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Thermal conductivity of bulk and thin-film silicon: A Landauer approach

Changwook Jeong, Supriyo Datta, and Mark Lundstrom
Network for Computational Nanotechnology, Birck Nanotechnology Center, Purdue University,
West Lafayette, Indiana 47907, USA

(Received 1 February 2012; accepted 31 March 2012; published online 3 May 2012)

The question of what fraction of the total heat flow is transported by phonons with different

mean-free-paths is addressed using a Landauer approach with a full dispersion description of

phonons to evaluate the thermal conductivities of bulk and thin film silicon. For bulk Si, the results

reproduce those of a recent molecular dynamic treatment showing that about 50% of the heat

conduction is carried by phonons with a mean-free-path greater than about 1 lm. For the in-plane

thermal conductivity of thin Si films, we find that about 50% of the heat is carried by phonons with

mean-free-paths shorter than in the bulk. When the film thickness is smaller than �0.2 lm, 50% of

the heat is carried by phonons with mean-free-paths longer than the film thickness. The cross-plane

thermal conductivity of thin-films, where quasi-ballistic phonon transport becomes important, is

also examined. For ballistic transport, the results reduce to the well-known Casimir limit [H. B. G.

Casimir, Physica 5, 495–500 (1938)]. These results shed light on phonon transport in bulk and

thin-film silicon and demonstrate that the Landauer approach provides a relatively simple but

accurate technique to treat phonon transport from the ballistic to diffusive regimes. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4710993]

I. INTRODUCTION

Recent molecular dynamics (MD) simulations2 have

shown that in bulk silicon (Si) about 50% of the heat is car-

ried by phonons with mean-free-paths (MFPs) greater than

about 1 lm—a fact that is surprising and that the authors of

Ref. 2 could not explain with a simple, Callaway model with

Debye approximation.3 These results raise similar questions

about heat transport in thin Si films. In this paper, we show

that a simple Landauer model, essentially a Callaway model

with full phonon dispersion, accurately reproduces the

results of Ref. 2. We also show that the same model

describes the in-plane thermal conductivity of silicon thin

films and find that about 50% of the heat is carried by pho-

nons with mean-free-paths shorter than in the bulk. When

the film thickness is smaller than �0.2 lm, 50% of the heat

is carried by phonons with mean-free-paths longer than the

film thickness. Finally, we apply the technique to cross-plane

thermal transport in Si. The results shed light on thermal

transport in thin Si films and demonstrate that the Landauer

approach provides a simple and accurate treatment of lattice

thermal conductivity that is useful for analyzing experiments

and for designing materials and structures.

The findings of Minnich et al.2 for bulk Si raise ques-

tions about heat conduction in thin Si films and how the heat

is carried by phonons with different MFPs. In silicon on in-

sulator (SOI) films, it is well-known that the in-plane thermal

conductivity decreases as the film thickness decreases due to

the increasing importance of surface roughness scattering.4–7

The influence of surface roughness is usually modeled

by using either a constant5–9 or frequency-dependent4,10

specularity parameter, p, representing the probability of

specular phonon boundary scattering. As an example, for

perfectly diffusive scattering p¼ 0 and for perfectly specular

scattering p¼ 1. The quantitative comparison between the

in-plane thermal conductivities with constant and frequency-

dependent p suggested that the frequency-dependent model

provides a more accurate description for the in-plane thermal

conductivity.11 We show in this paper that with the addition

of a model for surface roughness scattering, the Landauer

model used for bulk Si also accurately describes in-plane

thermal transport. We then use the model to address the

question raised by the authors of Ref. 2: “How do phonons

with various mean-free-paths contribute to thermal conduc-

tion in thin Si films?”

The measured cross-plane thermal conductivity of thin

Si films has been found to be even lower than the in-plane

thermal conductivity.12 In some models,13–15 the reduction

in cross-plane thermal conductivity is modeled with the

Boltzmann transport equation (BTE) by including a phonon-

boundary scattering time (sb), which is assumed to be equal

to the average time between “boundary scattering events:”

sb ¼ L=ð2tÞ, where L is the length of the conductor and t the

group velocity. Ballistic phonon transport (i.e., no phonon

scattering within thin film), which becomes important in

cross-plane transport is typically described by an equation of

phonon radiative transport (EPRT),16 which has been devel-

oped based on the Boltzmann equation and the analogy

between phonons and photons. In the ballistic limit and with

the Debye approximation, the EPRT yields a familiar black-

body radiation law for phonons,17 q ¼ rðT4
H � T4

CÞ, where r
is the Stefan-Boltzmann constant for phonons. This result

has also been derived by Casimir,1 who treated a perfectly

diffusive surface (p ¼ 0) as if it absorbed all phonons inci-

dent upon it and reemitted them at a rate depending on the

absolute temperature of the surface according to the theory

of blackbody radiation. We will show in this paper that the

same Landauer approach used to describe diffusive phonon

transport can be simply extended to accurately describe bal-

listic and quasi-ballistic transport.
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The Landauer approach is widely used to treat ballistic

electron18 and phonon19,20 transport in nanostructures. As

recently shown for electrons21 and phonons,22 the method can

also be applied to diffusive transport in bulk materials. The

approach reduces to the BTE for diffusive transport but is

more physically transparent and also provides some computa-

tional advantages. Section II presents a brief summary of the

formalism for phonon transport as discussed in detail in Ref.

22. In Sec. III, results for the thermal conductivity of bulk Si

are presented and compared to recent molecular dynamics

simulations. In Sec. IV, the in-plane and cross-plane thermal

conductivities are discussed. Sections III and IV also illustrate

a general approach for extracting a well-defined mean-free-

path for phonons from measured thermal conductivity data. In

Sec. V, we discuss the ballistic limit of phonon transport and

relate the Landauer expressions to the well-known Casimir

formula.1 Finally, our conclusions are summarized in Sec. VI.

II. APPROACH

This paper is an application of the approach presented

in Ref. 22. The Landauer formula for heat current (IQ) is

expressed as

IQ ¼
1

h

ð1
0

dð�hxÞðTphMphÞ�hxðn1 � n2Þ; (1a)

where Tph is the transmission at a given energy �hx, Mph is

the number of conducting channels at a given energy, and n1

and n2 are Bose-Einstein distributions for the two contacts

across which heat flows.18 The transmission Tph is given as18

Tph ¼ kphðxÞ=ðLþ kphðxÞÞ; (1b)

where kphðxÞ is the mean-free-path for backscattering and L
the length of the conductor. Equation (1a) applies to the bal-

listic limit (L� kphðxÞ) for which Tph ¼ 1; the quasi-

ballistic regime (L � kphðxÞ) for which Tph ¼ kphðxÞ=ðLþ
kphðxÞÞ as well as to the diffusive limit (L� kphðxÞ) for

which Tph ¼ kphðxÞ=L. In the diffusive limit, it was shown

that the Landauer expression for lattice thermal conductivity

is essentially equivalent to the conventional expression from

BTE.22 Note that the product TphMph is proportional to the

well-known “transport distribution” for electrons.23

For a small temperature gradient (DT), thermal conduct-

ance (Kph ¼ IQ=DT) is

Kph ¼
k2

BTLp2

3h

� �ðþ1
0

dð�hxÞðTphMphÞWph; (2a)

where k2
BTLp2=3h is the quantum of thermal conductance

with TL being the lattice temperature and Wph is a “window

function” given by22

Wphð�hxÞ ¼ 3

p2

�hx
kBTL

� �2

� @n0

@ð�hxÞ

� �
: (2b)

The integral of the window function, Wph, from 0 to 1 is 1,

just like the derivative of the Fermi function ð�@f0=@EÞ
appearing in the expression for electrical conductivity. The

thermal conductance, Eq. (2a), can be also expressed as

Kph ¼
k2

BTLp2

3h

� �
hMphihhTphii; (2c)

where the averagehXifor any quantity X is defined as hXi �Ð
X Wphdð�hxÞ while the average hhXii is defined as hM Xi=
hMi. From Eq. (2c), the expressions for the lattice thermal

conductivity, jph ¼ KphðL=AÞ, can be expressed as

jph ¼
k2

BTLp2

3h

� �
hMph=Aihhkphiieff ; (3a)

where A is the cross-sectional area of the conductor and

hhkphiieff is the effective MFP given as

hhkphiieff ¼ hhTphiiL ¼ hhðk�1
ph þ L�1Þ�1ii: (3b)

From Eq. (2c), the ballistic thermal conductance per area

Kph BAL=A can be defined as

Kph BAL=A ¼ k2
BTLp2

3h

� �
hMph=Ai; (3c)

so the thermal conductivity is expressed as

jph ¼ ðKph BAL=AÞhhkphiieff : (3d)

Since hMphi and Kph BAL=A can be readily obtained from the

bandstructure, the hhkphiieff can be estimated by taking the

ratio of measured jph to the Kph BAL=A. Note that Eqs. (3a)

and (3b) holds for all transport regimes. In the ballistic limit,

L� kph, hhkphiieff ¼ L and in the diffusive limit, L� kph,

hhkphiieff ¼ hhkphii with hhkphiibeing the average MFP in

the diffusive limit. In the quasi-ballistic limit, the appropriate

effective MFP is given by Eq. (3b).

It was shown in Ref. 22 that given an accurate phonon

dispersion, MphðxÞ can be readily computed by a simple

numerical technique—the “band counting” method. To eval-

uate MphðxÞ in this work, a full band description of phonon

dispersion was obtained from the Tersoff24 interatomic pair

potential model within the General Utility Lattice Program

(GULP).25 Then it is straightforward to compute Kph BAL=A.

III. BULK THERMAL CONDUCTIVITY

In this section, the phonon thermal conductivity of bulk

Si will be evaluated and compared to a recent MD calcula-

tion.2 Figure 1(a) displays the energy-resolved Mph; kph; and

Wph at 300 K for bulk Si. Note that the entire phonon disper-

sion participates in conduction since Wph is almost constant.

This is in sharp contrast to the case of electrons, in which the

important energies are near the bottom of the band. The bal-

listic thermal conductance, Kph BAL, is readily evaluated from

Eq. (3c). By comparing Kph BAL to the measured conductivity,

jph,26 the average MFP, hhkphii, is readily extracted from

Eq. (3d). The results in Fig. 1(b) show that hhkphii ’ 135 nm

at T ¼ 300K. (As will be discussed in Sec. V, when compar-

ing this result to the conventional mean-free-path, lph, it is

important to remember that the Landauer mean-free-path (or

mean-free-path for backscattering) is 4/3 times longer.)22

To examine how heat is conducted by phonons with dif-

ferent mean-free-paths, we need expressions for the spectral

phonon mean-free-path for backscattering,22

093708-2 Jeong, Datta, and Lundstrom J. Appl. Phys. 111, 093708 (2012)
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kphðxÞ ¼ ð4=3ÞtphðxÞsphðxÞ ¼ ð4=3ÞlphðxÞ; (4)

where tphðxÞis the spectral phonon group velocity at fre-

quency x, sphðxÞ the phonon momentum relaxation time,

and lphðxÞ ¼ tphðxÞsphðxÞ. For sphðxÞ, the relaxation time

approximation (RTA) is used for umklapp scattering,27 point

defect scattering,28 and crystalline boundary scattering

rates:26 s�1
u ¼ Bx2Te�C=T ; s�1

d ¼ Dx4; and s�1
b ¼ htðxÞi=

ðF � lÞ, respectively. Typical parameters to fit the jph vs. T
for bulk Si are used:22 B¼ 2.8� 10�19 s/K, C¼ 140 K,

F¼ 0.4, and l¼ 7.16� 10�3 m. Parameter D¼ 1.32� 10�45

s3 is analytically determined from the isotope concentration,

so the value given in Ref. 26 is used for bulk Si. Figure 1(b)

shows that the resulting fit is excellent. Figure 2 shows the

cumulative distribution function of thermal conductivity as a

function of energy with and without scattering. It can be

seen that all energy channels contribute to the ballistic ther-

mal conductance. When scattering is included, however,

high energy channels contribute very little to jph because

high energy phonons have very short MFPs.

To find how the heat is carried by phonons with different

MFPs, the spectral analysis (cumulative jph vs. kph) is pre-

sented in Fig. 3. Note that the scattering parameters are

adjusted to match measured jph vs. T (Fig. 1(b)) rather than

to obtain the same MFP distribution as the MD calculations.

Our results obtained from full phonon dispersion (blue solid

line) are in good agreement with the recent MD simulations2

—�50% of the heat conduction is attributed to phonons with

MFP >�1 lm. The reason is that the phonons with MFP

> �1 lm are low-energy acoustic phonons near the Brillouin

zone center which do not suffer a lot from umklapp scatter-

ing, which compensates for the fact that there is a small per-

centage of low energy channels. As shown in Fig. 1(b), the

average MFP for bulk Si (hhkphii ¼ jph=ðKph BAL=AÞ) is

about 0.135 lm at room temperature. Therefore, the com-

monly used average MFP does not give a clear picture of

which phonons carry the heat since the hhkphii includes a sig-

nificant number of high energy modes with very small MFPs.

FIG. 1. (a) For bulk Si, energy-resolved number of conducting channels

(Mph), window function (Wph), and the mean-free-path for backscattering

(kph) are plotted at 300 K. Note that the entire spectrum of Mph participates

in conduction since Wph is almost constant. The mean-free-path shows that

low-energy acoustic phonons have long kph since they do not suffer a lot

from umklapp scattering. The spectral kph are calculated based on the relaxa-

tion time approximation for umklapp scattering,27 point defect scattering,28

and crystalline boundary scattering.26 (b) The thermal conductivity jph(left

axis) and the average MFP hhkphii (right axis) are plotted as a function of

temperature. Experimental results are obtained from Ref. 26. Good agree-

ment between calculation and experiment is observed.

FIG. 2. The cumulative thermal conductivity, jph, as a function of energy is

plotted for diffusive (scattering) and ballistic (no scattering) cases. For the

ballistic case, all energy channels equally contribute to jph. With scattering,

low-energy channels mainly contribute to jph because high-energy phonons

have very short mean-free-paths.

FIG. 3. We plot the computed cumulative thermal conductivity (jph) as a

function of the MFP for backscattering (kph) using three different phonon

dispersion models: full phonon dispersion, a sine-type dispersion, and a

Debye model. The computed results are compared to the MD simulations

obtained from Ref. 2. The MD simulation is plotted while taking into

account the difference between a conventional MFP for scattering (lph) and

the MFP for backscattering, i.e., kph ¼ ð4=3Þlph. Our results with full phonon

dispersion (solid line) is in good agreement with the recent MD simulations,2

which showed �50% of the heat conduction is attributed to phonons with

MFP >�1 lm. The MFP distribution is not correctly predicted by a simple

sine-type dispersion model (dotted line) or a Debye model (dashed line).

Inset: Computed thermal conductivity jph vs. temperature is plotted for the

three phonon dispersion models and is compared to experiment.26 Note that

regardless of the phonon dispersion model used, we can fit well the experi-

mental data by adjusting scattering parameters.
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To illustrate the effect of phonon dispersion model, two

simple approximations of phonon dispersion are assumed.

The first is a Debye model, x ¼ tsk; where ts is sound

velocity and k is a wave vector, and the second is a sine-type

dispersion model, x ¼ x0 sinðpk=2k0Þ;where x0 is the maxi-

mum phonon frequency and k0 is the Debye cutoff wave vec-

tor.29 As shown in the inset of Fig. 3, jph vs. temperature

computed from the two simple models almost overlap with

the results of full phonon dispersion and match well the

measured conductivity. But this requires an increase in the B
parameter for umklapp scattering by a factor of 4.5 for the

Debye model and a factor of 3 for the sine-type model. It can

be clearly seen that while the simple phonon models can fit

the measured thermal conductivity by adjusting fitting param-

eters, the MFP distribution of the simple models does not

agree well with that of MD simulation. Thus, the question of

how phonons with different MFPs carry the heat, which is

important to know when designing thermoelectric devices is

not correctly addressed by the simple phonon models.

IV. IN-PLANE AND CROSS-PLANE THERMAL
CONDUCTIVITIES FOR THIN FILMS

Having verified that a simple Landauer model with full

phonon dispersion accurately reproduces the results of MD

simulations,2 we turn next to heat transport in thin Si films.

For thin Si films, phonon boundary scattering significantly

influences the thermal conductivity. In this section, phonon

thermal conductivity of thin Si film layers along the in-plane

and the cross-pane direction will be evaluated as a function

of Si layer thickness.

For in-plane thermal conduction in thin films, we

consider the surface roughness of boundaries with a

frequency-dependent specularity parameter. The scattering

time reduction due to boundary scattering in the thin film has

been examined by a solution of the BTE (Refs. 4 and 30)

and the corresponding MFP of thin film (kph;thin) compared

to that of bulk Si (kph;bulk) was given as

kph;thinðxÞ ¼ kph;bulkðxÞ 1� 3ð1� pÞ
2d

ð1
1

1

t3
� 1

t5

� ��

� 1� expð�dtÞ
1� p expð�dtÞ dt

�
; (5a)

where d ¼ ð4=3ÞdSi=kph;bulk with dSi being the thickness of Si

thin film, and the specularity parameter p is given by10

p ¼ exp � 16p3g2
SOI

K2
ph

 !
; (5b)

where Kph is the phonon wavelength and gSOI is the surface

roughness which was estimated to be between 0.2 and 1 nm

for SOI wafers.31 To consider the impact of additional

imperfections associated with the SOI wafers such as point

defects, stacking faults, and dislocations, we use an approxi-

mate formula since it is not clear which type of defect is

dominant. The same point defect scattering rate formula

used for bulk Si (s�1
d ¼ Dx4) was used except that the pre-

factor, D, for SOI film is adjusted to fit the experimental

thermal conductivity data of SOI film, yielding that the D for

SOI film is 2� larger than D for bulk Si. (Note that for bulk

Si we used the parameter D¼ 1.32� 10�45 s3 analytically

determined from the isotope concentration.)28 Assuming that

the length of conductor, L, is much greater than kphðxÞ,
transport is diffusive and Tph ¼ kphðxÞ=L in Eq. (2a). For

these calculations, we retain the bulk phonon dispersions.

The results are shown in Fig. 4. Previous experimental data

are in good agreement with the calculations, and considering

point defects produces a better fit to thicker Si layers in SOI.

Next, we examine the cross-plane phonon thermal con-

ductivity of thin Si film layers. For cross-plane thermal trans-

port in thin films of thickness less than �1 lm, quasi-

ballistic transport becomes important. Therefore, the

assumption of diffusive transport no longer holds. The cross-

plane thermal conductivity is conventionally computed with

the BTE by including a phonon-boundary scattering time.

For example, sb ¼ L=ð2tÞ (Refs. 13–15) is commonly used,

but the physical significance is unclear. In contrast to the pre-

vious work, we have included only scattering processes

within the thin film—no interface resistances are considered.

In a Landauer picture, we are assuming ideal reflection-less

contacts at the top and bottom of the film, so our calculations

will provide an upper limit that does not consider the inter-

face resistances that may occur in practice. For the transmis-

sion, the expression, Tph ¼ kphðxÞ=ðLþ kphðxÞÞ, is used to

describe quasi-ballistic transport.

Figure 4 shows our calculation of the cross-plane ther-

mal conductivity which is defined as jph ¼ KphðL=AÞ com-

pared to a recent experimental observation.12 In agreement

with the one available measurement,12 our calculations show

a much reduced thermal conductivity in the cross-plane. This

result occurs even though we have not included possible

interface resistances and can be understood from Eq. (3a). In

the ballistic limit, the effective mean-free-path approaches

the thickness of the film. Note that a better fit for the cross-

plane measurement could be obtained by increasing the

parameter, D, in the point defect scattering rate formula (we

FIG. 4. Thermal conductivity (jph) vs. silicon layer thickness at room tem-

perature is plotted. In-plane experimental data4–7 and calculations are shown

by open squares and blue lines, respectively. For our calculations, a surface

roughness of 0.5 nm is used, which is a typical value for SOI wafers. We

assume that the point defect scattering rate for SOI wafer is 2� larger than

that of bulk Si. The results with the point defects (blue solid line) give a bet-

ter fit for thicker Si layers. The cross-plane experimental data12 and calcula-

tions are shown by filled circle and red lines, respectively. It is assumed that

the MphðxÞ for the thin film is the same as that for bulk Si.

093708-4 Jeong, Datta, and Lundstrom J. Appl. Phys. 111, 093708 (2012)
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used the same D as for the in-plane calculation, 2� larger

than D for bulk Si), but the comparison to experiment is

clouded by uncertainties in possible interface resistances.

Nevertheless, the calculation shows the reduction in thermal

conductivity that should be expected for the thin film itself.

Next, we turn to the question of which phonons play the

dominant role in the heat conduction in thin films. Figure 5 is

a plot of k50% and hhkphiieff vs. thickness of thin Si films at

room temperature along the in-plane and the cross-plane trans-

port directions. Here, k50% is the MFP at which the cumulative

jph is equal to 50%, and the effective MFP, hhkphiieff , is

extracted according to Eq. (3d). The cross-plane direction dis-

plays about 2� smaller k50% and hhkphiieff than the in-plane

direction. It can be also seen that hhkphiieff is always less than

k50% for the same reason as for the bulk—hhkphiieff places too

much emphasis on the high energy modes with very small

MFPs. However, the difference between hhkphiieff and k50%

decreases as the thickness of the thin film decreases. This

occurs for both in-plane and cross-plane conduction but for

different reasons. For cross-plane conduction, as the thickness

of thin films (i.e., L in Eq. (1b)) decreases, the transmission

Tph in Eq. (1b) for phonons with short MFPs increases more

rapidly than that for phonons with large MFPs. This results in

a decrease of k50%. For in-plane conduction, low-energy

acoustic phonons, which have large MFPs (kph >�1 lm)

leading to the large k50% values in the bulk, suffer a lot from

boundary scattering in thin films with thickness <1 lm, and

therefore, the k50% decreases rapidly with film thickness.

Finally, we note that for the in-plane direction, about 50% of

the heat conduction is carried by phonons with a mean-free-

path greater than the thickness of the thin film when the thick-

ness is smaller than �0.2 lm.

V. DISCUSSION

So far, we have applied the Landauer approach to diffu-

sive transport in bulk materials and thin films along the

in-plane direction as well as to quasi-ballistic transport in

thin films along the cross-plane direction. Although the BTE

with an additional boundary scattering (sb) succeeds in mod-

eling, the bulk and thin film experiments, including sb, can-

not accurately describe the ballistic limit (i.e., the Casimir

limit, q ¼ rðT4
H � T4

CÞ) for which Majumdar used the

EPRT.16 In this section, we show that the Landauer approach

reduces to the Casimir limit under the appropriate condi-

tions. We also relate the MFP for backscattering in the Lan-

dauer model to the commonly used MFP for scattering and

discuss some limitations of the Landauer approach.

In the ballistic limit (Tph ¼ 1) and at a temperature

much lower than the Debye temperature where MphðxÞ is

given as MphðxÞ ¼ Að3x2=4pt2
s Þ with ts being the velocity

of sound. The heat flux (q) can be expressed from Eq. (1a)

for a small temperature gradient (DT) as

q ¼ IQ

A
¼ 1

h

ð1
0

dð�hxÞ 3x2

4pt2
s

� �
�hx

dn

dx

@x

dT
DT

� �
; (6a)

where n ¼ 1=ðex � 1Þ and x � �hx=kBT: Using
Ð1

0
x4

ð�dn=dxÞdx ¼ 4p4=15; the heat flux of Eq. (6a) is given as

q ¼ rDðT4Þ; (6b)

where r ¼ p2k4
B=40�h3t2

s is the Stefan-Boltzmann constant

for phonons.17 This result shows that the Landauer approach

correctly reduces to the Casimir result in the ballistic limit

with the Debye approximation. Majumdar16 showed that the

Casimir limit can be also obtained from the EPRT and that

the use of the Fourier law causes significant errors for con-

duction across the film. The EPRT, however, does not accu-

rately predict the thermal conductivity reduction for both the

in-plane and the cross-plane conduction of Si thin films13

due to the gray approximation. Finally, note that more gener-

ally, for temperatures above the Debye temperature, the bal-

listic heat flux is q ¼ ðKph BAL=AÞDT, where the ballistic

thermal conductance is given by Eq. (3c).

It was also shown from the EPRT (Ref. 16) with the

gray approximation that the Fourier law can be used for all

transport regimes if the effective mean-free-path for scatter-

ing, hhlphiieff , is used instead of the commonly used average

MFP for scattering hhlphii. According to Eq. (44) in Ref. 16

hhlphiieff ¼
hhlphii

1þ ð4=3Þðhhlphii=LÞ ; (7a)

where the hhlphii is the average MFP for scattering that can

be obtained from a classical kinetic theory (i.e., jph ¼
ð1=3ÞCVtshhlphii with CV being the specific heat). A physical

interpretation of Eq. (7a), however, was not given: For exam-

ple, where does the value of 4/3 in the denominator come

from? We can easily show that Eq. (7a) follows directly

from Eq. (3b) of the Landauer approach. Using Eq. (4) in

Eq. (7a) to convert from MFP to MFP for backscattering,

we find

hhkphiieff ¼
1

hhkphii
þ 1

L

� ��1

; (7b)

FIG. 5. Along the in-plane (in) and the cross-plane (cross) transport direc-

tions, k50%and hhkphiieff are plotted as a function of the thickness of the thin

Si films at room temperature. Here, k50% is the MFP at which the cumulative

thermal conductivity (jph) is equal to 50%, and the effective MFP,

hhkphiieff , is obtained from Eq. (3d). The cross-plane direction displays

about 2� smaller k50% and hhkphiieff than the in-plane direction. hhkphiieff is

always less than k50% since hhkphiieff places too much emphasis on the high

energy modes with very small MFPs. Note that for the in-plane direction,

about 50% of the heat conduction is carried by phonons with a mean-free-

path greater than the thickness of the thin film when the thickness is smaller

than �0.2 lm (blue symbol).
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which is precisely the Landauer result if we make the gray

approximation, hhTphii ¼ hhkphii=ðLþ hhkphiiÞ.
The value of 4/3 in Eq. (7a) comes from the difference

between the MFP for scattering and the MFP for backscatter-

ing. The usual definition of mean-free-path is the average

distance that a carrier travels before scattering. In the Lan-

dauer approach, kphðxÞ is the mean-free-path for backscat-

tering and has a specific meaning; it is the length at which

the transmission Tph ¼ kphðxÞ=ðLþ kphðxÞÞ drops to one-

half, and the inverse of the kphðxÞ is interpreted as the proba-

bility per unit length that a positive flux is converted into a

negative flux. Following the proper definition of kphðxÞ,21 it

can be shown that in 1D, kphðxÞ ¼ 2lphðxÞ, in 2D,

kphðxÞ ¼ ðp=2ÞlphðxÞ, and in 3D, kphðxÞ ¼ ð4=3ÞlphðxÞ:
We have shown that the Landauer approach provides a

simple but physically insightful description of diffusive

transport, quasi-ballistic transport, and ballistic transport, but

it does have limitations. For example, for problems like

cross-plane thermal transport, we made the assumption of

ideal contacts (i.e., that are reflection-less and that maintain

a near-equilibrium thermal population of phonons). The role

of contacts is problem-specific and should be considered on

a case-by-case basis. Problems involving space and time de-

pendent transport and multi-dimensional transport tend to be

easier to handle with the Boltzmann equation, but for 1D,

steady-state transport, the Landauer approach provides sig-

nificantly more physical insight as well as computational

advantages in computing the transport distribution (or num-

ber of channels, MðxÞ).

VI. SUMMARY AND CONCLUSION

In this paper, we showed that a simple Landauer model

in the diffusive limit with a full phonon dispersion reprodu-

ces the results of more sophisticated molecular dynamics

simulations of phonon transport in bulk Si. For thin Si films,

the same approach also accurately describes the measured

in-plane (diffusive transport) and cross-plane (quasi-ballistic

transport) thermal conductivities, jph vs. thickness of the Si

layer. The spectral analysis of cumulative thermal conductiv-

ity as a function of a MFP demonstrates that the commonly

used average MFP should be used with caution because it

does not convey which phonons mainly contribute to the

heat conduction. In the ballistic limit and with the Debye

approximation, the Landauer model yields the Casimir limit,

the blackbody radiation law for phonons. The results pre-

sented here shed new light on phonon transport in Si struc-

tures and also show that the Landauer approach provides a

simple and useful computational approach that gives new

insights into phonon transport from the ballistic to diffusive

regimes in both nanostructures and bulk materials.
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