: Stress in the chain model
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dipolar force on the i-th particle, which is the sum of the dipolar forces due to its nearby

neighbors, is zero. Thus the quantity in the brackets is thus apparently zero in this linear

approximation. This dire situation can be remedied by lumping the two particle forces -

the dipolar and hard sphere - into a single total force acting on the i-th particle, Fi. This

force is due to the interactions with both neighbors. Because inertia is negligible, this

force is exactly balanced by the Stokes friction against the solvent, F, – g(vi – Vf ) = O.

For a stationary chain the particle velocity is zero and F’,= –y~. TO counterbakmce this

force a real chain simply must have curvature, so that the tangential dipolar interactions

caused by its neighbors are not equal and opposite: an initially linear chain in shear flow

will simply deform until it assumes the shape closely given by Eq. 10.

This problem is avoided by simply using the supposition that the chain is stationary,

then for any chain shape easily use Eq. 5 or its dimensioned equivalent, to compute the

stress with F~= –gvf. Using z~ = 2acosi3 Eq. 5 becomes

Ao=18@qOycos20(k2) (Ill)

Then the relation (k’) = N-1~k2 = ~N’ is used, which along with the result
k=l

tanO = $MnN2, gives Eq. 12, which in electrostatic units is the result

AcT= ~@O~C/32E~sin2@ published in our 1996 paper [1]. (This expression for the chain

angle is not the same as Eq. 9, which is for the central angle of a curved chain, the

distinction being that tane = $A4nN2 insures that the hydrodynamic and electrostatic

torques balance for a rigid chain). A careful thinker will note that at the central particle

in a real chain with an odd number of particles, the dipolar and hard sphere forces exactly

balance. This implies that this particle must move at the fluid velocity at that point,

which is of course correct.
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FIGURE CAPTIONS

1.

2.

3

4

5,

Shear simulations in a uniaxial field at @30’XOshow the stress is nearly independent of

Mn for a=-, indicating a shear thinning viscosity. Brownian motion decreases the

stress significantly at low Ah.

A striped phase emerges at large A, but not at small A. These structures are at the

marginal value 2=1 6.7. The left is at Mn=O.08, the right at Mn=O.002, and the views

are along the field direction (z axis).

A comparison shows that Eq. 22 is a good approximation to the exact the radial and

tangential fragmentation energies.

Solutions to the self consistent Eq. 33 (curves) are compared to Eq. 28. In each case

the feature of low chain angle, and thus stress, at small Mn is observed, but the self-

consistent solutions soften the effect.

Uniaxial simulation data make a master curve on axes suggested by Eq. 28. The data

at A=3.3 (to the left) do not collapse as well as the others (1=6.3, 8.8, 10.7, 16.7, 29.6),

but this is expected based on Eq. 33.
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