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List of symbols

To outdoor air temperature (°C)
Ti internal air temperature (°C)
Tj surface temperature of the jth construc-

tion element (°C)
Tmrt mean radiant temperature (°C)
Tcl surface temperature of clothing (°C)
Aj surface area of the jth construction

element (m2)
fi internal relative humidity (%)
fext outdoor air relative humidity (%)
S percentage saturation
g moisture content of air (kg/kg)
gss moisture content of air at saturation

(kg/kg)
Hr internal air enthalpy (kJ/kg)
Ho outdoor air enthalpy (kJ/kg)
Pwsat partial pressure of saturated water-

vapour at a given temperature (N/m2)
a,b constants

Met human metabolic rate (W/m2)
pv relative air velocity (m/s)
fcl ratio of body’s surface area when fully

clothed to body’s surface area when nude
Icl thermal resistance of the clothing (Clo)
hc convection heat transfer coefficient

(W/m2K)
M mass of air in a room (kg)
mo input ventilation mass flow rate (kg/s)
Ql latent heat gain (kJ)
h Specific enthalpy of water vapour

(kJ/kg)
C Specific heat capacity of air (kJ/kgK)

1 Introduction and review

Over the years, a large number of thermal comfort
indices have been established for the analysis of
indoor climates and the design of heating, venti-
lation and air conditioning (HVAC) systems.1–4

Several have been used to assess the extent to
which an existing room climate achieves satisfac-
tory comfort conditions for occupants. A thermal
comfort index, called effective temperature (ET),
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has been proposed as a combination of indoor
temperature (Ti) and indoor relative humidity
(fi). This concept was further developed and
adopted as a thermal comfort index by
ASHRAE5 and has been widely adopted as a
design and comfort performance criterion for
decades.

Fanger1 published a general comfort equation
which makes it possible, for specified activity
and clothing levels, to calculate all combinations
of the environmental variables (air temperature,
air humidity, mean radiant temperature, and rela-
tive air velocity) which will create optimal ther-
mal comfort. In order to derive the comfort
equation, Fanger supposed that for long expo-
sures to a constant thermal environment with a
constant metabolic rate, a heat balance can be
established for the human body such that bodily
heat production is equal to heat dissipation.
Based on these assumptions, Fanger developed a
thermal sensation index to predict the mean ther-
mal sensation vote on a standard scale for a large
group of persons depending on the four thermal
environmental variables, together with a defined
activity level and ‘clo-value’ based on clothing
worn by the occupants. He defined this as a
‘predicted mean vote’ (PMV) and, concomi-
tantly, a ‘percentage of persons dissatisfied
(PPD) was also defined. ISO Standard 77306 has
adopted Fanger’s proposals based on a PMV of 0
with a tolerance of ±0.5.

The role of HVAC services is to provide these
standards of comfort at minimum energy use and
it is the HVAC control system that has the crucial
influence over this. Previous work has shown
that it is possible to reach these objectives if
HVAC control strategies are based on a thermal
sensation index instead of air temperature
alone1,7,8 and the advantages of such a strategy
have been reported in terms of improved thermal
comfort performance and energy saving.9,10

Presently, the proportional-integral-derivative
controller continues to satisfy most non-domestic
HVAC applications. One of the reasons for their
popularity is that they require little a priori infor-
mation about the plant and do not necessarily
require detailed modelling information about the

plant. However, they do require information on
plant dynamics during commissioning since the
proportional, integral and derivative gain
constants of this controller require to be deter-
mined either by manual tuning or by online
tuning in some way. Since these constants
depend on system parameters in most cases, re-
tuning is necessary when the parameters them-
selves change (e.g., due to changes in plant
operating point, operating mode, malfunction or
modifications to the plant itself).

One alternative to this, which requires no
knowledge of plant dynamics, is fuzzy logic
control (FLC).11 This, coupled with the vague-
ness and subjectivity of thermal comfort in prac-
tice, make fuzzy logic well suited for the
evaluation and control of thermal sensation as a
fuzzy concept in which the comfort range can be
evaluated as a fuzzy range rather than an isolated
comfort variable.

The PMV-based fuzzy logic controller investi-
gated in this work starts with the evaluation of
the predicted mean vote level and compares this
with the required comfort range in order to arrive
at a linguistic definition of the comfort sensation.
The controller then adjusts the air temperature set
point in order to satisfy the required comfort
level given the prevailing values of other comfort
variables contributing to the comfort sensation.
The objectives of this work are thus:

• To develop a model sufficient for investigating
the comfort sensation control of the heating
system in a building space.

• To develop a control strategy which responds
to the essentially subjective basis of comfort
sensation.

• To compare the developed control strategy
with a conventional method of building space
heating control.

2 System model

The dynamics of a building space depend on
external microclimate variables, building
construction, user influences (e.g., adventitious
internal heat generation) and the imposed HVAC

238 Fuzzy logic controller
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plant. Thermal response modelling of building
spaces has received widespread attention over the
past 30 years or so, however, the treatment of this
problem over the relatively short time periods of
importance in control system design and synthe-
sis has received very limited attention. Particular
to this problem is a sufficiently accurate descrip-
tion of the building envelope that is computation-
ally efficient at those time intervals necessary for
fully dynamic HVAC plant participation.

A model which addresses the main features of
this problem is described elsewhere,12,13 and
adapted for the specific purpose of this work in the
following. In principle, three adaptations (besides
internal air temperature) were needed in order to
prosecute a full thermal comfort sensation analy-
sis but only two of these were incorporated. The
three adaptations were mean radiant temperature;
relative humidity; and mean relative air velocity.
Only the first two were incorporated in the model
developed previously since it was assumed that
for the heated and naturally ventilated case of
interest in this work, that mean relative air veloc-
ity (besides being difficult to evaluate dynami-
cally) would be insignificant in most applications.

2.1 Mean radiant temperature
The mean radiant temperature has a significant

influence on the body’s rate of heat loss and thus
its comfort state as defined by the Fanger
PMV.1,14Calculation of the mean radiant temper-
ature is complicated by the non-uniform ‘view’
that the body has of the various surfaces making
up a room space. Thus an approximation has been
used in the present work, and the mean radiant
temperature has been calculated by the following
equation based on an area-weighted mean in
which the index nc refers to the number of
instruction elements involved:

(1)

In practice, most building spaces experience
asymmetry in the radiant field at least to some

extent. This is particularly evident when the
following prevail (either individually or in
combination):

• large spaces;
• irregularly shaped spaces;
• where there is a high degree of glazing;
• where bare heating surfaces form the main

method of space heating.

Accounting for these conditions in the assess-
ment of Tmrt is feasible in theory but not easy in
a practical situation in which a single point
measurement is generally used to inform control.
Part of the problem is concerned with the point of
measurement since the occupant sensation of
comfort is spatially dependent. In small spaces
this is not significant and in a large space it can
be dealt with by dividing the space into a number
of rectilinear sub-spaces with a point of measure-
ment in each. A further possibility for those
spaces exhibiting one or more of the features
mentioned above is to implement a model-
assisted strategy in which a thermal model of the
space is used to offset measurements made at a
single point. None of these avenues have been
explored in the present work and form the basis
of further work in the field.

2.2 Relative humidity
Relative humidity in the space is calculated

using standard psychrometric properties of
air.15,16 Details of the algorithm used can be
found in Appendix A. The uniformity of this
parameter within the space is again an issue (see
above concerning Tmrt) however in most cases
the air moisture content (on which the relative
humidity is dependent together with prevailing
air temperature) will be well mixed unless the
space is very large. In any case the relative
humidity is less influential on overall comfort
sensation than is the case with temperature vari-
ables. Again, non-uniformity in relative humidity
is not considered in the present work.

2.3 Input data
Input data for the adapted system model were

based on a space in a campus building at the
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University of Northumbria. The building exhibits
relatively high thermal capacity on account of its
traditional construction and the heating system
comprises hot water natural convectors with
local feedback control.

3 Thermal comfort indices

The thermal comfort sensation is expressed using
Fanger’s predicted mean vote (PMV) and
percentage persons dissatisfied (PPD)1 in which
the environmental factors of influence are room
air temperature, relative humidity, mean radiant
temperature, and air velocity. In the present
work, a constant mean was used for the air veloc-
ity. In addition, there are human factors associ-
ated with activity level, and the thermal
resistance of clothing. The relationship between
PMV, PPD and the thermal sensation of the occu-
pant is summarized in Table 11 based on a
neutrality at zero PMV (positive when the ther-
mal sensation is ‘warm’ or ‘hot’ and negative

when ‘cool’ or ‘cold’. The PPD is estimated to be
5% when the PMV is zero, and the target indoor
temperature is set with respect to this point.

4 Conventional comfort-based control

In order to identify a reference performance for a
comfort-based control strategy, a conventional
approach was first developed based on a
proportional-plus-integral-plus-derivative (PID)
controller, a method commonly used in space
heating control.17,18The resulting controller and
feedback path were added to the adapted system
model as summarized in Figure 1. The controlled
variable (PMV) is calculated at each time step
from prevailing values of room air temperature,
relative humidity and mean radiant temperature
with the room air velocity, activity and clothing
levels treated as constants. This is compared with
a reference value of PMV and the resulting error
is applied to the controller. External temperature,
solar radiation and casual heat gains act as distur-
bances, as shown in Figure 1. The output of the
PID controller is given by:

(2)

Where e(t) is the error, u(t) is the control
signal and kp, ki, kd are proportional, integral and
derivative gain constants, respectively.

The initial parameters of the controller were
based on those actually in use in the building
space to which the model was applied (see
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Table 1 Relationship between PMV, PPD and thermal sensa-
tion1

PMV Thermal sensation PPD (%)

+3 Hot 100
+2 Warm 75
+1 Slightly warm 25

0 Neutral 5
–1 Slightly cool 25
–2 Cool 75
–3 Cold 100

Figure 1 Closed loop system
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Section 2.3), these values being 0.1K–1,
0.01K–1s–1, and 0.5sK–1 (representing kp, ki, kd
respectively). This produced a reasonable
response but with overshoot (Figure 5), leading
to sub-optimal thermal comfort and unnecessary
use of energy.

A tuning algorithm was adopted to adjust the
controller parameters in order to eliminate this
overshoot. The MATLAB Non-linear Control
Design (NCD) Blockset was used19 – a gradient-
based optimization designed to minimize a cost
function (i.e., a weighted maximum constraint
violation of the constrained (control) variable)
with reference to perturbed values of the tunable
variables (controller parameters). To give initial
estimates of the controller parameters, an error
mapping method was used based on the initial
parameters given above as shown in Figures 2, 3,
and 4. Using the initial mapped values from within

the planes of minimum normalized error to initiate
the tuning algorithm, tuned controller parameters
of 1.527K–1, 0.005K–1s–1, and 0.050sK–1 respec-
tively were obtained for kp, ki, kd. In this way, the
initial mapping resulted in substantial reductions
in computational effort needed by the tuning algo-
rithm. The response of the system under tuned PID
controller is shown in Figure 5 showing an
improvement over the existing case.

5 Fuzzy logic control (FLC)

Under well-tuned PID control, performance is
excellent within the narrow operating range
within which the plant was tuned as is evident
above. Once the plant operating region changes
significantly (e.g., as a result of a change in
season), then the need for retuning becomes
evident. Also, it is not possible to adequately

MM Gouda, S Danaher and CP Underwood241

Figure 2 Normalized error versus kp, ki
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Figure 4 Normalized error versus kd, kp

Figure 3 Normalized error versus kd, ki
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generalize the required parameter specification for
different applications – for example a PID
controller optimized for the control of heating in a
higher thermal capacity space will be sub-optimal
and possibly even unstable in a low thermal capac-
ity space. Similar difficulties arise with the wide
choice of heating systems that can be applied. In
addition, in the case of comfort control, a desired
comfort sensation will vary with both application
and season and is, in any case, subjective (Table
1). One solution is a controller that can respond to
this essentially subjective problem with experien-
tial information about plant response and user
requirements. A fuzzy logic controller has the
potential to meet these needs.

In this section the basic structure of the fuzzy
logic controller applied to comfort control prob-

lems will be described. More fundamental infor-
mation can be found in the literature.20–23 The
static fuzzy controller consists of four main func-
tional blocks (Figure 6): fuzzification interface;
fuzzy control rules; inference engine, and
defuzzification interface.

5.1 Fuzzification interface
The fuzzification interface consists of the

following operations:

(1) Performs a scale mapping that transfers the
input variable ranges into a corresponding
universe of discourse (quantization/normal-
ization).

(2) Performs the fuzzification strategy that
converts crisp input data into suitable

MM Gouda, S Danaher and CP Underwood243

Figure 5 Closed loop response with PID control
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linguistic variables, which may be viewed as
labels of fuzzy sets.

The fuzzification strategy converts the crisp
input data into fuzzy sets (linguistic variables)
such as, cold (COLD), cool (COOL), slightly
cool (SCOOL), neutral (NEUT), slightly warm
(SWARM), warm (WARM), and hot (HOT). The
fuzzification action consists of a set of analogue
membership functions, describing the input
linguistic terms. The membership function can be
of a variety of shapes (e.g., triangle, trapezoid,
etc.).

When building a fuzzy controller, one of the
first questions which arises, after having chosen
the inputs, is how many fuzzy sets will be needed
and how the fuzzy sets should be divided on the
universe of discourse of the inputs. More or less
standard types of fuzzy sets on a universe of
discourse of controllers are shown in Figure 7(a)
and (b).

The choice of membership functions used

depends on the problem to be dealt with and the
choice of the number of fuzzy sets and how those
fuzzy sets are divided over the universe of
discourse depends generally on how the
controller output should be related to the
controller input. For example, designing a fuzzy
controller for controlling a non-linear process
requires knowledge of the non-linearity of the
process. There is no standard design scheme that
can be employed to choose the number and posi-
tion of the fuzzy sets, and too few people realize
that this is a problem.

The overlapping of fuzzy sets together with
fuzzy inference and defuzzification result in
interpolation. If the membership functions are
convex and normal and the sets are a fuzzy parti-
tion, then the interpolation depends only on the
nearest surrounding characteristic set of points
and each characteristic point is uniquely defined
by a fuzzy rule. This is because there are no more
than two overlapping membership functions at
any point on the universe of discourse.

244 Fuzzy logic controller

Figure 6 Structure of a fuzzy logic controller
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Figure 7 Types of membership functions: (a) linear and (b) logarithmic

a)

b)
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5.2 Fuzzy control rules
The dynamic behaviour of a fuzzy system is

characterized by a set of imprecise conditional
statements, which form a set of decision rules. The
process can be expressed linguistically as a set of
linguistic decision rules of the form: If (Conditions
are satisfied) Then (Action can be inferred).

There are four ways to derive fuzzy control
rules:25,26

• From experiential knowledge of the plant
behaviour and control problem.

• By modelling or observing a human operator’s
manual interpretation of the problem.

• From a model of the plant behaviour and
control problem.

• Self-learning and adaptation by the controller
(self-organization).

5.3 Inference
There are in general four methods of fuzzy

reasoning.24 Mamdani’s minimum operation
method is the most common, involving two func-
tions:

1) Determine for any fuzzy controller input
which rules are applicable.

2) Determine the fuzzy control action by using
fuzzy reasoning.

5.4 Defuzzification strategies
At the output of inference the process is a

fuzzy set (i.e., for example, Figure 7). A non-
fuzzy control signal (i.e., a crisp value) can be
established through a defuzzification. There are
several methods for defuzzifying to a crisp
value25 of which the centre of gravity method
(COG) is the most commonly used. This method
is based on taking the aggregate of the fuzzy
outputs from each rule, weighted by their grades
of fuzzy input set membership.

6 A PMV-based fuzzy logic controller

The PMV-based fuzzy logic controller proposed
here evaluates the predicted mean vote (PMV)
level and, if this level is out of the comfort range,
provides the air temperature set point that should

be used by the plant in order to create indoor
thermal comfort. The controller, making it easy
to apply and generic to a wide range of heating
control problems uses a linguistic description of
the thermal comfort sensation. Overlapping
triangular membership functions were used for
input (fuzzification) and output (defuzzification)
of the fuzzy system.

The input membership functions were defined
by assigning seven fuzzy input sets to the vari-
ables; (COLD, COOL, SCOOL, NEUT, SWARM,
WARM, and HOT), as shown in Figure 8.

Seven fuzzy sets were ascribed to the output
variables; (FC, CL, SCL, MDL, SOP, OP, FO) to
form the output membership functions as shown
in Figure 9.

According to the number of the fuzzy sets of
the input and the output, seven fuzzy rules may
be defined as follows:

R1: If PMV is ‘COLD’ Then Vp is ‘FO’
R2: If PMV is ‘COOL’ Then Vp is ‘OP’
R3: If PMV is ‘SCOOL’Then Vp is ‘SOP’
R4: If PMV is ‘NEUT’ Then Vp is ‘MDL’
R5: If PMV is ‘SWARM’Then Vp is ‘SCL’
R6: If PMV is ‘WARM’Then Vp is ‘CL’
R7: If PMV is ‘HOT’ Then Vp is ‘FC’

The relationship between the input and the
output of the controller according to these fuzzy
rules is shown in Figure 10.

Using Mamdani’s minimum operator method
for inference, the control action is a fuzzy set,
which requires a defuzzification strategy to
obtain a crisp control signal. The COG method
was used to convert from fuzzy values to crisp
values, forming the actual control signal, which
can then be applied to the heating valve.

The overall system (building, heating system,
and outdoor climate files) with the PMV based
fuzzy logic controller and, for comparison, the
PID-based comfort controller is shown in Figure
11. A switch has been added to the model, before
the non-linear valve, to select between PID and
fuzzy logic control actions. Two different
outdoor climates have been used; one in
February (a winter month) and the second in
April (a spring month).

246 Fuzzy logic controller
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The calculation of the predicted mean vote
(PMV) and the predicted percentage of persons
dissatisfied (PPD) is determined using a
MATLAB function based on three inputs from the
simulation model; the internal air temperature, the
mean radiant temperature, and the relative humid-
ity of the internal air. Because the activity and
clothing levels are application-dependent, these
values were entered as constants.

The resulting PMV based fuzzy logic
controller was applied to the building space and
its heating system. Figure 12, shows the system
response under tuned PID and PMV-based FLC.
As can be seen, the performance of the PMV
based FLC is superior to PID controller in terms
of reference point tracking. Results were
extended over a 7-day cycle of space heating in

typical winter conditions and the energy
demands in both cases were integrated to reveal
an energy saving of approximately 20% due to
the PMV-based FLC when compared with
conventional tuned PID control.

In order to test the general applicability of the
two control systems, the building construction
data were changed to those representing a very
low thermal capacity structure while keeping the
overall thermal transmittance of each element
constant and the controller specifications
remained unchanged. This would have the effect
of making the system much more responsive thus
challenging the PID controller originally tuned
for a high thermal capacity application. Results,
shown in Figure 13, reveal that the fuzzy
controller maintains excellent tracking of the

MM Gouda, S Danaher and CP Underwood247

Figure 8 Membership functions of the fuzzy controller input
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Figure 9 Membership functions of the fuzzy controller output

Figure 10 Input/output relationships for the fuzzy controller
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Figure 11 Overall model of the building, heating system and controllers

Figure 12 Comparison of tuned PID and PMC-based FLC
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reference condition whereas the tuned PID gives
a reasonable response but with significant over-
shoot. Thus the robustness characteristic of the
PMV-based FLC is superior to that of the PID
controller. In practice, the PID controller would
either have to be tuned for each individual appli-
cation, or tuned for an expected least-damped
case (in which case it would behave sub-opti-
mally in all other applications) whereas the
PMV-based FLC would not require this.

7 Conclusions

In this work, a control strategy has been developed
for the space heating of a building space in which
the comfort sensation as quantified by predicted
mean vote forms the control variable. Difficulties
associated with the lack of generality inherent in

PID control of this problem are identified and an
alternative strategy based on a fuzzy logic
controller (FLC) is developed. There is a natural
appeal in this in that the essentially subjective
comfort control problem can be easily mapped
onto a universe of discourse of input fuzzy sets and
the associated inference which ultimately forms a
required control action can be carried out qualita-
tively. The resulting FLC is compared with a PID
controller tuned to give optimal performance for a
given case, consisting of a building space with high
thermal capacity. A further comparison is then
made using the same controller specifications but
with a low thermal capacity building space. Results
show that the FLC gives better control tracking and
robustness than the PID controller for both appli-
cations. This work has addressed the extremes of
building space thermal capacity in arriving at these

250 Fuzzy logic controller

Figure 13 Low thermal capacity building with PID control and PMC-based FLC
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conclusions and further work needs to be done on
the applicability of the results to a wider range of
construction types, heating system types (and
modes) and microclimate conditions. It is likely
that some degree of self-adaptation will therefore
be necessary and a neuro-fuzzy approach is
presently being actively explored. Further work is
also needed on the essentially spatially-variable
nature of certain variables which contribute to
comfort sensation (Sections 2.1, 2.2). One area
meriting further work is the use of model-assisted
compensation in which a thermal model is used to
predict the spatial distribution of the variables of
interest with reference to a single point of measure-
ment. From this, the measurement can subse-
quently be adjusted to account of non-uniformity
within the space.
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Appendix A

To calculate the relative humidity of a building
space, the internal air enthalpy (Hr) is first calcu-
lated from a room air total heat balance as
follows:

M H
•
r = Ql + mo(Ho – Hr) (A1-1)

The outdoor air enthalpy (Ho) is calculated using
the following set of equations:16

(A1-2)

Where Pwsat is obtained from either equation A1-
3 or A1-4:

The saturation pressure Pwsat over ice (–100 ²
T < 0):

(A1-3)

in which,

a0 = –5674.5359 a1 = 6.3925247 
a2 = –0.9677843 ´ 10–2
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Figure A1 Model realization for the internal relative humidity
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a3 = 0.622157́  10–6 a4 = 0.20748́  10–8

a5 = 0.948402́  10–12 a6 = 4.1635019.

The saturation pressure over water (0 ² T ² 200):

(A1-4)

Where:

b–1 = –5800.2206 b0 = 1.3914993 
b1 = –0.048640239 b2 = 0.41764768́  10–4

b3 = –0.14452093́  10–7 b4 = 6.5459673.

From the model-input value of external air relative
humidity (fext), the mass of water vapour of the
mixture (g) of the external air is obtained from:

fext = 100g(To) / gss(To) (A1-5)

Thus the enthalpy of the outdoor air (Ho) is given
by:

H0 = hg(To) + CTo (A1-6)

The mass of water vapour in the internal air
(g(Ti))is given by:

g(Ti) = (Hr – CTi) / h (A1-7)

Hence the percentage saturation (to which the
relative humidity may be taken as a close approx-
imation) is obtained:

fi = 100g(Ti) / gss(Ti) (A1-8)

Appendix B

The thermal comfort indices (PMV and PPD) are
calculated as follows:1

PMV = (0.352 exp(–0.42Met) + 0.032) 
´ (Met – 0.35(43 – 0.061Met – pv) 
– 0.42(Met– 50) – 0.0023Met(44 
– pv) – 0.0014Met(34 – Ti) 
– 3.4 ´ 10–8 fcl((Tcl + 273)4 – Tmrt
+ 273)4 – fclhc(Tcl – Ti)) (B1-1)

Where Tcl is calculated iteratively from the
following equation:

Tcl = 35.7 – 0.032Met – 0.18Icl(3.4 
´ fcl((Tcl + 273)4 – Tmrt + 273)4) 
+ fclhc(Tcl – Ti)) (B1-2)

PPD = 1 – 0.95 exp(–0.003353PMV4

– 0.2179PMV2) (B1-3)

ln( ) ln( )Pw b T b Tsat i
i

i

= +-

=-
å 1

4
1

3
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