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Abstract

Very large thermal conductivity enhancement had been reported earlier in colloidal suspensions of solid

nanoparticles (i.e., nanofluids) and more recently also in oil-in-water emulsions. In this study, nanoemulsions of

alcohol and polyalphaolefin (PAO) are spontaneously generated by self-assembly, and their thermal conductivity and

viscosity are investigated experimentally. Alcohol and PAO have similar thermal conductivity values, so that the

abnormal effects, such as particle Brownian motion, on thermal transport could be deducted in these alcohol/PAO

nanoemulsion fluids. Small angle neutron-scattering measurement shows that the alcohol droplets are spheres of

0.8-nm radius in these nanoemulsion fluids. Both thermal conductivity and dynamic viscosity of the fluids are found

to increase with alcohol droplet loading, as expected from classical theories. However, the measured conductivity

increase is very moderate, e.g., a 2.3% increase for 9 vol%, in these fluids. This suggests that no anomalous

enhancement of thermal conductivity is observed in the alcohol/PAO nanoemulsion fluids tested in this study.

Introduction

Nanofluids, i.e., colloidal suspensions of solid nanoparti-

cles, and more recently, nanoemulsion fluids have

attracted much attention because of their potential to sur-

pass the performance of conventional heat transfer fluids

[1-22]. The coolants, lubricants, oils, and other heat trans-

fer fluids used in today’s thermal systems typically have

inherently poor heat transfer properties which have come

to be reckoned as the most limiting technical challenges

faced by a multitude of diverse industry and military

groups. A number of studies have been conducted to

investigate thermal properties of nanofluids with various

nanoparticles and base fluids. However, the scientific com-

munity has not yet come to an agreement on the funda-

mental effects of nanoparticles on thermal conductivity of

the base fluids. For example, many groups have reported

strong thermal conductivity enhancement beyond that

predicted by Maxwell’s model in nanofluids [1,2,23,24].

Consequently, several hypotheses were proposed to

explain those unexpected experimental results, including

particle Brownian motion, particle clustering, ordered

liquid layer, and dual-phase lagging [18,21,25-28].

Recently, however, an International Nanofluid Property

Benchmark Exercise reported that no such anomalous

enhancement was observed in nanofluids [22].

In this study, nanoemulsion fluids of alcohol in polyal-

phaolefin (PAO) are employed to investigate the effects

of nanodroplets on the fluid thermal conductivity and

viscosity. These fluids are spontaneously generated by

self-assembly. The dependence of thermal conductivity

and viscosity on droplet concentration has been obtained

experimentally in these nanoemulsion fluids. The droplet

size is determined by the small angle neutron-scattering

(SANS) technique.

Nanoemulsion heat transfer fluids

Nanoemulsion fluids are suspensions of liquid nanodro-

plets in fluids, which are part of a broad class of multi-

phase colloidal dispersions [17,29,30]. The droplets

typically have length scale <100 nm. The nanoemulsion

fluid can be formed spontaneously by self-assembly with-

out need of external shear-induced rupturing. These

nanodroplets are in fact swollen micelles in which the

outer layer is composed of surfactant molecules having

hydrophilic heads and hydrophobic tails. It should be
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stressed that the nanoemulsion fluids are thermodynami-

cally stable, unlike conventional (macro) emulsions.

Nanoemulsion fluids could serve as a model system to

investigate the effects of particles on thermophysical prop-

erties in nanofluids because of their inherent features: (1)

their superior stability, (2) their adjustable droplet size, (3)

thermal conductivity and volume concentration of dro-

plets can be accurately determined, etc.

In this study, nanoemulsions of alcohol in PAO are

formed, in which the alcohol droplets (Sigma-Aldrich Co.,

MO , USA) are stabilized by the surfactant molecules

sodium bis(2-ethylhexyl) sullfosuccinate (Sigma Aldrich)

that have hydrophilic heads facing inward and hydropho-

bic tails facing outward into the base fluid PAO (Chevron

Phillips Chemical Company LP, TX, USA). Figure 1 shows

the picture of the prepared alcohol/PAO nanoemulsion

fluids and the pure PAO. The alcohol/PAO nanoemulsion

fluid is optically transparent, but scatters light due to the

Tyndall effect. PAO is widely used as heat transfer fluid

and lubricant, and is able to remain oily in a wide tem-

perature range due to the flexible alkyl-branching groups

on the C-C backbone chain. Alcohol is chosen as the dis-

persed phase because it has a thermal conductivity close

to that of PAO, kPAO = 0.143 W/mK and kalcohol = 0.171

W/mK, at room temperature [31,32], so that the conduc-

tivity increase predicted from the effective medium theory

would be minimized in such nanoemulsion fluids, and the

contribution from other sources such as particle Brownian

motion and dual-phase lagging could be deducted.

Results and discussion

SANS measurement

SANS measurements are carried out for the in situ deter-

mination of the size of droplets in the nanoemulsion

fluids. Unlike the conventional dynamic light scattering,

the SANS can be applied to the “concentrated” colloidal

suspensions (e.g., >1 vol%) [33,34]. In our SANS experi-

ment, samples are prepared using deuterated alcohol to

achieve the needed contrast between the droplets and the

solvent. SANS measurements are conducted on the NG-

3 (30 m) beamline at the NIST Center for Neutron

Research (NCNR) in Gaithersburg, MD. Samples are

loaded into2-mm quartz cells. Figure 2 shows the SANS

data, the scattering intensity I versus the scattering vector

q = 4π sin(θ/2)/l, where l is the wavelength of the inci-

dent neutrons, and θ is the scattering angle. The approxi-

mation q = 2πθ/l is used for SANS (due to the small

angle θ). The analysis of the SANS data suggests that the

inner cores of the swollen micelles, i.e., the alcohol dro-

plets, are spherical and have a radius of about 0.8 nm for

9 vol%. The error in droplet size is about 10%. The SANS

data were processed using the IGOR software under the

protocol from NCNR NIST.

Thermal conductivity characterization

A technique, named the 3ω-wire method, has been

developed to measure the thermal conductivity of

liquids [12,35]. Most of published thermal conductivity

data on the nanofluids were obtained using the hot-wire

Figure 1 Alcohol/PAO nanoemulsion fluids (Bottle A) and pure PAO (Bottle B). Liquids in both bottles are transparent. The Tyndall effect (i.

e., a light beam can be seen when viewed from the side) can be observed only in Bottle A when a laser beam is passed through Bottles A and

B. Pictures taken using a Canon PowerShot digital camera.
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method, which measures the temperature response of

the metal wire in the time domain [36]. Our 3ω-wire

method is actually a combination of the 3ω-wire and

the hot-wire methods. Similar to the hot-wire method, a

metal wire suspended in a liquid acts both as a heater

and a thermometer. However, the 3ω-wire method

determines the fluid conductivity by detecting the

dependence of temperature oscillation on frequency,

instead of time. In the measurement, a sinusoidal cur-

rent at frequency ω is passed through the metal wire

and then a heat wave at frequency 2ω is generated in

the liquid. The 2ω temperature rise of the wire can be

deduced by the voltage component at frequency 3ω.

The thermal conductivity of the liquid, k, is determined

by the slope of the 2ω temperature rise of the metal

wire [12,37]:

k =
p

4π l

(

∂T2ω

∂Inω

)

−1

(1)

where p is the applied electric power, ω is the fre-

quency of the applied electric current, l is the length of

the metal wire, and T2ω is the amplitude of temperature

oscillation at frequency 2ω in the metal wire. One advan-

tage of this 3ω-wire method is that the temperature oscil-

lation can be kept small enough (below 1 K, compared to

about 5 K for the hot-wire method) within the test liquid

to retain constant liquid properties. Calibration experi-

ments were performed for hydrocarbon (oil), fluorocar-

bon, and water at atmospheric pressure. The literature

values were reproduced with an error of <1%.

Figure 3 shows the relative thermal conductivity as a

function of the loading of alcohol nanodroplets in alcohol/

PAO nanoemulsion fluids at room temperature. The pre-

diction by the Maxwell model is also plotted in Figure 3

for comparison. The relative thermal conductivity is

defined as keff/ko, where ko and keff are the thermal con-

ductivities of the base and nanoemulsion fluids, respec-

tively. The PAO thermal conductivity is experimentally

found to be 0.143 W/m K at room temperature, which

compares well with the literature value [32]. It can be seen

in this figure that the relative thermal conductivity of the

alcohol/PAO nanoemulsion fluids appears to be linear

with the loading of alcohol nanodroplets over the range

from 0 to 9 vol%. However, the magnitude of the conduc-

tivity increase is rather moderate in the fluids, e.g., a 2.3%

increase for 9 vol% loading.

The effective medium theory reduces to Maxwell’s

equation for suspensions of well-dispersed, non-interact-

ing spherical particles [22,38]:

keff

ko
=

kp + 2ko + 2φ(kp − ko)

kp + 2ko − φ(kp − ko)
, (2)

where ko is the thermal conductivity of the base fluid,

kp is the thermal conductivity of the particles, and � is

the particle volumetric fraction. Equation (2) predicts

that the thermal conductivity enhancement increases

approximately linearly with the particle volumetric frac-

tion for dilute nanofluids or nanoemulsion fluids (e.g.,

� <10%), if kp >ko and the particle shape remains

unchanged. The solid line in Figure 3 represents the
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Figure 2 SANS curve (scattering intensity I versus scattering vector q) for the alcohol/PAO nanoemulsion fluids with 9 vol%. SANS

measurement was made on the NG-3 beamline at NIST.
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relative thermal conductivity evaluated from Equation

(2). It can be seen that the measured thermal conductiv-

ity is in good agreement with the prediction of Max-

well’s equation in the alcohol/PAO nanoemulsion fluids.

The very small increase in thermal conductivity (<2.3%)

is due to the fact that the thermal conductivity of

alcohol is very slightly larger than that of PAO, kPAO =

0.143 W/mK, and kalcohol = 0.171 W/mK at room tem-

perature. No strong effects of Brownian motion on ther-

mal transport are found experimentally in those fluids

although the nanodroplets are extremely small, around

0.8 nm.

Figure 3 Relative thermal conductivity of the alcohol/PAO nanoemulsion fluids versus alcohol volumetric fraction. The prediction by the

Maxwell equation is shown for comparison.

Figure 4 Relative dynamic viscosity of the alcohol/PAO nanoemulsion fluids versus alcohol volumetric fraction. The prediction by the

Einstein equation is shown for comparison.
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Viscosity characterization

Unlike the thermal conductivity, the viscosity of the

alcohol/PAO nanoemulsion fluids is found to be altered

significantly because of the dispersed alcohol droplets. A

commercial viscometer (Brookfield DV-I Prime) is used

for the viscosity measurement. The dynamic viscosity is

found to be 7.3 cP in the pure PAO, which compares

well with the literature value [32].

Figure 4 shows the relative dynamic viscosity, μeff/μo,

for the alcohol/PAO nanoemulsion fluids with varying

alcohol loading. An approximately linear relationship is

observed between the viscosity increase and the loading

of alcohol nanodroplets in the range of 0-9 vol%, a trend

similar to thermal conductivity plotted in Figure 3. How-

ever, the relative viscosity is found to be much larger

than the relative conductivity if compared at the same

alcohol loading. For example, the measured viscosity

increase is 31% for 9 vol% alcohol loading, compared to a

2.3% increase in thermal conductivity. It is worth noting

that the viscosities of the pure PAO and the alcohol/PAO

nanoemulsion fluids have been measured at spindle rota-

tional speed ranging from 6 to 30 rpm and exhibits a

shear-independent characteristic of Newtonian fluids.

The viscosity increase of dilute colloids can be predicted

using the Einstein equation, μeff/μ0 = 1 + 2.5� [39]. This

equation, however, underpredicts slightly the viscosity

increase in the alcohol/PAO nanoemulsion fluids, as can

be seen in Figure 4. This discrepancy is probably because

the droplet volume fraction, �, used in the viscosity calcu-

lation does not take into account the surfactant layer out-

side the alcohol core. That is, the actual volume fraction

of droplets should be larger than the fraction of alcohol in

the alcohol/PAO nanoemulsion fluids.

Conclusion

The nanoemulsion fluids of alcohol in PAO are employed

to investigate the effects of the dispersed droplets on ther-

mal conductivity and viscosity. Alcohol and PAO have

similar thermal conductivity values at room temperature

and are physically immiscible. SANS measurements are

conducted for the in situ determination of the droplet size

in the nanoemulsion fluids. The fluid thermal conductivity

is measured using the 3ω-wire method. As predicted by

the classical Maxwell model, the increase in thermal con-

ductivity is found to be very moderate, about 2.3% for 9

vol% loading, in the alcohol/PAO nanoemulsion fluids.

This suggests that the thermal conductivity enhancement

due to particle Brownian motion is not observed experi-

mentally in these nanoemulsion fluids although the nano-

droplets are extremely small, around 0.8 nm in radius.

Unlike thermal conductivity, the viscosities of the alcohol/

PAO nanoemulsion fluids are found to increase signifi-

cantly due to the dispersed alcohol droplets.
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