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ABSTRACT

We have used molecular dynamics to calculate the thermal conductivity of symmetric and asymmetric graphene nanoribbons (GNRs) of

several nanometers in size (up to ∼4 nm wide and ∼10 nm long). For symmetric nanoribbons, the calculated thermal conductivity (e.g.,

∼2000 W/m-K at 400 K for a 1.5 nm × 5.7 nm zigzag GNR) is on the similar order of magnitude of the experimentally measured value for

graphene. We have investigated the effects of edge chirality and found that nanoribbons with zigzag edges have appreciably larger thermal

conductivity than nanoribbons with armchair edges. For asymmetric nanoribbons, we have found significant thermal rectification. Among

various triangularly shaped GNRs we investigated, the GNR with armchair bottom edge and a vertex angle of 30° gives the maximal thermal

rectification. We also studied the effect of defects and found that vacancies and edge roughness in the nanoribbons can significantly decrease

the thermal conductivity. However, substantial thermal rectification is observed even in the presence of edge roughness.

Graphene, a monolayer of graphite and two-dimensional

honeycomb lattice of sp2 bonded carbon,1 is the building

block of most carbon-based nanomaterial, such as carbon

nanotubes (CNTs) and buckyballs. Much attention has been

given to the exceptional and unique electronic properties of

graphene2-5 uncovered in the past few years. Graphene

nanoribbons (GNRs), narrow strips of graphene with few or

few tens of nanometers in width, are particularly interesting

and have been considered as important elements in future

carbon-based nanoelectronics. For example, it has been

shown that many of the electronic properties of GNRs may

be tuned by its width or edge structures.6-9

In addition to its electronic properties, the thermal proper-

ties of graphene are also of fundamental and practical

importance. Recent experiments10,11 have demonstrated that

graphene has a superior thermal conductivity, likely underly-

ing the high thermal conductivity known in CNTs12,13 and

graphite14 (ab-plane). This opens numerous possibilities of

using graphene nanostructures for nanoscale thermal man-

agement. In this work, we have used molecular dynamics

simulation to study thermal transport in few-nanometer-sized

GNRs (typically 1-4 nm wide and 6-10 nm long). We have

observed that the thermal conductivity of GNRs depends on

the edge-chirality and can be affected by defects. We have

also observed thermal rectification (TR) in asymmetric

GNRs, where the thermal conductivity in one direction is

significantly different from that in the opposite direction.

Although TR has been experimentally observed in asym-

metrically mass-loaded nanotubes15 and theoretically pre-

dicted in several other carbon nanostructures such as carbon

nanohorns16 and carbon nanotube intramolecular junctions,17

it has not been studied in any graphene systems to our

knowledge. TR have potential applications in nanoscale

thermal management such as on-chip cooling and energy

conversion by controlling the heat transport and is also

fundamental in several recently proposed novel schemes of

“thermal circuits” or information processing using

phonons.18-21 Our investigations of the thermal conductivity

and controlling heat flow in graphene nanostructures can be

important for the development of energy-efficient nanoelec-

tronics based on graphene.

In our work, we have used classical molecular dynamics

(MD) simulation based on the Brenner potential22 of

carbon-carbon interaction. We place atoms at the two ends

of a GNR in the Nosé-Hoover thermostats23,24 with tem-

peratures TL (left end) and TR (right end), respectively (the

temperature difference is denoted as ∆T), and calculate the

resulting heat current J. The thermal conductivity κ is

calculated from the well-known Fourier’s law κ ) Jd/(∆Twh)
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where d, w, and h ()0.335nm) are the length, width and

thickness of the GNR respectively. The equations of motion

for atoms in either the left or right Nosé-Hoover thermostat

are

where the subscript i runs over all the atoms in the

thermostat, pi is the momentum of the i-th atom, Fi is the

total force acting on the i-th atom, γ and τ are the dynamic

parameter and relaxation time of the thermostat, T(t) is the

instant temperature of the thermostat at time t, T0 ()TL or

TR) is the set temperature of the thermostat, N is the number

of atoms in the thermostat, kB is the Boltzmann constant and

m is the mass of the carbon atom. These equations of motion

are integrated by a third-order prediction-correction method.

The time step is 0.5 fs, and the simulation runs for 107 time

steps giving a total MD time of 5 ns. The relaxation time τ

is set to be 1 ps (see discussions in the Supporting

Information). Typically, T(t) can stabilize around the set

value T0 after 0.5 ns. Time averaging of the temperature and

heat current is performed from 2.5 to 5 ns. The heat current

injected to the thermostat is given by J ) ∑i(-γpi)pi/m )

-3γNkBT(t).17

In Figure 1, the atoms denoted with (black) squares at

the ends are fixed to avoid the spurious global rotation of

the GNRs in the simulation.25 We have also performed the

simulations with free and periodic boundary conditions and

found that the conclusions do not change qualitatively. The

atoms denoted with triangles are placed in the Nosé-Hoover

thermostats (obeying eq 1) at temperature T0 ) TL (for the

left-pointing triangles) and T0 ) TR (for the right-pointing

triangles), respectively. The atoms denoted with circles obey

the Newton’s law of motion (d/dt)pi ) Fi. The average

temperature of the two thermostats is T ) (TL + TR)/2. We

define TL ) (1 ( R)T and TR ) (1 - R)T (R > 0) so that

the temperature difference is ∆T ) |TL - TR| ) 2RT. The

parameter R ) 10% is used in all of the following

calculations (see discussions in the Supporting Information).

At steady state, there is no energy accumulation in GNRs,

so in principle JL ) JR ) 0. However, due to the nature of

the discretized MD simulation, JL + JR slightly fluctuates

around zero. Therefore, we define the heat current as J )

Figure 1. Structures of GNRs in this study: (a) symmetric
(rectangle) and (b) asymmetric (triangle).

Figure 2. (a) Thermal conductivity of armchair and zigzag GNRs. (b) Thermal conductivity as a function of chirality angle (defined in right
inset). The left two insets are two typical GNRs with edge chirality of zigzag (top) and armchair (bottom).

d
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(JL - JR)/2 and the error of the heat current as ∆J ) |JL +

JR|/2 (corresponding to the error in the thermal conductivity

∆κ ) ∆Jd/(∆Twh)). The temperature calculated from the

classical MD (TMD) has been corrected by taking into account

the quantum effects of phonon occupation, using the scheme

TMD ) (2T3/TD
2)∫0

TD/T[x2/(ex
- 1)]dx, where TD (322 K) and

T are the Debye temperature and corrected temperature,

respectively (see Supporting Information).

First, we calculate the thermal conductivity of symmetric

GNRs of rectangular shapes. For a 5.7 nm long and 1.5 nm

wide rectangular GNR (with zigzag long edge), the thermal

conductivity is found to be around 2100 W/m-K at 400 K

(Figure 2a) on the same order of magnitude with the

experimental measured value (∼3000-5000 W/m-K) of

graphene.10,11 On the other hand, the calculated thermal

conductivity is nearly doubled after doubling the length of

GNRs (with width unchanged). This suggests that our

calculated thermal conductivity is limited by the finite length

of GNRs and not corresponding to the value for graphene

of macroscopic size. This is consistent with the phonon mean

Figure 3. Thermal conductivity of (a) triangular asymmetric and (b) rectangular symmetric GNRs. The right inset of (a) shows the thermal
rectification factor η as a function of temperature.

Figure 4. Thermal conductivity of triangular GNRs: (a) dependence of thermal conductivity on vertex angles for triangular GNRs with
armchair bottom edges and effect of edge chirality of the bottom edge on thermal conductivity at vertex angle of (b) 30° and (c) 60°. The
thermal rectification factors versus temperature for the various structures simulated are shown in insets.
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free path (MFP) in graphene extracted from the experiment

(775 nm)11 being much larger than the length (up to ∼10

nm) of the GNRs simulated in this study. We have also found

that the calculated thermal conductivity remains nearly the

same after doubling the width of GNRs (with the length

unchanged). As we will see for all of the GNRs in this study,

the thermal conductivity always monotonically increases with

temperature (T), in the range we studied (100-400 K).

Similar behavior is predicted in a recent theory on the thermal

conductivity of small graphene flakes.26

The effect of edge chirality on the thermal conductivity

in rectangular GNRs is also investigated. The chirality of

GNRs (see the right inset of Figure 2b for the definition of

chirality angle) is defined according to the edge parallel to

the long direction of the GNR (different from the convention

for CNTs). In Figure 2a, thermal conductivity is plotted as

a function of temperature for both zigzag- (dashed line) and

armchair- (solid line) edged GNRs. We show that the thermal

conductivity of zigzag GNR (dashed line) is 20-50% larger

than that of the armchair GNR (solid line). Recent work by

Jiang et al. obtained qualitatively similar results as ours using

an approach based on ballistic phonon transport.27 Similar

effects have also been studied for CNTs, but there have been

no generally accepted agreement on the preferred chirality

of CNT for heat conduction.28,29 CNTs are periodic in the

azimuthal direction and they can be considered as GNRs with

infinite width. All phonon modes can propagate in CNTs.

However, in GNRs with finite width the phonon modes

propagating along the heat flow direction dominate. We

speculate that the difference between the thermal conductivity

of armchair and zigzag GNRs is mainly due to the different

phonon scattering rates at the armchair and zigzag edges and

the effect of the finite size of GNRs. Figure 2b shows the

thermal conductivity as a function of the chirality angle at

the temperature of 400 K. Two peaks of the thermal

conductivity at chirality angles of 0 (corresponding to

armchair edge) and 30° (zigzag edge) can be clearly

identified. The peak at 30° is higher than that at 0° as seen

in Figure 2a. We only need to study the chirality angle from

0 to 60° due to the 6-fold rotational symmetry of graphene.

The GNRs with chirality angle not equal to integer multiples

of 30° have irregular edges. Phonons can be strongly

scattered by these irregular edges, likely resulting in the

relatively low thermal conductivity at these angles (thus the

two peaks at 0 and 30°) as seen in Figure 2b.

We have studied thermal conductivity of the asymmetric

GNRs of triangular shapes (Figure 1b) and found significant

thermal rectification. It is shown in Figure 3a that the thermal

conductivity from the narrower (N) to the wider (W) end

(κNfW) of such a triangular GNR is less than that from the

wider to the narrower end (κWfN). The thermal rectification

factor, defined as η ≡ (κWfN - κNfW)/κNfW is as large as

120% (at T ) 180 K), as shown in the right inset of Figure

3a. We have also found similar thermal rectification in

trapezoid-shaped GNRs, but with smaller rectification factor.

In contrary, in the symmetric rectangle GNRs there is no

thermal rectification, that is, the thermal conductivity from

the left (L) to the right (R) is the same as that from the right

to the left (dashed lines in Figure 3b) within the MD

uncertainty. In calculating the thermal conductivity of

asymmetric GNRs, the width (w) is taken as the width at

the middle of GNRs. The temperature dependence of the

thermal conductivity of the rectangular or trapezoidal GNRs

is found to be similar to that of the rectangular GNRs. The

overall thermal conductivity of asymmetric GNRs is lower

than that of comparably sized symmetric GNRs.

Previous studies of thermal rectifications (TR)15-18 have

suggested that TR originates from the interplay between

Figure 5. Effect of various defects on thermal conductivity of GNRs: (a) single and double vacancies and edge roughness for a symmetric
rectangular GNR and (b) edge roughness for an asymmetric triangular GNR (the left inset shows the thermal rectification factor).
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structural gradient and lattice nonlinearity. A similar mech-

anism can underlie the TR in our asymmetric GNRs. We

have investigated several geometric variations of the trian-

gular GNRs to search for the structure with largest thermal

rectification. To make better comparison, the solid lines in

Figure 4a,b are the calculated thermal conductivity of

asymmetric triangular GNR shown in Figure 3a. This

particular structure has an armchair bottom edge and a 30°

vertex angle (defined in Figure 1b). Figure 4a shows the

thermal rectification of the GNRs with different vertex angles

but the same bottom edge length and chirality (armchair).

The dashed lines (dotted lines) are for the GNRs with vertex

angle of 45° (60°). Compared with the GNR with vertex

angle of 30° (solid line), the GNR with vertex angle of 45°

(60°) has lower (higher) thermal conductivity in both

directions, but both GNRs with vertex angles of 45 and 60°

exhibit less thermal rectification (see the inset of Figure 4a).

For the GNR with vertex angle of 45°, its hypotenuse has

irregular edge and the phonon scattering at this edge likely

decreases both the thermal conductivity and the thermal

rectification. In triangular GNRs with armchair bottom edge,

only the GNRs with vertex angle of 30 and 60° do not have

irregular hypotenuse edges. At large vertex angles, the

triangular GNRs approach the symmetric rectangular GNRs,

which has zero thermal rectification. Since both irregular

edge scattering and large vertex angles can decrease the

thermal rectification, we suggest that a vertex angle of 30°

may be optimal for thermal rectification. We have demon-

strated in Figure 2 that the symmetric zigzag GNRs have

larger thermal conductivity than that of the armchair GNRs.

This is also true for asymmetric triangular GNRs. In Figure

4b (4c), the GNR with armchair bottom edge and vertex

angle of 30° (60°) (solid lines) has smaller thermal conduc-

tivity than the GNR with zigzag bottom edge and vertex

angle of 30° (60°) (dashed lines), but the former has larger

thermal rectification. Overall, among various triangular GNRs

we investigated, the one with armchair bottom edge and

vertex angle of 30° has the largest thermal rectification.

In reality, GNRs inevitably have defects. We have studied

the effect on the thermal conductivity of GNRs due to two

types of defects: circular vacancies and edge roughness. In

Figure 5a, we show the thermal conductivity of GNR with

single (dotted line) and double (dash-dot line) circular

vacancies and rough edges (dashed line). Here a single

circular vacancy is created by removing all six carbon atoms

of a hexagon. Compared to the perfect rectangular GNR

(solid line), the thermal conductivity decreases after intro-

ducing circular vacancies. The edge roughness of the

symmetric GNR can also decrease its thermal conductivity.

This is in qualitative agreement with recent theoretical

prediction by Nika et al. that the thermal conductivity of

graphene flakes depends on the edge roughness and defect

concentration, especially for small flakes.30 The effect of edge

roughness in the triangular GNR is also studied. We remove

six atoms at the bottom edge and the hypotenuse of the

triangular GNR of Figure 1b. The solid lines in Figure 5b

represent the thermal conductivity of the perfect triangular

GNR with armchair bottom edge and vertex angle of 30°.

The edge roughness decreases both the thermal conductivity

and the thermal rectification, which is nonetheless still as

large as 80% at T ∼ 180 K.

In summary, we have used classical molecular dynamics

to calculate the thermal conductivity of both symmetric and

asymmetric GNRs of few nanometers in size. The calculated

thermal conductivity of symmetric rectangular GNRs is on

the same order of magnitude as the value expected for

graphene but with differences likely caused by the finite sizes

of GNRs. The thermal conductivity is shown to depend on

edge chirality and the zigzag edge GNRs is shown to have

larger thermal conductivity than that of the armchair edge

GNRs. We have demonstrated the thermal rectification effect

in asymmetric triangular and trapezoidal GNRs. The trian-

gular GNR with vertex angle of 30° and armchair bottom

edge is found to have the largest thermal rectification among

all GNRs studied. The defects can reduce the thermal

conductivity of GNRs as well as the thermal rectification in

asymmetric GNRs.
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(8) Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Phys. ReV. Lett. 2007,

98, 206805.
(9) Chen, Z.; Lin, Y. M.; Rooks, M. J.; Avouris, P. Physica E 2007, 40,

228.
(10) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.;

Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.
(11) Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.;

Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Appl. Phys. Lett. 2008,
92, 151911.

(12) Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Phys. ReV. Lett. 2001,
87, 215502.

(13) Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Nano Lett. 2006,
6, 96.

(14) Pierson, H. O. Handbook of Carbon, Graphite, Diamonds and

Fullerenes: Processing, Properties and Applications; Noyes Publica-
tions: Park Ridge, NJ, 1995.

(15) Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. Science 2006, 314,
1121.

(16) Wu, G.; Li, B. J. Phys.: Condens. Matter 2008, 20, 175211.
(17) Wu, G.; Li, B. Phys. ReV. B 2007, 76, 085424.
(18) Li, B.; Wang, L.; Casati, G. Phys. ReV. Lett. 2004, 93, 184301.

2734 Nano Lett., Vol. 9, No. 7, 2009

D
o
w

n
lo

ad
ed

 b
y
 P

U
R

D
U

E
 U

N
IV

 o
n
 A

u
g
u
st

 3
, 
2
0
0
9

P
u
b
li

sh
ed

 o
n
 J

u
n
e 

5
, 
2
0
0
9
 o

n
 h

tt
p
:/

/p
u
b
s.

ac
s.

o
rg

 | 
d
o
i:

 1
0
.1

0
2
1
/n

l9
0
1
2
3
1
s



(19) Li, B.; Wang, L.; Casati, G. Appl. Phys. Lett. 2006, 88, 143501.
(20) Wang, L.; Li, B. Phys. ReV. Lett. 2007, 99, 177208.
(21) Wang, L.; Li, B. Phys. ReV. Lett. 2008, 101, 267203.
(22) Brenner, D. W. Phys. ReV. B 1990, 42, 9458.
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 1

SUPPORTING INFORMATION: 

Usually, the relaxation time   in the MD simulation should not be too small compared with the time 

step because small   can cause large oscillations in temperature. Such oscillations can lead to the 

accumulation of numerical errors, causing the system to deviate from the canonical distribution.1 Such 

numerical error accumulation can also happen if the relaxation time is very large because the total 

simulation time becomes very long. Our simulation indicates that the steady state temperature or heat 

current distribution do not depend on any particular value of the relaxation time in the range from 100 fs 

to 1 ps. Our choice of the relaxation time of 1 ps is large enough to avoid the high frequency 

temperature oscillations, and leads to a stabilization time (the time needed to reach a steady state in 

simulation) of about 0.5 ns, which is short enough to avoid large numerical error accumulation. 

Temperature dependent thermal conductivity is ideally defined at the limit  TwhJd
T

  /lim 0 . 

In non-equilibrium MD, however, fluctuations always exist in both the temperature difference T  and 

the heat current J . If T  is too small compared to its fluctuations, the thermal conductivity calculation 

becomes problematic. We examined the rectangular GNR and found that the temperature difference for 

%5  does not fully dominate over its fluctuations but %10  works well. Therefore, we set 

%10  in all simulations in this work. We have also checked that %10  is still small enough for 

the thermal transport to be in the linear response regime. 

We have made a quantum correction to connect the classical MD temperature 
MD

T  (defined as the 

average classical kinetic energy 
2

2

1
i

mv ) to the temperature T  related to the phonon mode occupation 

number. Here we assume that only three acoustic phonon branches contribute to the thermal transport 

and they have linear phonon dispersion with phonon sound velocities skmv
LA

/5.19 , skmv
TA

/2.12  

and skmv
ZA

/59.1 .2 Under these assumptions, the phonon density of states of the 2-dimensional 

GNRs is linearly dependent on the frequency  , i.e.,    22/3 nvD   , where n  is the number of 

atoms in unit area of graphene and skmv /72.2  is the effective phonon velocity from the equation 



 2

22223
 

ZATALA
vvvv . At quantum-corrected temperature T , the Debye model indicates that the 

phonon energy per carbon atom is    



/

0
,

DBTk

dTnD  , where    1/1, /  TkBeTn
   is the 

occupation number of phonons excluding the zero-point-energy occupation number. The Debye 

temperature 
BDD

kvkT /  calculated from the Debye wave vector length nk
D

4  and carbon-

carbon bonding length of nm142.0 , is 322K. On the other hand, the kinetic energy per carbon atom 

should equal to 
MDB

Tk3 . One can derive that the quantum temperature and the classical MD temperature 

are related through  


TT

x

D

MD

D

dx
e

x

T

T
T

/

0

2

2

3

1

2
. 

The Fortran code used in this simulation is downloaded from 

http://www.eng.fsu.edu/~dommelen/research/nano/brenner/. The bugs of this code have been fixed by 

Dr. Leon van Dommelen. We have introduced Nosé-Hoover thermostats into the codes and set the two 

thermostats at different temperatures to simulate the non-equilibrium thermal transport. 
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