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Abstract: With the increasing number of people living in cities, the demand for energy in office
buildings and homes is constantly increasing; thus, smart buildings were created to provide users with
better comfort conditions. However, using artificial systems becomes an unsustainable alternative
for these environments. This research conducted a literature review of studies published in Scopus
and Web of Science between 1970 and 2022 to identify studies that contained strategies to promote
thermal comfort and energy efficiency in buildings, as well as the main challenges and barriers
to sustainability. A total of 9195 articles related to the topic were identified, and after applying
the defined criteria, 105 were included in this review. Three research questions were investigated,
and the main findings of this research are: (i) it is more difficult to assess thermal comfort and
thermal sensation than energy efficiency; (ii) to promote a thermally comfortable environment, it is
necessary to consider numerous aspects to reduce environmental impacts and energy consumption
and to increase sustainability; (iii) actual thermal conditions are influenced by factors such as energy
levels, climate, setpoint types, building type, size and orientation, and economic factors, among
others; (iv) new technologies found in smart buildings showed distinct performances according to
the climates of each region, and their evaluations can cover thermal comfort, energy savings, and
payback time.

Keywords: thermal comfort; sustainability; energy efficiency; climate change; adaptive comfort;
smart buildings

1. Introduction

Since the Industrial Revolution in the early 20th century, countless people have left
the countryside for cities, contributing to industrialization and economic development. It
is estimated that, by 2030, about 60% of the entire population will live in urban centers,
making it essential to optimize the spaces in these buildings [1]. According to Fanger [2],
people spend most of their day in inside environments; therefore, those environments must
be in good condition for these users. In 2019, the building sector accounted for 35% of the
world’s energy consumption and 39% of gas emissions, the highest ever recorded [3].

This energy is related to thermal comfort and its primary sources of consumption,
heating, ventilation, and air conditioning (HVAC) systems [4]. By creating smart buildings,
it is possible to promote safety, comfort, and resource savings, and reduce expenses by
implementing automated systems, processes, or devices [5].

These systems match the thermal conditions offered by a building design to the needs
of the occupants, while also considering sustainability [6]. An energy-efficient environ-
ment is vital for human development, especially for carrying out activities [7]. However,
comfort is scarce in many cases due to poor insulation, insufficient local thermal control,
inadequate temperatures perceived by users, and vertical temperature gradients [8]. There-
fore, the energy efficiency assessment of buildings is easier compared to the assessment
of thermal comfort. According to Omidvar and Brambilla [9], a significant amount of a
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building’s energy consumption is connected to HVAC systems, making it difficult to find
practical solutions to decrease overall consumption without predicting thermal comfort
conditions correctly.

Increasing efficiency and saving electricity in buildings have been associated with
sustainability in recent decades. Several innovative technologies and materials have been
developed to integrate thermal comfort and energy efficiency in pursuit of sustainabil-
ity [10]. Broday and Gameiro da Silva [11] verified that the Internet of Things (IoT) has been
used for understanding the behavior of building occupants; Omrany et al. [12] mention the
prioritization of sustainable materials, renewable sources, and energy-efficient equipment;
Cirrincione et al. [13] used simplified ARERA (Italian Energy Networks and Environ-
ment Regulatory Authority) data sheets to evaluate environmental improvements from
energy efficiency interventions in an urban residential building stock; Alvarado et al. [14]
proposed effective modifications in the design of homes in Chile, reducing energy and
maintaining comfort.

Sachs [15] mentions that, since the Brundtland Report, published in 1987, there has
been a growing increase in the number of regions and countries using sustainability
as a basis for development, i.e., seeking economic growth that is socially inclusive and
environmentally sustainable. It has become relevant today to align thermal comfort with
sustainability. Thus, many scientists, environmentalists, and international communities
have dedicated their efforts to promoting energy efficiency and sustainability in buildings,
raising several strategies and energy technologies.

Consequently, it has become an unsolved research problem in smart and sustainable
cities to promote thermal comfort to users while increasing energy efficiency [16]. In this
context, through a literature review with articles published from 1970 to June 2022, this
research seeks to identify studies that contain strategies for promoting thermal comfort
and energy efficiency in buildings: the main barriers to sustainability. To achieve the
main objective of this investigation, three research questions (RQs) were proposed in this
paper and further explored, and the main characteristics of these studies were ascertained
through the Preferred Reporting Items Methodology for Systematic Reviews and Meta-
analyses (PRISMA).

2. Methods

For the preparation of this literature review, a methodology consisting of three steps
was applied: the presentation of the research questions (RQs) to conduct the literature
review, the processes for the execution of the literature search, and use of the software
selected for the selection and eligibility of articles and the development of the cloud of
words that appeared most in the studies.

2.1. Research Question (RQs)

The main objective of this research was to investigate and synthesize studies that
contained strategies associated with sustainability and thermal comfort for reducing en-
ergy consumption in buildings. To achieve this objective, three research questions (RQs)
were proposed:

(a) The presence of thermal dissatisfaction with environments is very common among
users, showing a discrepancy between the energy efficiency and thermal comfort of
building interiors [17]. Predicting thermal comfort becomes essential to fill the gap
between user comfort and energy efficiency. Using the predicted thermal state of
the occupant serves as a method to control heating, ventilation, and air-conditioning
systems [18]. Based on this assumption, RQ1 is elaborated:

RQ1: How does the indoor thermal condition influence the energy efficiency of buildings?

(b) The local climate and the types of buildings directly influence the thermal sensa-
tion [19]. In addition, the activities performed in buildings reflect the total percentage
of energy used due to the great demand for heating, ventilation, and air-conditioning
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systems to obtain better thermal conditions. However, decreasing energy consump-
tion and preserving environmental comfort conditions is difficult [20]. Moreover,
based on this assumption, RQ2 is elaborated:

RQ2: How do different building types, energy levels, and climates influence ther-
mal conditions?

(c) With the advancement of technologies, there has been an increase in pressure to reduce
energy consumption, causing consumers to create high expectations concerning the
comfort of the indoor climate of environments [21]. Based on this assumption, RQ3
is elaborated:

RQ3: What new technologies and research findings can help improve indoor thermal
comfort and reduce energy consumption?

2.2. Procedures for Bibliographic Research

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
was modified for this study [22]. PRISMA uses combinations of keywords to perform
searches in scientific databases and consists of 4 steps that are applied to reduce the number
of articles chosen: identification (step 1), selection (step 2), eligibility (step 3), and inclusion
(step 4) for analysis. In recent years, several studies have made use of this research method
which involve thermal comfort [23], energy efficiency [24], and sustainability [25].

The strategy of search and identification of articles (step 1) was carried out by com-
binations of keywords and their Boolean operators being inserted into the Scopus and
Web of Science databases, as follows: ((“Thermal Comfort” OR “Adaptive Comfort”) AND
(“Climate Change” OR “Energy Consumption” OR “Energy Demand” OR “Sustainable
Development Goals” OR “Energy Efficiency”)). This search took place on keywords, ab-
stracts, and titles of papers prepared and published between 1971, when the first studies
on thermal comfort were started by Fanger [2] and June 2022. This search interval was
chosen due to the period when sustainable development goals were being elaborated and
for considering more recent studies that could contain more innovations associated with
thermal comfort and sustainability.

The final search for articles occurred on 7 June 2022. The Scopus and Web of Science
databases were chosen because they are two of the broadest databases in the world and
cover most scientific fields [26]. Next, the screening (step 2) process was performed, where
criteria for the inclusion and exclusion of articles were determined to present the studies
most aligned with the RQs and the suggested objectives. Figure 1 shows all the inclusion
and exclusion criteria used.

Figure 1. Inclusion and exclusion criteria used in the selection of the articles.

After the screening, the next step comprised a preliminary analysis of the selected
articles with the full texts accessible. Eligibility (step 3) consisted of reading the abstracts to
examine whether the articles could answer the research questions (RQ1, RQ2, and RQ3),
this being a further refinement. Following the refinement, a portfolio of articles was formed
to perform the necessary analysis and, thus, insert them into the review (step 4).
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2.3. Software Used in the Research

Along with the PRISMA method, the StArt (State of the Art through Systematic
Reviews) software was used as a support tool for the development of the Systematic
Review for the better visualization of the articles selected and extracted from the databases,
helping in the reading of the title, authors, and abstract, and the application of the inclusion
and exclusion criteria directly in the system, contributing to the application of the review
procedures with superior quality [27].

Another tool used was NVivo software, which organizes and analyses qualitative
data [28]. The program contributes to word frequency queries, searching for specific terms
in the text, linking materials available in the portfolio, creating graphs and diagrams,
and exporting documents [29]. Among the advantages of NVivo is simplicity in man-
aging data and promoting answers to more complex quantitative questions [30]. In this
research, the software served as a tool to verify the most frequently-occurring words in the
selected articles.

3. Results
3.1. Preliminary Search Results

Through the search strategies and the combination of keywords entered in the Scopus
and Web of Science databases, it was possible to obtain the results found in Figure 2:

Figure 2. Results obtained through the database search strategy.

By employing the search strategies, 4390 articles were found in the Scopus database
and 4805 in the Web of Science database. To perform the selection and confirm the eligibility
of papers, the StArt software was used as a reference manager, which simplified this
categorization. Then, the PRISMA method was applied, as shown in Figure 3:

Among the 9195 articles found in the databases, the exclusion criteria were used,
leaving only 307, which were subjected to reading of the title, abstract, and keywords to
ascertain their connection to the theme. Of these 307 articles, 202 were removed for not
responding to the RQs. Finally, 105 articles were included in the literature review.

3.2. Bibliometric Results of the Publications

The bibliometric analysis identified the most general characteristics of studies with
strategies for reducing energy consumption in buildings which were associated with
sustainability and thermal comfort. Figure 4 shows the research published in each journal
using vertical bars and the number of publications per year, per the color legend. There
was a higher concentration of studies in 2020 with about 10.48%, in 2021 with 29.52%, and
in 2022 with 17.14%. For the other years, there was a small expression of developed works;
in addition, the journals with the most publications were: Energy and Buildings, Energies,
and Building and Environment, with impact factors of 7.201, 3.252, and 7.093, respectively.
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Figure 3. Results after applying PRISMA.

Figure 4. Co-occurrence map.
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The NVIVO software tool was applied to discover the words of greatest occurrence in
the selected articles. The higher the occurrence of the expression, the higher its represen-
tation is. Figure 5 shows the occurrences of the most used words in the studies that were
compiled for this review.

Figure 5. Occurrence of the most-used keywords.

The keyword of greatest evidence in the articles was “energy,” with 10,181 oppor-
tunities that refer to one of the main topics of this research: energy consumption related
to thermal comfort. Also, “building” presented 5622 opportunities to represent the very
places where the studies were conducted.

4. Discussion

This section exposes the answers found for the RQs by reading the articles included in
the portfolio of this review.

4.1. RQ1: How Does the Indoor Thermal State Influence the Energy Efficiency of Buildings?

In Figure 6, the main aspects of the thermal state found in the studies are presented.
These aspects have a direct influence on energy efficiency. They should be considered

in promoting an environment with fewer environmental impacts and greater sustainability,
and which meets users’ needs. Table 1 presents the effects of these aspects on the energy
efficiency of buildings.

In general, building envelopes consist of opaque external walls, vertical fenestration
or glazing, and roof systems, and can control the influence of external factors on the
internal environment. The main external factors that can generate heat loss or gain are
solar radiation, weather conditions, and wind flow, which are characteristic of each region
and can be seasonal. By controlling heat loss and gain, indoor temperatures approach
comfort temperatures, reducing the need for heating and cooling, and increasing the energy
efficiency of buildings.
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Figure 6. Aspects of the thermal state.

Table 1. Main effects on energy efficiency.

Refs. Effects on the Building’s Energy Efficiency

[31] To improve the energy efficiency of buildings, the adoption of lighting standards more appropriate to
local conditions becomes an alternative

[32]

On days of heating demand, the supply air provided by diffusers on the ceiling of the room did not
significantly affect the internal temperature, due to the presence of thermal buoyancy, but, while the
supply air presented a temperature between 26 and 36 ◦C, the room air contained the temperature
between 19.8 and 21.8 ◦C such that this energy for conditioning was wasted

[33–63]
The dynamics of heat transfer between the internal and external environment directly affect the thermal
comfort and energy consumption in the building, because it has the potential to be adapted to mitigate
temperature peaks and reduce the need for HVAC systems

[41,43,51,64–67] By determining the real needs of the occupant, HVAC and passive systems can be controlled to act
within the correct time and temperature ranges, seeking a reduction in total energy consumption

[68]

The mean radiant temperature influences thermal comfort according to changes in the human body’s
position in the environment. So, it’s possible to predict thermal comfort more accurately and configure
the use of the environment in such a way that human activities are performed more thermally
comfortable and with less energy consumption

[69]
In tropical climates, the combination of high humidity and high temperatures generates excess energy
consumption for conventional air conditioning systems due to the need for dehumidification, which
consumes 37% of the systems’ energy

[70]
The type of building structure can directly impact on energy consumption and thermal comfort, this is
due to the type of material used that can have different performances in relation to the climate and the
different seasons

According to Anwar et al. [44], the construction of a building with an adequate
envelope or the restoration of an existing one is considered to be a passive measure, being a
natural action of the thermal resistance of the envelope to heat exchange by external factors
that will help in the interior thermal control. The second-most frequent aspect refers to the
conformity of the internal environment to the occupant’s needs. From the analysis of the
thermal comfort of the occupants, times of occupancy of the environment, and peaks in
energy demand, it was possible to identify opportunities for reducing energy consumption.
Knowing these details can determine the time and temperature ranges that ensure comfort
for users, control HVAC systems to perform at the extremes of the comfort ranges, and
define building envelope properties based on these ranges.
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4.2. RQ2: How Do Different Building Types, Energy Levels and Climates Influence Thermal Conditions?

Table 2 presents a survey of the factors that can influence thermal conditions.

Table 2. Building types, energy levels, and climate types.

Refs. Characteristics

[65]

In Qatar, summer temperatures exceed 45 ◦C, and the average high temperature exceeds 27 ◦C in the rest of
the seasons. Therefore, air conditioning (AC) in Qatar is more of a necessity than a luxury and accounts for
about 80% (the highest in the world) of building energy consumption. Air-conditioning systems run
uninterrupted all year round to maintain thermal comfort

[66]
The thermal inertia of building structures influences comfort and energy consumption, especially in different
climatic types or seasons. This ability to accumulate heat when temperatures change is related to the internal
partitions and wall masses that allow passive thermoregulation

[71]
After the 1973 energy crisis, energy-saving concerns negatively impacted Indoor Environmental Quality (IEQ).
Designs aimed at energy conservation at the expense of comfort and health resulted in an outbreak of Sick
Building Syndrome (SBS)

[72]
In the coming years, global warming is expected to cause a 2 ◦C rise in temperature, so the use of indoor
comfort temperature can provide a heating energy gain. In some Greek areas, such as in the north,
air-conditioning systems are no longer needed

[73] Passive houses have critical ventilation systems, which in some cases can be inefficient, directly impacting the
sustainability and energy savings of the environment

[74]
Climatic conditions need to be considered when using cold materials in buildings without insulation, as their
use will be advantageous to the extent that the decrease in energy demand for cooling is greater than the
increase in energy demand for heating

[75]
In large commercial office buildings with central air conditioning that make use of a variable air volume (VAV)
distribution system, the air velocity decreases as the air temperature approaches the setpoint, negatively
affecting the thermal comfort of the occupants

[43,76–83]
Climate change can affect people’s daily lives in terms of thermal comfort in the workplace and in their
personal lives, promoting peak loads, increasing energy consumption per floor area and use of HVAC systems.
With the development of adaptive models, it is possible to consider these local characteristics in evaluations

[84]
The Wind-Rain house contains a patio with a glazed roof that facilitates the entry of sunlight into the
environment, and this roof can be closed or partially opened to allow ventilation for thermal comfort, in
addition to its protection from rain and wind

[85] World bioclimates have changed over the centuries causing an increase in thermal discomfort both in summer
and winter, when comparing the 20th and 21st centuries

[86] Most Spanish buildings were built before energy standards were mandatory. Although adaptive comfort levels
are satisfactory, this will not be the case in the future, given the global warming that provides the discomfort

[87] Net-zero energy building (NZEB) has become a solution to current energy difficulties caused by climate
change that undermines thermal comfort and energy balance

[88] In a simulated building, by changing the original north orientation to south orientation, the energy demand
for cooling decreases by between 0.5% and 1.2%

[89]
For the tropical Aw climate, the adaptive comfort model shows that with air conditioning systems, the comfort
temperature is up to 1.0 ◦C higher than international standards and increasing the setpoint temperature
promotes comfort and energy savings

[90]

Residential high-rise buildings take advantage of natural ventilation to improve energy efficiency, but it is only
effective if the temperature difference between indoors and outdoors is less than 2 ◦C. The best configurations
are when the building contains an orientation at an oblique angle to the prevailing wind direction, for the
upper floors natural ventilation is wind-induced, and for the middle and lower floors there is a need for
buoyancy. Energy savings are higher in large apartments by up to 55% compared to only 22% in small
apartments, because more occupants result in higher anthropogenic heat generation

[91] Overheating in apartments was most pronounced on upper floors, especially those with keyboard exposure
and westward glazing orientations
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Table 2. Cont.

Refs. Characteristics

[92]
By replacing the use of static setpoints of the Spanish Building Technical Code (CTE) standard by using
adaptive setpoints of the EN 15,251 standard for category II, there is a reduction in energy demand of 5.91% in
zone E1 (CSB climate), 22.86% for zone D3 (BSh climate); and a reduction of 52.78% in zone B4 (Csa)

[93]
A low thermal energy building designed for Germany called PassivHaus (PH) has been successfully
implemented in other climates, however, in southern Europe this same building exhibited overheating in the
hot season

[94]
City climate, household income and user preferences are responsible for the availability of HVAC systems for
use, and habits to change unwanted temperatures that influence adaptive behaviour. Most Brazilians prefer
natural ventilation as a means of adaptation

[95]
The window-to-wall ratio (WWR) improves thermal comfort through natural ventilation, visual comfort
through access to natural light and views, thus increasing the amount of window area has an influence on total
energy demand

[96]
Current (cold climate zone in Beijing; hot summer and cold winter zone in Shanghai) and future (2050) climate
scenarios were compared, thus the results indicated that in the future there will be a predicted increase in
heating hours of 58–60% and 41–44%, respectively

Some factors can influence thermal conditions, such as energy levels [71], building
type and orientation [90], apartment size and orientation [91], setpoint and climate [92],
and economic factors [94], among others. This happens due to the specific conditions of
each region that directly interfere with the thermal reality experienced by indoor users
and in energy consumption, which, in many situations, is related to the use of heating,
ventilation, and air conditioning systems as well as the greenhouse effect.

4.3. RQ3: What New Technologies and Research Findings Can Help Improve Indoor Thermal
Comfort and Reduce Energy Consumption?

To improve thermal control and reduce energy consumption, numerous technologies
and discoveries have been identified and presented in Table 3.

The values presented refer to the results obtained in the studies; however, it is interest-
ing to note that the technologies had different performances because they depended on
the climate of the region where they were applied. One example is the study by Valentin,
Dabbagh, and Krarti [63], which trialled switchable insulation in walls and windows in
several French regions, providing energy savings of up to 81.9% per year in HVAC use
in hot climates and 38.1% in cold climates. Another example is the research of William
et al. [54], who implemented reflective paint solutions that achieved energy savings of
21% in Aswan, 19% in Cairo, and 17% in Alexandria, all in Egyptian buildings. In Aswan,
reflective paints showed superior performance due to high solar radiation, followed by
Cairo and Alexandria. These variations represent the subjectivity of the results and show
the importance of simulation technologies.

Most studies were concerned with the economic feasibility of the technologies, involv-
ing issues beyond thermal comfort and energy savings, such as the return-on-investment
time that sometimes ended up being longer than the useful life of the technology, meaning
that there were no financial advantages for the technologies’ implementation. Of the articles
reviewed, at least 26 of them performed modelling and simulations to achieve their results,
in addition to measurements in real environments, and the use of meteorological data and
projections, as in the research of Akkose, Akgul, and Dino [42], in which simulations were
performed to examine the efficiency of retrofit measures under conditions arising from
climate change and the aggravation of heat islands.

To complement this analysis, Figure 7 shows the percentages of studies that evaluated
thermal comfort using the traditional model, the Predicted Mean Vote (PMV) developed by
Fanger in the 1970s; adaptive models; other types of analysis without the use of models,
such as the use of new materials and algorithms, among others.
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Table 3. New technologies and findings to improve thermal comfort and reduce energy consumption.

Ref. Technology/Findings Results

[34] Recycled paper mill waste (RPMW) bricks and fly
ash bricks

The environments became more thermally comfortable and
energy efficient, besides being a low-cost material and 72%
less thermal conductivity than fly ash brick

[35] Float-triggered dynamic shading System has potential cooling energy savings of up to 32.8%

[36] Cold blinds 25% energy savings over traditional darkroom blinds

[38] Electrochromic glass 17% reduction in annual energy costs

[39] Cool roofing and paving stones

The application of cool roofs generated a 17% reduction in the
annual cooling demand of the case study building, while the
surface temperature of the urban floors was reduced by
almost 10 K

[40] Sodium acetate and urea phase change material With this material the indoor temperature can be reduced by
7 ◦C, saving cooling energy by 60% on a summer day

[41] Schedule for HVAC system set points

The schedule along with shading device achieves 35%
reduction in energy consumption and allows 365 thermally
comfortable days, without the schedule there would only be
261 days

[43] Retrofit measures Retrofit measures were able to reduce the energy load by 39%
as well as improve indoor environmental quality (IEQ)

[45] Passive Dual Heating and Cooling System The system provides high energy efficiency with a 39%
savings rate

[46] Mortar with internal thermoregulation function Reduced by 60.94% in thermal conductivity in relation to
conventional mortar

[48] Removable layers on the inner side of the building
envelope

PCM layers can achieve up to 50.71% reduction in annual
energy consumption

[49] Window films with low thermal conductivity 6% decrease in heating energy consumption and 3% decrease
in percentage of unsatisfactory thermal hours

[51] Thermal comfort-based control system using PMV
The energy consumption with air conditioning was reduced
by approximately 13% in the traditional PMV control
compared to the control set at 24 ◦C

[53] Cool roofs Energy savings between 3.5 and 38% for HVAC

[57] Aerogel for thermal insulation Reduced energy consumption by 15% for attic and floor slabs

[58] Windows and exterior walls with switchable insulation
systems (SIS)

Results show that the use of SIS results in a 44% reduction in
energy use for heating and makes the use of mechanical
cooling unnecessary

[59] Structural wall with biobased earth blocks
This wall improves thermal comfort by regulating humidity
and internal temperature and reduces thermal dissatisfaction
of users by 24.6%.

[60] Customized green roofs Decreased energy consumption, energy cost and
environmental impact

[61] Advanced tombe walls with glazed thermal mass
components

Obtained reduced heating period (48.8% on average),
improved comfort conditions (23.9%), while increasing
cooling periods (22.7%) and overheating (2.2%)

[63] Exterior walls and windows with dynamic thermal
insulation

When SIS is applied to walls and windows, annual HVAC
energy savings can reach up to 81.9% in hot climates

[64] Stochastic model based predictive control (SMBPC) Reduced the risk of energy unavailability by up to 24%

[65] Thermal control system Able to achieve a 21% reduction in energy consumption and
improve thermal comfort by 44%
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Table 3. Cont.

Ref. Technology/Findings Results

[66] Heating controller based on Deep Reinforcement Learning
(DRL)

Thermal comfort was improved by 15 to 30% along with 5 to
12% reduction in energy costs related to a traditional
thermostat controller

[67] Energy management in smart home network
In the smart scenario, the energy consumption of the heating
system is 15% lower than in the basic scenario and thermal
comfort is improved

[68] System based on Building Information Model (BIM) and
Artificial Neural Network (ANN)

Model considers the human position, integrating thermal
information to suggest furniture placement in environments
reducing energy consumption and maintaining
thermal comfort

[69] Two stage desiccant solar cooling system in recirculation
mode Energy savings between 27.9% to 33.9%

[71] Integrated design and operation protocol Building
Environmental Performance Model (BEPM) Up to 15% reduction in total energy use

[76] Adaptive thermal comfort models Decreased energy use for cooling and heating, and reduced
risk of overheating due to climate change

[80] Green roof with Setcreasea purpurea The green roof can lower the internal temperature by 1.5 ◦C
and decrease energy use

[83] Operating Strategy for NZEB
Provides 20% to 40% energy savings, plus 33% to 65%
reduction in Photovoltaic Production (PV) area becoming
Positive Energy Buildings (PEB)

[88] Set of improvement strategies

Reduction in energy demand for cooling by 27%, 21%, and
17% for the current climate, 2030, and 2050, respectively, from
changes in the thermal insulation of the building envelope,
installation of external window shading devices, improved
glazed windows, reduced window area, southern orientation
of the largest windows

[90] Natural ventilation facilitated in high-rise residential
building

Reduction of energy consumption by up to 25% by replacing
the use of mechanical ventilation with natural ventilation and
by up to 45% through buoyancy-driven natural ventilation

[92] Implemented adaptive comfort control model (ACCIM)
The use of adaptive setpoint reduces energy demand by up to
69.91% for the least restrictive category and by 31.34% in the
most restrictive category

[95] Biophilic design principles Improves daylighting, thermal comfort and reduces energy
consumption

[97] Energy conservation program
By reducing the lighting, changing operating hours, adjusting
the thermostat, and eliminating air-conditioning reheating,
energy consumption in summer was reduced by up to 54%

[98] Fuzzy PD control method for air quality, thermal and
visual comfort for building occupants Reduced energy consumption by 25 to 30%

[99] Cost-effective building operational strategy

Reduced total energy use by up to 15
Able to reduce building maintenance-related costs, improve
indoor environmental conditions, and promote an 11%
reduction in energy consumption

[100] Design of experiments methodology

Individuals have more freedom to perform behavioural
actions, such as the use of blinds, windows, thermostat,
lighting systems, clothing, and fan settings, thus impacting
the energy performance of the environment

[101] Adaptive comfort model
Through the models it is possible to ascertain climate changes
and contribute to efficient improvement in the design of
thermally comfortable environments
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Table 3. Cont.

Ref. Technology/Findings Results

[102] Heat-insulating solar glass (HISG)
Reduces solar heat gain by up to 80% compared with ordinary
glass and has a 100% UV and 99% IR blocking rate, essential
for thermal comfort and human health

[103] Biomimetic design The proposed design can reduce the intensity of energy use
for room conditioning by up to 66%.

[104] Integrated control of air conditioning, humidifier, and
ventilation system, considering the outside environment Up to 33% reduction in energy consumption

[105] Single-glazed radiant solar space and double-glazed
radiant solar space in energy-efficient building

Minimization of indoor air temperature fluctuations and
reduction of heating energy by approximately 3.3% and 8.7%
for the insertion of single-glazed radiant glass and
double-glazed radiant glass, respectively

[106] Adaptive thermal model
Reduced energy consumption, improved thermal comfort of
buildings and reduced greenhouse gas emissions, and help
designers develop buildings with better thermal efficiency

[107] Nearly Zero Energy Buildings (NZEB)

The purpose of Nearly Zero Energy Buildings (NZEB) is to
promote low energy consumption and high renewable energy
production on site, so the building achieved high efficiency
with low consumption using only 9.14 kWh/m3 for cooling
and 3.82 kWh/m3 for heating

[108] Decision model based on sustainability assessment of
insulating materials

The materials selected as most sustainable were glass wool,
hemp fibers, Kenaf fibers, polystyrene foam, polyurethane,
and rock wool

[109] Dual-layer PCM system

Increase of thermal comfort from 73% to 93% in dry climate;
63% to 75% in semi-arid climate in winter; reduction of
heating energy consumption by 17.5% for hot/dry climate;
10.4% for mild/semiarid climate and reduction in cooling
energy by 12.3% for cold climate and 9.8% for mild/humid
climate

[110]

Set of passive strategies
(Thermal insulation of wall air cavities, changing window
frames, optimizing window glazing, establishing regular

mechanical ventilation rates for indoor air changes)

Reduction in energy demand by up to 47% and improvement
in comfort conditions ranging from 20 to 40% in winter, 35 to
50% in summer

[111] Advanced thermochromic materials Energy conservation in the built environment and combating
overheating

[112] Model predictive control for underfloor heating system Improves thermal comfort and reduces peak period energy
consumption and daily electricity costs by 1.82–18.65%

[113] Trombe wall system of fired brick and reinforced concrete
augmented with PCM

Targeted for both cooling and heating purposes through
adaptability of the openings

[114] Internet of Things (IoT)
Development of an individual thermal comfort model with
data from wearable devices (smart band) and machine
learning

[115] Adaptive thermal comfort with tracking-based method

Understanding user behavior, ascertaining thermal comfort
and identifying how energy consumption is impacted
especially in seasonal periods. Through screening it is
possible to save up to 34.33% energy

[116] Shading system with PCM Cooling energy consumption decreased by 44% and the
number of hours of thermal comfort improved by 34%

[117] Building Automation
Promoted an increase in discussions at the scientific level
related to this type of automation and how suitable it should
be to promote comfort and allow control by users
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Table 3. Cont.

Ref. Technology/Findings Results

[118] Cooling tile using PCM External and internal roof surface temperature reduced by
about 8 ◦C and 12 ◦C, respectively

[119] Green roofs (GR)

Considering rising temperatures, for cooling seasons energy
consumption is reduced by 20% to 50% for Esch-sur-Alzette
and by 3% to 15% for Palermo, improving comfort and
reducing roof temperatures by 2 to 5 ◦C

[120] Forced ventilation system

Ideal for industries and improves the air speed inside, besides
decreasing the percentage of pollution in which the
employees are exposed, providing an increase in productivity,
improvement in the performance of the machinery and in the
workplace.

[121] Heat pump Reduction in heat loss

[122] Residential cluster in orthogonal orientation
Residential clusters provide 46% more hours of thermal
comfort and energy savings of between 28% and 32% for
rectangular and square row houses

[123] Interactive waterfall ventilation The system achieves a 30% higher temperature drop in
cooling capacity than in traditional mixed ventilation mode

[124] Model predictive control (MPC)

The use of Model predictive control (MPC) improves indoor
thermal comfort and decreases energy consumption by 22.2%
when compared to proportional-integral-derivative control
(PID)

[125] Prefabricated double-skin façade (DSF)
Increased building sustainability through reduced energy
consumption and mechanical ventilation in addition to
improved thermal comfort, lighting, and natural ventilation

[126] Sustainability Index in the Energy Life Cycle

The tool was able to evaluate energy efficiency improvement
alternatives for a residential building in terms of energy
consumption, life cycle CO2 emissions, and final indicators of
the degree of cooling discomfort and heating discomfort

[127] District Cooling System (DCS)
Energy cost and thermal comfort are optimized, saving up to
5% more energy consumption compared to published
strategies

[128] External VO2 thermochromic glazing coating Reduction of approximately 5 ◦C in average room
temperature

[129] Compact all-in-one and plug-and-play machine Recovers heat that is used to preheat fresh air for domestic
water heating

[130] Net-zero energy buildings
(NZEB)

Electricity consumption is reduced by at least 60% of the
original value

[131] PCM embedded Radiant Chilled Ceiling (PCM-RCC)
About 70% of the energy consumption was off-peak and in
58% to 70% of the occupancy period the delivered operative
temperature was within ISO 7730 Class C

[132] Natural ventilation in buildings in hot and dry climates in
Burkina Faso

Thermal comfort in earth block building and hollow concrete
block building reach 26.4% and 25.8% respectively
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Thus, among the analyzed studies, about 19.04% of the authors applied adaptive
models [55,71,75,76,79,85,88,91,95,97,100,102,105,109,111,113,114,123,131,133], and 18.10%
made use of the traditional PMV model [38,41,45,47,49,51,54,59,65,67,68,82,87,103,108,115,
119,120,134]. It is worth mentioning that the adaptive models usually present a better
performance to estimate the thermal reality; however, the PMV continues to be the most-
used model to analyze thermal comfort. In this review, the adaptive models had a higher
incidence in the publications by about 0.94% compared to the traditional model. Adaptive
models can consider different environments and climates, among other factors [135]. There-
fore, their application becomes more specific to the analysis site; however, these models can
have numerous performances when applied to places with different conditions. The other
researchers chose to use other types of analyses focused on energy efficiency; thus, it can be
concluded that the evaluation of thermal comfort inside buildings is a little more complex.

4.4. Futures Trends

Smart Cities have a commitment to the development and promotion of the Sustainable
Development Goals (SDGs) [136]; therefore, among the future research trends, this associa-
tion with thermal comfort was found, given the numerous impacts caused by problems
related to environmental and social issues [78]. If not considered in new research, then
that research will go against nature and the good use of resources. Thus, Figure 8 presents
the main topics that relate thermal comfort to the SDGs [137], showing the benefits of
this association.

Other relevant trends are the realization of external thermal comfort analysis in urban
environments [138]; tree planting in the promotion of comfort through biophilia; making
cities increasingly sustainable [139]; performing retrofitting as an alternative aimed at
designing and managing more brilliant operation, dispensing the need for the investment
of new resources in the implementation or upgrade of equipment [48]; investigating peak
energy demand and capacity of electrical networks [140]; integrating comfort, climate
change, and environmental sustainability into topics of social, technical, and political
debate [141]; using algorithms to evaluate energy consumption and greenhouse gas emis-
sions [142]; improving the thermal conductivity of phase change materials (PCMs) [143];
developing models for estimating building heating and cooling demand in the early de-
sign phase [144], and simultaneously addressing Indoor Environmental Quality (IEQ) and
energy efficiency [145].

Therefore, by realizing connectivity between environments, humans allow for the
expanding of their ability to bring benefits to buildings, such as well-being, satisfaction,
and health to users [95]. The construction industry plays a key role due to the high emission
rates of gases contributing to the greenhouse effect in all phases of the construction process.
Most of the time, construction is not planned correctly, generating energy waste and not
providing adequate thermal comfort conditions.
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Figure 8. SDGs associated with thermal comfort. Adapted from Yang and Matzarakis [78] and WHO [137].

In this context, the construction sector is one of the largest energy consumers. This
has raised a concern that was not important before. However, environmentally friendly
production is still in its beginning stages. Assessing the level of thermal comfort that a
building is intended to have is important in terms of costs, but also the quality of the
work of its employees. It is recommended to increasingly consider sustainability related
to thermal standards in building constructions to reduce environmental impact and use
current energy efficiency and thermal comfort standards in historic buildings to improve
sustainability and energy performance, as well as the maintainability of heritages built from
historic structures [146]. Similar environmental goals are also recommended by several
governments, that encourage the fulfillment of policies capable of reducing the emission of
greenhouse gases and behavioral changes in individuals.

In addition, new research should be focused on investigating the air and thermal
quality of indoor environments, the use of alternative heating systems, the effects of climate
change, and studies addressing cost optimization to evaluate energy efficiency—the great
majority of the analyzed articles were related to the research’s aims, especially SDG 11. The
construction sector is one of the primary consumers of energy and water, as well as being a
primary generator of pollutants, directly influencing the SDGs.

5. Conclusions

The diversity of studies with strategies capable of promoting thermal comfort and
energy efficiency in buildings in search of sustainability was verified, in addition to the main
challenges and barriers encountered. The main aspects of the thermal state that influence
energy efficiency was identified, in addition to the different types of buildings and climates,
and new technologies and discoveries, to provide thermally comfortable environments and
reduce energy consumption. Even with the limitation of the period of published research
from 1970 to June 2022, the year 2021 was the period with the highest concentration of
publications, with 31 articles that corresponded to 29.52% of all the studies presented.

This paper proposed three research questions. In answering RQ1, it was noted that, to
promote a thermally comfortable environment, it is necessary to consider numerous aspects,
from the needs of the occupants, local climatic characteristics, and lighting, among others;
thus, it is possible to reduce environmental impacts and energy consumption, and increase
sustainability. In consonance with RQ1, RQ2’s answer elaborated that numerous buildings
are designed so that users can face the actual thermal conditions with greater comfort,
besides emphasizing that the climatic conditions of each location directly interfere with the
thermal reality experienced by users, who, in many cases, resort to HVAC strategies that are
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responsible for increasing the levels of energy consumption. Thus, the use of technologies
and discoveries arise to mitigate these problems.

In response to RQ3, these new technologies and discoveries have shown to have
distinct performances according to the climatic types of each region; in addition, their
evaluations can cover thermal comfort, energy savings, reuse of materials, simulations, and
the return on investment, which, in some cases, does not present financial advantages given
the lifetime of the technology, as in the study of Mahadevan, Francis, and Thomas [144],
which had a significant increase in annual energy costs due to the use of 3D-printed
concrete structures.

The construction industry is one of the most significant users of energy, water, and
pollutant generators, and faces numerous challenges regarding the environment, energy
security, and the economy. Undertaking projects and building systems that are adequate to
the climate, with natural ventilation and lighting resources, becomes an alternative to avoid
energy waste and promote comfort and sustainability indexes as presented in the analyzed
studies. Finally, it is worth emphasizing the importance of combining the ODS with
thermal comfort to promote increasingly sustainable environments, with better conditions
of use and lower emissions of pollutants, in addition to proposing more thermally pleasant
environments and with the presence of energy efficiency associated with the help of new
technologies on the market.
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