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Thermal conductivity accumulation in amorphous silica and amorphous silicon
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We predict the properties of the propagating and nonpropagating vibrational modes in amorphous silica

(a-SiO2) and amorphous silicon (a-Si) and, from them, thermal conductivity accumulation functions. The

calculations are performed using molecular dynamics simulations, lattice dynamics calculations, and theoretical

models. For a-SiO2, the propagating modes contribute negligibly to thermal conductivity (6%), in agreement

with the thermal conductivity accumulation measured by Regner et al. [Nat. Commun. 4, 1640 (2013)]. For

a-Si, propagating modes with mean-free paths up to 1 μm contribute 40% of the total thermal conductivity. The

predicted contribution to thermal conductivity from nonpropagating modes and the total thermal conductivity for

a-Si are in agreement with the measurements of Regner et al. The accumulation in the measurements, however,

takes place over a narrower band of mean-free paths (100 nm–1 μm) than that predicted (10 nm–1 μm).
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I. INTRODUCTION

The vibrational modes in disordered solids (e.g., alloys,
amorphous materials) can be classified as propagons (prop-
agating and delocalized, i.e., phononlike), diffusons (non-
propagating and delocalized), and locons (nonpropagating and
localized) [1,2]. Diffusons contribute to thermal conductivity
by harmonic coupling with other modes due to the disorder.
Locons do not contribute significantly to thermal transport in
three-dimensional systems [3].

Experimental measurements, estimates based on exper-
iments, and modeling predictions have demonstrated that
propagating modes contribute significantly to the thermal
conductivity of amorphous silicon (a-Si) [4–10] and amor-
phous silicon nitride [11], but not to that of amorphous silica
(a-SiO2) [5,10,12–18]. Notably, using broadband frequency
domain thermoreflectance, Regner et al. measured how the
thermal conductivity of a-SiO2 and a-Si thin films at a
temperature of 300 K change with the thermal penetration
depth associated with the heating laser, which identifies
the depth normal to the surface at which the temperature
amplitude is 1/e of its surface amplitude [10]. Adopting the
convention of Koh and Cahill [19], they interpret the measured
thermal conductivity at a given thermal penetration depth
to be representative of the phonons with mean-free paths
(MFP) less than that value, allowing for the construction
of the thermal conductivity accumulation function [20,21].
For a-SiO2, the thermal conductivity of a 1000-nm-thick film
did not vary for thermal penetration depths between 100 and
1000 nm. This result suggests that any propagating modes that
contribute to thermal conductivity have MFPs below 100 nm.
For a-Si, they find that the thermal conductivities of films with
thicknesses of 500 and 2000 nm vary by 40% between thermal
penetration depths of 100 and 1000 nm. This result suggests
that propagating modes with MFPs in this range contribute
significantly to thermal conductivity.

Interpreting the results of Regner et al. requires knowledge
of the MFPs of the propagating modes and the contribution
to thermal conductivity from the nonpropagating modes.

*mcgaughey@cmu.edu

Traditionally, empirical expressions and simple models have
been the only means to estimate MFPs in amorphous materi-
als [12–14,22], while the Allen-Feldman (AF) theory can be
used to model the nonpropagating modes [1,4].

Predicting the vibrational MFPs in an amorphous solid
requires the group velocities and lifetimes of the low-frequency
propagating modes [4–8,12,13,15,18,23,24]. It is typically
assumed that the group velocity of these modes is equal to
the sound speed. To evaluate expressions and models for the
low-frequency mode lifetimes requires knowledge of how
the lifetimes scale with frequency. The scaling for a-SiO2

has only recently been measured, with evidence of ω−2,
ω−4, and a second ω−2 regime as the mode frequency ω

increases from 3.14 to 6.28 ×1012 rads/s [25–28]. For a-Si,
the scaling is not well understood, with temperature-dependent
and film thickness-varying measurements suggesting both ω−2

and ω−4 scalings [4–9,23,24,29–34]. Overall, experimental
measurements of the temperature-varying and film-thickness-
varying thermal conductivity of a-Si show a large variation that
depends on the deposition method and impurity concentration
(e.g., H, C, and O) [7,8,35,36]. In this study and in line
with previous modeling efforts, these effects are not included
because (i) the necessary empirical potentials do not exist and
(ii) computationally expensive density functional theory calcu-
lations limit the model sizes accessible [4,6–8,37], preventing
the study of the important low-frequency propagating modes.

The objective of this work is to investigate the propagating
and nonpropagating contributions to the thermal conductivity
of a-SiO2 and a-Si by predicting the MFPs and thermal
conductivity accumulation functions for realistic models and
comparing the predictions to experimental measurements. The
paper is organized as follows. The theoretical formulation and
modeling framework are discussed in Sec. II. The sample
preparation for the a-SiO2 and a-Si bulk models and the com-
putational details are discussed in Sec. III. In Secs. IV A–IV C,
harmonic lattice dynamics calculations are performed to
predict the vibrational density of states, the plane-wave
character of the vibrational modes, and the group velocity
of the low-frequency propagating modes (i.e., the sound
speed). The vibrational mode lifetimes are predicted using
the molecular-dynamics-based normal-mode decomposition
(NMD) method in Sec. IV D. Using the sound speeds and
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lifetimes, the vibrational mode diffusivities (i.e., the product
of the square of the group velocity and the lifetime) are
calculated and compared with predictions from the AF theory
in Sec. IV E. Using this comparison, a cutoff frequency
between propagating and nonpropagating modes is specified.
The properties of the propagating and nonpropagating modes
are then used to predict the total thermal conductivity in
Sec. V A. The thermal conductivity accumulation functions
are predicted in Sec. V B, where the results are compared with
experimental measurements.

II. THEORETICAL FORMULATION OF VIBRATIONAL

THERMAL CONDUCTIVITY

We calculate the total vibrational thermal conductivity kvib

of an amorphous solid from

kvib = kpr + kAF, (1)

where kpr is the contribution from propagating modes [38] and
kAF is the contribution from nonpropagating modes predicted
by the AF theory [4]. Mode-level properties obtained from
molecular dynamics (MD) simulations and lattice dynamics
calculations will be used as inputs. Equation (1) has been
used in previous studies of amorphous materials, leading to
predictions that while kpr is a negligible fraction of kvib for
a-SiO2 (<10%) [12,13,15,18], it is non-negligible for a-Si
(20–80%) [4–9].

The propagating contribution is modeled as [4,6]

kpr =
1

V

∫ ωcut

0

DOS(ω)C(ω)Dpr(ω)dω, (2)

where V is the system volume, ωcut is the maximum frequency
of propagating modes, DOS(ω) is the vibrational density of
states (DOS), C(ω) is the mode specific heat, and Dpr(ω) is
the mode diffusivity. When using mode properties obtained
from calculations on finite-sized systems, it is common to
write Eq. (2) as a summation over the available modes [4,6].
We choose the integral form because the required use
of finite-sized simulation cells limits the lowest-frequency
modes that can be accessed. An extrapolation must be made
to the zero-frequency limit that is more easily handled
with the integral [4–8,15,18]. Equation (2) is obtained by
using the single-mode relaxation-time approximation to solve
the Boltzmann transport equation for a phonon gas [38].
In the derivation of Eq. (2), the system is assumed to be
isotropic (valid for an amorphous material) and have a single
polarization, making the mode properties only a function
of frequency. The choice of a single polarization (i.e., an
averaging of the transverse and longitudinal branches) does
not significantly change the results predicted in this work or
in that of others [4–8,18]. We will evaluate Eq. (2) under
the Debye approximation, which assumes isotropic and linear
dispersion such that the DOS is

DOS(ω) =
3V ω2

2π2v3
s

, (3)

where vs is an appropriate sound speed.
The specific heat in the classical, harmonic limit is kB,

where kB is the Boltzmann constant. Taking this classical

limit allows for a direct comparison between the lattice-
dynamics-based predictions and those from the classical MD
simulations. The harmonic approximation has been found to
be valid for classical systems ranging from Lennard-Jones
(LJ) argon [39] to crystalline Stillinger-Weber silicon [40]
at temperatures below half the melting temperature. The full
quantum expression for the specific heat is [38]

C(ω) = kB

[

�ω/2kBT

sinh(�ω/2kBT )

]2

, (4)

where � is the Planck constant divided by 2π . The quantum
specific heat will be used for the nonpropagating modes to
compare the kAF predictions to experimental measurements in
Secs. V A and V B.

The diffusivity of the propagating modes is

Dpr(ω) = 1
3
v2

s τ (ω) = 1
3
vs�(ω), (5)

where τ (ω) is the frequency-dependent mode lifetime and
�(ω) is the MFP, defined as �(ω) = vsτ (ω). The lifetimes
will be modeled using

τ (ω) = Bω−n, (6)

where B is a constant coefficient that incorporates the effect of
temperature. By using a constant sound speed, the lifetime
and diffusivity frequency scalings will be the same. For
amorphous materials, the scaling exponent n has been found
experimentally and numerically to be between two and four
[6–9,25–28,41–43]. A value of two corresponds to anharmonic
scattering [44], while a value of four corresponds to Rayleigh-
type scattering from point defects [45]. Combined with Eq. (3),
choosing n � 2 ensures that the thermal conductivity evaluated
from Eq. (2) is finite. Choosing n > 2 causes the thermal
conductivity to diverge in the zero-frequency limit, which
can be fixed using additional anharmonic [4,6] or boundary
scattering terms [5,7,8].

The AF diffuson contribution to thermal conductivity
is [4,6]

kAF =
1

V

∑

i,ωi>ωcut

C(ωi)DAF(ωi), (7)

where ωi is the frequency of the ith diffuson mode, C(ωi) is the
diffuson specific heat, and DAF(ωi) is the diffuson diffusivity.
Equation (7) is written as a sum because there are enough
high-frequency diffusons in the finite-size systems studied here
to ensure a converged value. The AF diffusivities are calculated
from [1]

DAF(ωi) =
πV 2

�2ω2
i

∑

j �=i

|Sij |2δ(ωi − ωj ), (8)

where δ is the Dirac delta function [46]. The heat current
operator Sij , which measures the thermal coupling between
vibrational modes i and j based on their frequencies and spatial
overlap of eigenvectors, can be calculated from harmonic
lattice dynamics theory. For Eq. (8), Sij is directionally
averaged because amorphous materials are isotropic.
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III. CALCULATION DETAILS

A. Sample preparation

The three smallest a-SiO2 samples are the same as those
used in Ref. [47] and contain 288, 576, and 972 atoms
at a density of 2350 kg/m3. The atomic interactions are
modeled using the modified Beest-Kramer–van Santen (BKS)
potential [48,49] from Ref. [47], except that the 24-6 LJ
potential [50] is changed to a 12-6, which has a negligible
effect on the predictions. The LJ potentials use a cutoff
of 8.5 Å and the Buckingham potentials use a cutoff of
10 Å. The electrostatic interactions are handled using the
Wolf direct summation method with a damping parameter
of 0.223 Å−1 and a cutoff of 12 Å [51]. The simulated
density of 2350 kg/m3, which corresponds to zero pressure, is
7% larger than the experimental value of 2220 kg/m3 [52].
At the experimental density, the BKS potential generates
a structure in tension at a pressure of 2–3 GPa [47]. We
use a density of 2350 kg/m3 to be consistent with previous
simulations.

Larger systems of 2880, 4608, and 34 562 atoms were
created by tiling the smaller samples, melting at a temperature
of 10 000 K, and quenching instantaneously to a temperature of
300 K at constant volume. The melt-quench procedure and
subsequent MD simulations were performed using the MD
package LAMMPS and a time step of 0.905 fs [53]. The
resulting a-SiO2 structure is built from a network of rigidly
bonded SiO4 tetrahedral subunits that are weakly bonded
via shared oxygen atoms, as shown in Fig. 1(a). The radial
distribution function g(r) for the 4608-atom sample is shown
in Fig. 1(a) along with an experimental measurement [54].
which compares well with our sample. At least 99.5% of the
atomic coordinations are at the expected values (4 for Si and
2 for O) [47].

For a-Si, we use samples with 216, 1000, 4096, and
100 000 atoms, generated from the modified Wooten-Winer-
Weaire (WWW) algorithm from Ref. [55]. The resulting
a-Si structure is a rigid, predominantly tetrahedrally bonded
network and is shown in Fig. 1(b). A larger sample was
created from the 100 000-atom sample by tiling it twice in
all directions to create an 800 000-atom sample with a side
length of 24.81 nm. All a-Si structures have a density of
2330 kg/m3, equivalent to the perfect crystal with a lattice
constant of 5.43 Å. The Stillinger-Weber (SW) potential
is used to model the atomic interactions [56]. The MD
simulations are performed using LAMMPS with a time step
of 0.5 fs. The radial distribution function for the 4096-atom
sample is shown in Fig. 1(b). Also shown in Fig. 1(b) is an
experimental measurement [57] which compares well with
our current sample, but with a slight broadening in the first
peak.

Amorphous materials may have many different atomic con-
figurations with nearly equivalent potential energies, leading
to potential metastability during MD simulations [6,9,37].
This metastability can cause errors when predicting vibrational
lifetimes using NMD (see Sec. IV D). To remove metastability,
all a-SiO2 and a-Si samples were annealed at a temperature
of 1100 K for 10 ns [6,9]. The removal of metastability
is demonstrated by a decrease and plateau of the sample’s
potential energy during the annealing.

FIG. 1. (Color online) (a) Radial distribution function g(r) for

the 4608-atom a-SiO2 structure created from a melt-quench tech-

nique. The radial distribution function compares well with the

experimental measurement from Ref. [54]. Inset: Small sample of the

a-SiO2 structure showing the Si-O tetrahedral bond network. Bond

lengths range between 1.6 and 1.8 Å. (b) Radial distribution function

for the 4096-atom a-Si structure created by the modified WWW

algorithm. The radial distribution function compares well with the

experimental measurement from Ref. [57]. Inset: Small sample of

the a-Si structure. Bond lengths range between 2.3 and 2.7 Å.

B. Simulation details

Before data collection, all MD simulations are first equi-
librated in an NVT (constant number of atoms, volume, and
temperature) ensemble for 106 time steps at a temperature
of 300 K. Data are then collected from simulations in the
NVE (constant number of atoms, volume, and total energy)
ensemble for 221 time steps, where the atomic trajectories
are sampled every 28 time steps. Ten MD simulations with
different initial conditions are run and the predictions are
ensemble averaged.

The Green-Kubo (GK) method [58] is used to predict
a thermal conductivity kGK without using Eq. (1) using
the first-avalanche method to specify the converged value
of the integral of the heat current autocorrelation function
(Sec. V A) [59]. For system sizes of 4608 (a-SiO2, supercell
side length of 4.026 nm) and 4096 (a-Si, supercell side length
of 4.344 nm) atoms, the trajectories from the MD simulations
are also used to predict the vibrational mode lifetimes using
the NMD method (Sec. IV D).

For an amorphous supercell, the only allowed wave vector
is the gamma point (i.e., κκκ = 0), where κκκ is the wave
vector and there are 3Na polarization branches labeled by
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ν, where Na is the number of atoms. Specification of the
vibrational modes at the gamma point requires the eigenvalue
solution of a dynamical matrix of size (3Na)2 that scales as
[(3Na)2]3, limiting the system sizes that can be considered
to 4608 (a-SiO2) and 4096 (a-Si) atoms. The eigenvalue
solution is also required to predict the vibrational DOS
(Sec. IV A) and structure factors (Sec. IV B), and to perform
the NMD calculations (Sec. IV D) and the AF calculations
(Sec. IV E). The frequencies and eigenvectors were computed
using harmonic lattice dynamics calculations with GULP [60].
The calculation of the AF thermal diffusivities [Eq. (8)] is
performed using GULP and a Lorentzian broadening of 14δωavg

for a-SiO2 and 5δωavg for a-Si, where δωavg is the average
mode frequency spacing [δωavg = 1.8 × 1010 rads/s (a-SiO2)
and 1.0 × 1010 rads/s (a-Si)]. Varying the broadening by 10%
around these values does not change kAF within its uncertainty
(Sec. V A).

IV. VIBRATIONAL MODE PROPERTIES

A. Density of states

The vibrational DOS is computed from

DOS(ω) =
∑

i

δ(ωi − ω), (9)

where a unit step function of width 100δωavg is used to broaden
δ(ωi − ω). The results for a-SiO2 and a-Si are plotted in Fig. 2.
The DOS for a-Si is similar to that of crystalline silicon [61],
with peaks at mid and high frequencies. The DOS for a-SiO2

is constant over most of the frequency range, with a gap that
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FIG. 2. (Color online) Vibrational DOS of a-SiO2 and a-Si plot-

ted on a log-log scale. Both models show an ω2 scaling at low

frequency. The dashed lines indicate an extrapolation of the DOS

based on this scaling. The DOS for a-Si has two peaks similar to the

DOS of the crystalline phase [62]. The DOS for a-SiO2 is flat over

most of the spectrum, with a high-frequency gap that separates the

modes involving Si-O interactions [47].

separates the high-frequency Si-O interactions. There is a clear
ω−2 scaling for both a-Si and a-SiO2 at the lowest frequencies.
The onset of this scaling occurs at a higher frequency for
a-Si (∼1.5 ×1013 rads/s) than a-SiO2 (∼4.5 ×1012 rads/s).
This low-frequency scaling is predicted by the Debye model
[Eq. (3)] and suggests that these modes may be propagating
(i.e., phononlike).

B. Structure factor

Calculating the structure factors of the disordered modes of
the supercell at the gamma point is a method to test for their
propagating (i.e., plane-wave) character at a particular wave
vector and polarization. This approach has been previously
used to predict effective dispersion curves of disordered
and amorphous materials experimentally [18,26,28,63] and
numerically [41,42,64–66]. The structure factor at a wave
vector κκκ is defined as [2]

SL,T

(

κκκ

ω

)

=
∑

ν

EL,T

(

κκκ

ν

)

δ

[

ω − ω

(

κκκ = 0
ν

)]

, (10)

where the summation is over the gamma modes, ET refers to
the transverse polarization and is defined as

ET

(

κκκ

ν

)

=

∣

∣

∣

∣

∣

∑

b

κ̂κκ · e

(

κκκ = 000 b

ν α

)

exp

[

iκκκ · rrr0

(

l = 0
b

)]

∣

∣

∣

∣

∣

2

,

(11)

and EL refers to the longitudinal polarization and is defined as

EL

(

κκκ

ν

)

=

∣

∣

∣

∣

∣

∑

b

κ̂κκ × e

(

κκκ = 000 b

ν α

)

exp

[

iκκκ · rrr0

(

l = 0
b

)]

∣

∣

∣

∣

∣

2

.

(12)

In Eqs. (11) and (12), the b summations are over the atoms

in the disordered supercell, rrr0(
l = 0

b ) refers to the equilibrium

atomic position of atom b, l labels the unit cells (l = 0 for the
supercell), α labels the Cartesian coordinates, and κ̂κκ is a unit
vector. The vibrational mode shape is contained in the 3Na

components of its eigenvector e(
κκκ = 000 b

ν α).

The transverse and longitudinal structure factors are plotted
in Figs. 3(a) and 3(b) for a-SiO2 and a-Si for wave vectors
along the [100] direction of the supercells. Because amorphous
structures are isotropic, the structure factors are direction
independent. Mode frequencies ω0(κκκ) and linewidths Ŵ(κκκ)
can be predicted by fitting each structure factor peak to a
Lorentzian function of the form

SL,T

(

κκκ

ω

)

=
C0(κκκ)

[ω0(κκκ) − ω]2 + Ŵ2(κκκ)
, (13)

where C0(κκκ) is a constant related to the DOS [65]. A dispersion
relation is identified by plotting the ω0(κκκ) values in the middle
panels of Figs. 3(a) and 3(b), where the error bars indicate
the linewidths. For a-Si, Lorentzian fits to the structure factor
peaks have coefficients of determination greater than 0.8 for
|κκκ|/κmax � 0.75 and less than 0.7 for |κκκ|/κmax > 0.75, where
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FIG. 3. (Color online) Longitudinal (left panel) and transverse

(right panel) structure factors [Eq. (10)] for (a) a-SiO2 and (b) a-Si.

The wave vectors are normalized by κmax = 2π/a, where a is 4.8 Å

(a-SiO2) and 5.43 Å (a-Si), based on the lattice constants of the

crystalline phases [48,56].

κmax = 2π/a and a is the lattice constant of crystalline silicon
(5.43 Å) [56]. For a-SiO2, the coefficients of determination
are greater than 0.8 for |κκκ|/κmax � 0.2 and less than 0.7 for
larger wave vectors, where the structure factors peaks are less
than an order of magnitude larger than the background. To
evaluate κmax for a-SiO2, we use a lattice constant of 4.8 Å,
which corresponds to the a direction of quartz [48].

For a-Si, the extracted dispersion is nearly linear at small
wave vectors with a slight decrease in slope at the largest
values [4,6]. For a-SiO2, the dispersion is concave down
for the smallest wave vectors considered, transitioning to a
strong concave-up dispersion at intermediate wave vectors.
For the intermediate wave vectors, the longitudinal dispersion
for a-SiO2 is well described by the so-called “dispersion law
for diffusons,” where ω ∝ κ2 [65]. This large concave-up dis-
persion has been observed in experimental measurements and
numerical models of amorphous materials including a-SiO2

[18,41,42,63,64]. We note that at frequencies lower than
1012 rads/s, experimental measurements of a-SiO2 recover
a linear dispersion [18,26,28,63,67]. This frequency range is
not accessible with the a-SiO2 models studied in this work.

The atomic structures of a-SiO2 and a-Si play an important
role in determining the differences in the low-frequency mode
properties. The weakly bonded network of tetrahedra in a-
SiO2 [48,49] results in a Debye scaling of the DOS that occurs
at a lower frequency than in a-Si (Fig. 2), which is a network
of strongly bonded tetrahedra [2,55,56]. The lower-frequency
onset of the Debye scaling of the DOS for a-SiO2 leads to the
strong nonlinear dispersion seen in Fig. 3(a). The behavior of
the DOS and structure factors demonstrate a clear difference
in the properties of the low-frequency modes for our models of
a-SiO2 and a-Si, which is further investigated in the following
sections.

C. Sound speed

For a disordered solid, except for the transverse and
longitudinal sound speeds, there is not an accepted method
to predict the group velocity of individual vibrational modes.
While the structure factor gives the frequency spectrum needed
to construct a propagating state with pure wave vector κκκ ,

the individual mode spectra ET (
κκκ

ν) and EL(
κκκ

ν) predict the

plane-wave character of each mode [2]. It is not generally
possible to assign a unique wave vector to individual modes,
even at low frequency [2], which makes predicting their group
velocities challenging. While attempts have been made to
predict individual mode group velocities [9,61,68,69], there
is no theoretical basis for the proposed methods.

We now use the DOS and structure factors predicted in
Secs. IV A and IV B to predict the group velocities of the low-
frequency modes for a-SiO2 and a-Si (i.e., the sound speeds).
By fitting the DOS from Fig. 2 to Eq. (3), a sound speed
is obtained and is reported in Table I. Because the DOS is
a mixture of transverse and longitudinal modes, only a single
sound speed can be predicted. Both longitudinal and transverse
sound speeds can be predicted from the structure factor peaks
by forward differencing the dispersion relation as

vs =
ω0(κmin)

κmin

, (14)

where κmin is 0.1κmax for a-SiO2 and 0.125κmax for a-Si. The
results are provided in Table I.

TABLE I. Longitudinal and transverse sound speeds in m/s

estimated from the elastic moduli [Eqs. (15) and (16)], structure

factors [Eq. (14)], and DOS [Eq. (3)]. The preannealed group

velocities predicted by the elastic constants are labeled as moduli∗.

Method DOS ST ,SL Moduli∗ Moduli

a-SiO2

Transverse 2,528 2,732 2,541 3,161

Longitudinal 4,779 4,761 5,100

a-Si

Transverse 3,615 3,699 3,670 3,886

Longitudinal 8,047 7,840 8,271
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The transverse and longitudinal sound speeds can also be
predicted from the material’s bulk (G) and shear (K) moduli
from [60]

vs,T =
(

G

ρ

)1/2

(15)

and

vs,L =
(

4G + 3K

3ρ

)1/2

. (16)

Using the bulk and shear moduli defined in terms of the
elastic constants according to the Voigt convention [60], the
corresponding sound speeds are reported in Table I.

The longitudinal and transverse sound speeds for a-SiO2

predicted using the moduli are 10%–20% lower than predic-
tions made by Horbach et al. using a linear fit to the peaks
of the current correlation function for a model with 8016
atoms using the BKS potential [3568 m/s (transverse) and
5937 m/s (longitudinal)] [41]. The smaller values predicted
by the structure factors and DOS result from the concave-
down dispersion seen at low wave vector (i.e., we are not
able to reach the linear portion of the dispersion curve).
Experimental measurements of the sound speeds of a-SiO2

using Brillouin light and inelastic x-ray scattering range
between 3800 to 4000 m/s (transverse) and 6000 to 6400 m/s
(longitudinal) [63,67,70]. Differences between our predictions
and experimental measurements may be related to limitations
of the BKS potential.

The effect of the concave-down dispersion is less pro-
nounced for a-Si than for a-SiO2, where the sound speeds
predicted by all three methods are within 5% of each
other. Our sound speed predictions for a-Si using all three
methods are within 10% of predictions made using the elastic
moduli [71,72] and structure factor [42] from models created
by the original WWW algorithm [73]. The 4096-atom model
created by the modified WWW algorithm [55] predicted a
longitudinal sound speed of 7670 m/s from the structure
factor [43], within 5% of our prediction. In an attempt
to explain the anomalously high longitudinal sound speed
(8300 m/s) and thermal conductivity measurements in Ref. [7],
three 1000-atom a-Si models relaxed using a tight-binding
electron structure method predicted an average of 4740 m/s
(transverse) and 7830 m/s (longitudinal) [7]. By annealing our
structures to remove metastability, the sound speeds predicted
by the elastic moduli are increased, but not by the amount
reported in Ref. [7]. Experimental transverse sound speed
measurements using Rayleigh wave scattering are 3420 and
4290 m/s for sputtered and ion-bombarded a-Si thin films [35],
which is within 15% of the predictions from our models. It is
clear that the experimentally measured sound speeds for a-Si
show a wide range, which depends on the deposition method
and impurity concentration [7,8,35].

The sound speed vs,DOS will be used for both a-SiO2 and
a-Si for the rest of this work, allowing for the use of a
single polarization for the propagating contribution [Eq. (2)].
By comparing the sound speeds in Table I, it is clear that
the low-frequency DOS of our models for a-Si and a-SiO2

are dominated by transverse modes, which is expected due
to their degeneracy and lower frequencies compared to the

longitudinal modes. The transverse sound speed predicted for
our model of a-SiO2 is 85% of that predicted by the other
methods (Table I) and that measured by experiment [63,67,70],
which is likely related to the larger density of our samples
(see Sec. III A). While using a smaller transverse sound speed
leads to an underprediction of the mode diffusivities [Eq. (5)],
it leads to an overprediction of the DOS [Eq. (3)]. Holding
all other input parameters in Eq. (1) constant, a smaller sound
speed leads to a larger kpr because the DOS scales as 1/v3

s . We
can thus regard our kpr prediction as an upper bound.

D. Lifetimes

We now predict the lifetimes of all vibrational modes in our
models of a-SiO2 and a-Si using the MD simulation-based
NMD method, which explicitly includes the disorder in the
supercell [9,66,74]. In NMD, the atomic trajectories from an
MD simulation are first mapped onto the vibrational mode
coordinate time derivatives

q̇

(

κ = 0κ = 0κ = 0

ν
; t

)

=
3,n,N
∑

α,b,l

√

mb

N
u̇α

(

l

b
; t

)

e∗
(

κκκ = 000 b

ν α

)

× exp

[

i(000 · r0

(

l

0

)]

. (17)

Here, mb is the mass of the bth atom in the supercell, u̇α is the
α component of the atomic velocity, and t is time. Because
the supercells of a-SiO2 and a-Si are disordered, the NMD
method can only be performed at the gamma point (κκκ = 000). The
spectral energy of each vibrational mode �(ν,ω) is calculated
from

�(ν,ω) = lim
τ0→∞

1

2τ0

∣

∣

∣

∣

1
√

2π

∫ τ0

0

q̇

(

κ = 0κ = 0κ = 0

ν
; t

)

exp(−iωt)dt

∣

∣

∣

∣

2

.

(18)

We choose the frequency-domain representation of the normal
mode energy because we find it to be less sensitive to any
remaining metastability of the amorphous structure than the
time-domain representation.

The vibrational mode frequency and lifetime are predicted
by fitting each mode’s spectral energy to a Lorentzian function

�(ν,ω) =
C0(ν)

[ω0(ν) − ω]2 + Ŵ2(ν)
, (19)

where the constant C0(ν) is related to the average energy
of each mode. This expression is valid when the linewidth
Ŵ(ν) ≪ ω0(ν) [40]. The mode lifetime is [74]

τ (ν) =
1

2Ŵ(ν)
. (20)

The NMD-predicted lifetimes are plotted in Figs. 4(a)
and 4(b) for a-SiO2 and a-Si. Also plotted are the time
scales extracted from the structure factor linewidths 1/[2Ŵ(κ)]
(Sec. IV B). For a-SiO2, the NMD lifetimes are larger than
the Ioffe-Regel (IR) limit τ = 2π/ω [64], and are bounded
by this limit at low frequencies. Similarly for a-Si, the IR
limit is a lower limit for the lifetimes predicted by NMD.
While lifetimes predicted near the IR limit do not satisfy
the constraint Ŵ(ν) ≪ ω0(ν), only a limited number of these
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FIG. 4. (Color online) Vibrational mode lifetimes predicted by

NMD [Eq. (20)] and the time scales extracted from the structure

factors [Eq. (13)] for (a) a-SiO2 and (b) a-Si. For a-Si, a clear ω−2

scaling is observed at low frequencies, while the lifetimes plateau at

higher frequencies and over a wider range of frequencies than for

a-SiO2.

lifetimes are used to determine the coefficient of the low-
frequency scaling [see Figs. 5(a) and 5(b)].

There is no clear evidence for an ω−2 scaling in a-SiO2,
which would correspond to propagating modes. At mid-
frequencies, the NMD lifetimes are approximately constant
and there is a peak near 2 ×1014 rads/s, which corresponds to
the peak in the DOS (see Fig. 2). The time scales predicted from
the structure factor fall below the NMD-predicted lifetimes and
the IR limit by up to one order of magnitude. These low values
result because the structure factors for a-SiO2 are evaluated
for wave vectors where the resulting wave packets are formed
by nonpropagating modes [4,6].

For a-Si, the NMD lifetimes show a clear ω−2 scaling at low
frequency. The lifetimes plateau at higher frequencies, over a
wider range of frequencies than for a-SiO2, with two peaks
corresponding to the peaks in the DOS (see Fig. 2). A similar
plateau of lifetimes at high frequencies has been reported for
disordered lattices [66,75] and in another study of a-Si [9]. The
transition from the low-frequency scaling to the plateau region
occurs near 1013 rads/s, which corresponds to where the DOS
first peaks in Fig. 2. Similar behavior has been observed for
models of disordered lattices [66]. The time scales predicted by
the structure factors are in good agreement with those predicted
by NMD at low frequencies. Similar agreement has been
reported in other models of amorphous materials [6,76–78].
The agreement between the NMD-predicted lifetimes and the
structure factor time scales for a-Si at low frequencies indicates
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FIG. 5. (Color online) Vibrational mode diffusivities predicted

from NMD [using Eqs. (5) and (20) with the DOS sound speed from

Table I] and the AF theory [Eq. (8)]. Also shown are extrapolations

based on an ω−2 scaling with Eqs. (5) and (6) for a-SiO2 and

a-Si, and an additional ω−4 scaling for a-Si. For both systems, the

diffusivities are larger than the high-scatter limit [Eq. (21)] except at

high frequencies, where the modes are localized.

that these modes are plane-wave-like and that the wave packets
formed by these modes are propagating [4,6].

The NMD-predicted lifetimes for a-Si range from 0.5 to
10 ps and are similar in magnitude to those predicted for
previous WWW-generated models of a-Si [77–80]. We note
that one previous study of a-Si modeled using the Tersoff
potential predicted vibrational lifetimes on the order of 100 ps
[9], an order of magnitude larger than the values reported here
and in previous studies [77–80]. There are several issues to
consider when comparing our results to those of He et al. [9].
The a-Si models in Ref. [9] were prepared using a melt-quench
technique that may lead to structural differences. When we
applied the Tersoff potential (as used by He et al.) to the
WWW a-Si models, we predict similar lifetimes to those
from the SW potential. Furthermore, in Ref. [9] the NMD
analysis was performed in the time domain, where the effects
of metastability can be more strongly pronounced. Finally, we
note that the a-Si bulk thermal conductivity predicted by He
et al. using the Green-Kubo method is 40% larger than our
prediction (3 W/m-K versus 2.1 W/m-K).

E. Diffusivities

Using the sound speeds predicted from the DOS (Table I),
the NMD-predicted lifetimes for a-SiO2 and a-Si are used
to predict the mode diffusivities with Eq. (5). The results
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are plotted in Figs. 5(a) and 5(b). The mode diffusivities
are predicted from the NMD lifetimes for the low-frequency
modes where the DOS scales as ω2 (Fig. 2). The AF theory is
used to predict the mode diffusivities for all frequencies and
the results are also plotted in Figs. 5(a) and 5(b).

For a-SiO2, the mode diffusivities predicted by NMD and
AF agree well at low frequency. The AF diffusivities at
the highest frequencies show a sharp decrease, which is an
indication that these modes are localized [4]. The low- and
mid-frequency diffusivities are above the high-scatter limit

DHS = 1
3
vsa, (21)

which assumes that all vibrational modes travel with the sound
speed and scatter over a distance of the lattice constant [14].
In evaluating Eq. (21), we use the lattice constant of the
crystalline phase (see Sec. IV B). The low-frequency NMD
diffusivities do not show a definitive scaling. Based on the
results in Ref. [18], we choose a propagating/nonpropagating
cutoff frequency of 4.55 × 1012 rads/s, which is at the onset
of the Debye scaling of the DOS (Fig. 2). The constant B in
Eq. (6) for n = 2 is then fit to the AF-predicted diffusivities
for frequencies below the cutoff by dividing the diffusivities
by vs,DOS. The fit value is B = 5.65 × 1013 rads2 s−1.

For a-Si, the mode diffusivities predicted by NMD show a
clear ω−2 scaling. The NMD-predicted diffusivities are larger
and show less scatter than those predicted by the AF theory,
which is due to the finite-size system and the broadening that
is required to evaluate Eq. (8) [4]. By using a larger broadening
(100δωavg), the scatter in the AF-predicted diffusivities at low
frequency can be smoothed, but at the cost of decreasing
the diffusivities at intermediate and high frequencies, which
affects the predicted diffuson contribution to thermal conduc-
tivity (see Sec. V A). It is possible that a frequency-dependent
broadening may be necessary for a-Si and the AF theory, but
determining this dependence is not necessary for interpreting
our results. For a-Si, the AF diffusivities are larger than the
high-scatter limit [Eq. (21)], except for the highest-frequency
modes, which are localized [4].

For a-Si, we choose ωcut and B so that Eq. (5) is equal to
the average AF-predicted diffusivity at the cutoff frequency.
The resulting values are ωcut = 1.16 × 1013 rads/s (which is
at the onset of the Debye scaling of the DOS, Fig. 2) and
B = 2.76 × 1014 rads2 s−1. This choice allows Eq. (5) to pass
reasonably well through both the AF- and NMD-predicted
diffusivities.

While experiments on a-SiO2 show that there is a crossover
region for the low-frequency lifetime scaling from ω−2 to
ω−4 [25] and then back to ω−2 [25–28], our present model
is not large enough to investigate the mode properties in this
crossover region. Because experiments are limited for a-Si thin
films [24], we also consider an ω−4 scaling for Eq. (6). Because
this scaling is not clear from the data in Fig. 5(b), we use a
cutoff frequency of 1.52 ×1013 rads/s (which is at the onset
of the Debye scaling of the DOS, Fig. 2) based on Refs. [4,5]
and choose B = 2.07 × 1040 rads4 s−3 so that Eq. (5) is equal
to the average AF-predicted diffusivity at the cutoff frequency.

Both a-SiO2 and a-Si have a region at higher frequencies
where the AF-predicted mode diffusivities are relatively
constant. This behavior has been reported for model disordered
systems such as disordered lattices [65,66,75] and jammed

systems [81,82]. While diffusons are nonpropagating modes
whose MFPs are not well defined [4], a diffuson MFP can be
calculated from

�AF(ωi) = [3DAF(ωi)τ (ωi)]
1/2, (22)

where τ (ωi) is the NMD-predicted lifetime for that mode.
Using this definition, �AF(ωi) for both a-SiO2 and a-Si is
found to vary between the crystal lattice constant (∼0.5 nm)
and the supercell size (∼5 nm) for modes with frequency above
the cutoff. Similar MFPs have been estimated for diffusons
in a-Si in previous studies [4,6]. For modes with frequency
below the cutoff, the NMD-predicted MFPs range up to 16 nm
(a-SiO2) and 43 nm (a-Si). This result is in contrast to the
MFPs estimated in Ref. [9] for a-Si, which ranged up to
500 nm. We believe that the origin of the large MFPs in Ref. [9]
is a combination of the predicted lifetimes (see Sec. IV D) and
the method used to estimate the mode group velocities.

V. THERMAL CONDUCTIVITY

A. Bulk

To predict the bulk thermal conductivity for our models of
a-SiO2 and a-Si, we use both Eq. (1) and the GK method.
The GK method is computationally inexpensive compared to
the NMD and AF methods so that larger system sizes can be
accessed. The GK-predicted thermal conductivities for a-SiO2

and a-Si are plotted in Fig. 6 versus the inverse of the length
of the simulation cell. For a-SiO2, there is no system-size
dependence. The bulk thermal conductivity is estimated to
be 2.1 ± 0.2 W/m-K by averaging over all the samples.
This prediction is in agreement with the GK predictions in
Ref. [47] within the uncertainties, but larger than the MD-based
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FIG. 6. (Color online) Thermal conductivities of a-SiO2 and a-Si

predicted using the GK method and Eq. (1). For a-SiO2, the GK-

predicted thermal conductivity is size independent, indicating that

there is not an important contribution from propagating modes. For

a-Si, there is a clear size dependence, indicating the importance of

propagating modes.
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direct-method predictions in Ref. [83]. Shenogin et al.
predicted the total thermal conductivity of a-SiO2 using
nonequilibrium MD simulations of the same small structures
used in this work [84]. They find 2.0 W/m-K for their largest
system, which was based on a 972-atom model tiled six
times in one direction. Our GK-predicted value is larger than
experimental measurements, which range between 1.3 and
1.5 W/m-K [10,14,16,17], which may be due to the classical
nature of the MD simulation and/or the suitability of the
BKS interatomic potential for modeling thermal transport in
a-SiO2 [47,83]. Quantum statistical effects are considered later
in this section.

For a-Si, there is a clear system-size dependence of thermal
conductivity. Because the low-frequency DOS has the form
of Eq. (3) and the diffusivities scale as ω−2, the thermal
conductivity will scale as the inverse of the system size.
The bulk value can be found by extrapolating to an infinite
system size [40,85,86]. The extrapolation is performed using
the three largest system sizes [87], leading to a bulk value
of 2.0 ± 0.2 W/m-K, where the uncertainty is estimated
from the ensemble averaging for each system size. Our
extrapolated bulk value is in reasonable agreement with
experimental values for a wide range of thin-film thicknesses
(see Fig. 7 in Sec. V B). We note that a-Si can be only
prepared experimentally as a thin film, where voids and
other inhomogeneities are unavoidable [4,7,8,35,36] and can
influence the vibrational structure at low frequencies.

To predict thermal conductivity from Eq. (1), we use the
parameters B and ωcut specified in Sec. IV E assuming an ω−2

scaling below ωcut and the AF-predicted diffusivities. For a-
SiO2, the propagating, nonpropagating, and total thermal con-
ductivities are 0.10 ± 0.05, 1.9 ± 0.1, and 2.0 ± 0.1 W/m-K
(see Table II). The uncertainties are estimated by varying ωcut

and the AF broadening by 10%. The total value agrees with
the GK value within the uncertainties. For the propagating
contribution, using an expression similar to Eq. (2), Baldi
et al. [18] estimated 0.1 W/m-K and Love and Anderson [15]
estimated 0.03 W/m-K.

By using the ω−2 diffusivity scaling for a-Si, the prop-
agating, nonpropagating, and total thermal conductivities are
0.6 ± 0.1, 1.2 ± 0.1, and 1.8 ± 0.2 W/m-K. This value for total
thermal conductivity is in agreement with the GK-predicted
bulk value within the uncertainties. Earlier studies using
similar models of a-Si found that kpr is less than half of
kvib [4,6], in agreement with our results. A recent study of
a-Si modeled using the Tersoff potential found kpr ≈ kAF [9].

TABLE II. Thermal conductivities for bulk a-SiO2 and a-Si

predicted by the GK method (kGK) and Eqs. (1) (kvib), (2) (kpr), and

(7) (kAF). For the nonpropagating contribution, classical and quantum

specific heats are considered.

Thermal conductivity (W/m-K) a-SiO2 a-Si

kGK 2.1 ± 0.2 2.0 ± 0.2

kvib (classical) 2.0 ± 0.1 1.8 ± 0.2

kpr 0.10 ± 0.05 0.6 ± 0.2

kAF (classical) 1.9 ± 0.1 1.2 ± 0.1

kAF (quantum) 1.4 ± 0.1 1.0 ± 0.1

kvib (quantum) 1.5 ± 0.1 1.6 ± 0.2
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FIG. 7. (Color online) (a) Predicted thermal conductivity accu-

mulation function [Eq. (24)] for a-SiO2 compared with experimental

broadband frequency domain reflectance measurements by Regner

et al. [10] and thin-film measurements from Refs. [16,17]. The pre-

dicted thermal conductivity accumulation demonstrates that the prop-

agating contribution is negligible in our model, which is in accord with

the experimental measurements. (b) Predicted thermal conductivity

accumulation function for a-Si compared with experimental measure-

ments by Regner et al. and thin films fabricated by sputtering (Ex-

periment A) [5,31,32] and chemical vapor deposition (Experiment B)

[7,8,30,33]. The predicted thermal conductivity accumulation demon-

strates that the propagating contribution is significant for a-Si. We

note that thermal conductivities as high as 6 W/m-K (not plotted)

have been measured for a-Si thin films deposited using hot-wire

chemical vapor deposition [8].

Estimates based on experimental measurements have found
kpr to be as low as 20% [5,6] and as high as 80% of kvib [7,8].

If an ω−4 lifetime scaling is assumed for a-Si, the thermal
conductivity diverges at low frequency. We bound the thermal
conductivity by assuming the sample to be a thin film of
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thickness tf and modify the lifetimes using the Matthiessen
rule [38]

1

τeff

=
1

τbulk

+
2vs

tf
. (23)

Using the largest film thickness from the experimental litera-
ture (80 μm) [7] gives a propagating contribution to thermal
conductivity of 3.0 ± 0.4 W/m-K, which is significantly
larger than the GK-predicted value. Using the ω−2 scaling
and this film thickness gives a propagating contribution of
0.6 W/m-K (i.e., there is no change from the bulk value).
While predictions for kpr for a-Si vary based on the assumed
scaling of the low-frequency vibrational lifetimes, all evidence
supports that kpr is a significant fraction of the total thermal
conductivity [4–10].

To this point we approximated the specific heat of the prop-
agating and nonpropagating modes by the classical, harmonic-
limit value of kB. At a temperature of 300 K, the quantum heat
capacity [Eq. (4)] at the largest cutoff frequency for either
a-SiO2 or a-Si is 0.98kB, justifying the use of the classical
specific heat in the propagating term in Eq. (2). For the AF
contribution, however, the effect of the quantum specific heat
is important. At the highest frequency in each of a-SiO2 and
a-Si, the specific heat is 0.073kB and 0.47kB. Using Eq. (4) in
Eq. (7) gives AF thermal conductivities of 1.4 ± 0.1 and 1.0 ±
0.1 W/m-K for a-SiO2 and a-Si (Table II). This correction
brings the estimate of kvib for a-SiO2 into good agreement
with experimental measurements [10,14,16,17]. For a-Si, the
modified kAF is 20% lower than the classical-limit value.

B. Accumulation function

In their broadband frequency domain thermoreflectance
measurements, Regner et al. [10], adopting the convention of
Koh and Cahill [19], interpret the measured thermal conduc-
tivity at a given thermal penetration depth to be representative
of the thermal conductivity accumulation function at a MFP
equal to the thermal penetration depth. Their results are
plotted in Fig. 7(a) for a 1000-nm-thick film of a-SiO2 and
in Fig. 7(b) for 500-nm- and 2000-nm-thick films of a-Si.
The vertical coordinate of any point on the accumulation
function represents the thermal conductivity that comes from
phonons with MFPs less than the horizontal coordinate at that
point. Also plotted in Figs. 7(a) and 7(b) are experimental
measurements of thin-film thermal conductivities. For a-Si,
the experimental measurements are broadly grouped by sample
preparation technique: (A) chemical vapor deposition [7,8,33]
and (B) sputtering [5,31,32].

Based on the results in Sec. IV E, we build thermal
conductivity accumulation functions for a-SiO2 and a-Si from

k(�∗) = kAF +
∫ �∗

�cut

k(�)d�, (24)

where �cut is the MFP at the cutoff frequency, �∗ is
the maximum MFP considered in the thermal conductivity
accumulation, k(�) is the thermal conductivity as a function
of MFP [21], and the propagating mode MFPs are calculated
using lifetimes from Eq. (23). The nonpropagating contribu-
tion kAF is evaluated using the quantum specific heat (see
Sec. V A). The results are plotted for a-SiO2 in Fig. 7(a) using

an infinite film thickness and for a-Si in Fig. 7(b) using a film
thickness of 80 μm [88].

The predicted thermal conductivity accumulation function
for a-SiO2 saturates at a MFP of 10 nm, which is on the
order of the finite size of our model. This result is in
good quantitative agreement with the thermal penetration
depth-independent thermal conductivity measurements using
broadband frequency domain thermoreflectance [10] and
experimental measurements that show minimal film-thickness
dependence [16,17].

For a-Si, the low-MFP plateau of thermal conductivity in
the measurements of Regner et al. is consistent with our pre-
dicted kAF. The propagating contribution to the accumulation
is predicted using ω−2 and ω−4 lifetime scalings, which have
both been inferred from thin-film experiments [4–8,23,34].
Predictions for both the ω−2 and ω−4 scalings pass reasonably
through the thin-film thermal conductivity measurements,
particularly for thicknesses in the 50–2000 nm range. Overall,
the film-thickness-dependent measurements show a large
variation which results from the deposition method and
impurity concentration [7,8,35,36]. The measurements of
Regner et al. show sharper accumulations than either the ω−2

or ω−4 scalings, particularly for the 2000-nm film. For the
ω−2 scaling, which best matches our model [see Fig. 4(b)],
the thermal conductivity accumulation saturates at 1 μm, in
good agreement with where the measurements of Regner et al.
saturate for their 500-nm film. The 2000-nm film accumulation
shows no sign of saturation.

VI. SUMMARY

We investigated the contributions of propagating (kpr) and
nonpropagating (kAF) modes to the total vibrational thermal
conductivity (kvib) of a-SiO2 and a-Si using the NMD method
(Sec. IV D), AF theory (Sec. IV E), and the GK method
(Sec. V A). The atomic structures of a-SiO2 and a-Si play
an important role in determining the mode-level properties
needed to predict the propagating and nonpropagating contri-
butions. The propagating regime ends at a lower frequency
for a-SiO2, which is evident from the DOS (Fig. 2) and
the effective dispersion extracted from the structure factors
[Fig. 3(a)]. This smaller maximum frequency of propagating
modes is due, in part, to the weak bonding that exists
between the SiO4 tetrahedra in a-SiO2, while a-Si is formed
by a network of strongly bonded tetrahedra. The structural
differences are also apparent in the low-frequency scalings
of the mode lifetimes (Fig. 4) which show a clear ω−2

dependence (i.e., phononlike) for a-Si, but not for a-SiO2.
The combined effect of all the mode-level properties results in
a significant difference in the propagating and nonpropagating
contributions to thermal conductivity for a-SiO2 and a-Si
(Table II).

For our model of a-SiO2, the contribution from propagating
modes is negligible (∼6%). Our predictions align with exper-
imental measurements of the film-thickness independence of
thermal conductivity [16,17] and thermal penetration-depth
independence in the measurements of Regner et al. [10].
While the finite size of our model makes it difficult to
identify a clear scaling of the low-frequency lifetime scaling,
experiments show that both ω−2 and ω−4 scalings exist in
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a-SiO2 [25,26,28]. Still, in previous studies the propagating
contribution to thermal conductivity has been found to be
negligible [15–17].

For our model of a-Si, the thermal conductivity has a
significant (∼35%) contribution from propagating modes that
are best described by a lifetime scaling of ω−2. Our predicted
nonpropagating thermal conductivity contribution is in good
agreement with the plateau at low-MFP for both films studied
by Regner et al. For both films, the thermal conductivities
accumulate much faster than our predictions. The large
range of thermal conductivity measurements on a-Si thin
films suggest that a comprehensive experimental study using
thermoreflectance techniques on varying film thicknesses and
preparation techniques is necessary. It may be particularly

helpful to perform the experiments at temperatures less than
10 K, where the propagating contribution dominates for both
a-SiO2 and a-Si and the low-frequency lifetime scaling, which
is still under debate, can be better resolved.
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