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The local temperature rise of the tape is one of instabilities of the conduction-cooled high temperature superconducting (HTS)
coils. To prevent the HTS tape from locally raising a temperature, high thermal conductive fiber reinforced plastic was applied to
coil bobbin or spacer for heat drain from HTS tape. The thermal conductivity of ramie fibers increases by increasing orientation
of molecular chains with drawing in water, and decreases by chain scission with γ-rays irradiation or by bridge points in molecular
chains with vapor-phase-formaldehyde treatments. Thermal conductivity of high strength ultra-high-molecular-weight (UHMW)
polyethylene (PE) fiber increases lineally in proportion to tensile modulus and decreases by molecular chain scissions with γ-rays
irradiation. This result suggested the contribution of the long extended molecular chains due to high molecular weight on the high
thermal conductivity of high strength UHMW PE fiber. Thermal conductivity of high strength UHMW PE fiber reinforced plastics
in parallel to fiber direction is proportional to the cross sectional ratio of reinforcement oriented in the conduction direction. Heat
drain effect of high strength UHMW PE fiber reinforced plastic from HTS tape is higher than that of glass fiber reinforced plastic
(GFRP) and lower than that of aluminum nitride (AlN). In the case of HTS coil, the thermal stability wound on coil bobbin made
of high strength UHMW PE fiber reinforced plastic is good as that of AlN, and better than that of GFRP.

1. Introduction

In applications of polymeric materials, the thermal con-

ductivity has been an important property, for example,

for a cool/warm sensation for clothing fiber or wood

product, or in the thermal insulation of plastics including

styroforms [1–4]. With the recent development of super-

conducting and electronic engineering technologies, thermal

conductivities of structural and insulating materials used

as composites in cryogenic and heat-releasing materials in

electrical equipment have become more important. Fur-

thermore, the desired features vary, depending upon the

application, from insulation for use in cryostat [5] to high-

thermal conductivity for use in superconducting coils [6]

and electronic engineering [7]. For example, the thermal

conduction between a superconductor and the cold head of

a refrigerator is important for the stability of a conduction-
cooled superconducting coil, because this connection is the
only heat-flow-pathway for cooling superconductor [8].

Thermal conductivities of most of polymer materials are
lower than those of metals as shown in Figure 1. From pre-
vious studies of polymer materials, it is well-known that the
thermal conductivities of amorphous polymers are smaller
than those of metals and semiconductors [9, 10]. Therefore,
these have principally been used as heat insulators. However,
other reports have shown that polymeric crystals possess
high thermal conductivity in the direction in which the
molecular chains are covalently bonded, polyethylene crys-
tals being an example [11, 12]. Thus, high-crystallized and
high-oriented polymers exhibit high thermal conductivity
[10–15]. For example, highly crystallized polymer materials
including high-strength polyethylene (PE) fiber [15–18] and
high-strength polypara-phenylene-benzo-bis-oxazole (PBO)
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Figure 1: Thermal conductivities of industrial materials.

fiber [16] are known to possess high thermal conductivity
similar to those of metals as shown in Figure 2. The high-
strength PE fiber and PBO fiber shown in Figure 2 are
Dyneema� SK-60 (hereinafter abbreviated to DF) and
Zylon� HM (TOYOBO CO.) [18–20].

In this paper, we report the thermal conductivity of
high-strength PE fiber and application of the high-strength
PE fiber reinforced plastics for conduction-cooled high-
temperature superconducting (HTS) coil.

2. Thermal Conductivity of High-Strength
Polyethylene Fiber

2.1. Thermal Conductivity of Polymer Fiber. The thermal
conductivity of solid, electrical insulating materials is intro-
duced attributable to phonons [12, 13], and the heat in
polymers is conducted in the direction of covalently bonded
molecular chains, whereas conduction in the direction to
intermolecular chains bonded by Van der Waals forces is
much less. It is known that thermal conductivities of PE,
polyethyleneterephtalate, and polypropylene toward to the
direction of molecular chain increase by the increasing
crystallinity and orientation of crystal [11, 13–17, 21, 22].
In the case of amorphous polymers, it is also known
that thermal conductivities of polymethylmethacrylate and
polystyrene increase by the orientation of molecular chain
[16, 23, 24].

The thermal conductivity of solid electrically insulating
materials is affected by the scattering of phonons. The
phonon scattering is considered to be introduced by imper-
fections in the material. For example, crystal or amorphous
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Figure 2: Thermal conductivities of high-thermal-conductive poly-
mer fibers [18].

boundary, defects, chemical bridge points, and the ends and
entanglements of the molecular chains can scatter phonons

and interfere with the thermal transmittance in polymer
materials. Dependence of thermal conductivity on molecular
weight has been reported about polystyrene film [25].

In the case of polymer fibers, the thermal conductivity in
fiber direction depends on the crystallinity, orientation, crys-
tal size, length of molecular chains, chemical bridge points,
and morphologies composed of crystal and amorphous.

For example, thermal conductivity of ramie fiber in
fiber direction changes by the following treatments, drawing
in water (water treatment), irradiation with γ-rays (γ-rays
treatment), and vapor-phase-formaldehyde treatments (VP-
HCHO treatment). Those treatments induce the extension,
chain scission, and bridging to molecular chains as shown
in Figure 3 [26–28]. The thermal conductivities of the ramie
fibers before and after those treatments are shown in Figure 4
[26–28].

It is reported that the tensile modulus is increased by the
increasing of orientation degree of molecular chains in the
amorphous region of ramie fiber by water treatment [31]. It
is also known that tensile modulus of ramie fiber increases
by water treatment [31]. Thermal conductivity of ramie fiber
in the fiber direction increases by water treatment as shown
in Figure 4 [26]. In this water treatment, ramie fibers were
drawn by the stress of 17.4 kg/mm2 in the water. The tensile
modulus of the ramie fiber doubles by this water treatment.
The increasing of thermal conductivity by water treatment is
inferred to be caused by the extension of molecular chains in
the amorphous region as shown in Figure 3 [26].

It is well known that fibers mainly made of cellulose,
including ramie and cottons, undergo main chain scission
by γ-rays treatment [32] as shown in Figure 3. And it is also
known that the crystallinity is not decreased by irradiation
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Figure 3: Schematic diagram of molecular chains of cellulose with drawing, γ-rays treatment, and VP-HCHO treatment.
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Figure 4: Thermal conductivities of ramie fibers with water treat-
ment, g-rays treatment, and VP-HCHO treatment [26–28].

with γ-rays in the case of appropriate dose rate [27, 32].
Thermal conductivity of ramie fiber in fiber direction
decreases by γ-rays treatment as shown in Figure 4 [27]. It
is reported that the decreasing of thermal conductivity of
ramie fiber by γ-rays treatment agrees to the decreasing of
the degree of polymerization (DP) of ramie fibers. In this
case, shown in Figure 4, the irradiation was carried out with
Co-60 γ-rays and the total absorbed dose was 100 kGy [27].
The DP of ramie fibers decreases from 1700 to 220 by this
γ-rays treatment. The decreasing of thermal conductivity by
γ-rays treatment is inferred to be caused by molecular chain
scission. That is to say, thermal conductivity of ramie fibers
depends on the length of molecular chain [27].

Fibers mainly made of cellulose, including ramie and
cottons, are well known for being bridged with formaldehyde

(HCHO) [31, 37, 39–44], for example, by VP-HCHO
treatment [39] as shown in Figure 3. This technology is
employed for stabilizing the conformity of cellulose fibers
and is used practically in clothing materials such as wash
and wear shirts [40, 42–45]. Thermal conductivity decreases
to about 20–25% by VP-HCHO treatments as shown in
Figure 4 [28]. It is reported that the thermal conductivity
decreases by increasing the concentration of bound HCHO
[28]. In this case, shown in Figure 4, the concentration of
bound HCHO of the VP-HCHO-treated ramie fiber was
1.6% [28]. The decreasing of thermal conductivity of ramie
fiber by VP-HCHO treatment is inferred to be caused by
scattering of phonon at bridge points combined with HCHO
[28].

In this way, the thermal conductivity of ramie fibers
increases by increasing orientation of molecular chains and
decreases by chain scission or by bridge points in molecular
chains [26–28]. That is to say that the thermal conductivities
of polymer fibers depend on the structures, for example,
orientation, length (molecular weight), and bridge points of
molecular chains.

2.2. Thermal Conductivity of High-Strength Polyethylene Fiber

2.2.1. High Thermal-Conducting Polymer Fiber. As above
mentioned, high-strength PE fiber has a high thermal
conductivity in fiber direction [18–20]. DF shown in Figure 2
is one of the high-strength ultra-high-molecular-weight
(UHMW) PE fibers made by gel spinning method [46–51].
In this section, the mechanism of high thermal conduction
of DF is reported.

It is well known that the random-oriented crystal region
composed of folding UHMWPE chains changes to highly
oriented crystal region composed of extended chains by gel
spinning as shown in Figure 5 [29, 46–51]. Therefore, it is
considered that heat conduction of the extended chains in
the direction covalent-bonded chain axis in crystal regions
contributes to the high thermal conductivity of DF [18–20].

The relationship between the thermal conductivity and
the structure of DF is reported in the following.
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Figure 5: Schematic diagram of molecular chains in UHMW-PE
[29].
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Figure 6: Thermal conductivities of high-strength PE fibers having
different modulus [20].

2.2.2. Dependence of Thermal Conductivity on Tensile Mod-
ulus of High-Strength Polyethylene Fiber [20]. Thermal con-
ductivities of high-strength UHMW PE fibers (hereinafter
abbreviated to PEFs) made by gel spinning method with
different draw ratios are shown in Figure 6 [20]. They have
different modulus shown as follows: A: 15 GPa, B: 51G Pa,
C(DF): 85 GPa, and D: 134 GPa. Thermal conductivity
increases with increasing tensile modulus of PEF, and all
of them increase with increasing temperature as shown in
Figure 6. The relations between thermal conductivity and
tensile modulus of the PEFs are shown in Figure 7. Thermal
conductivity of PEFs increases lineally in proportion to
tensile modulus.
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Figure 7: Relationship between the thermal conductivities and ten-
sile module of high-strength PE fibers.
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Figure 8: Schematic diagram showing the structure of high-
strength PE fiber by mechanical model [20].

The relationship between the thermal conductivities

and tensile modulus of PEFs was explained by the fi-

ber structure illustrated in the mechanical serial-parallel

model (Takayanagi model), which consists of a crystal-

line/amorphous structure as shown in Figure 8 [20]. This

mechanical model is composed of the following two parts

by parallel combination. One of them is continuous crystal

part composed of extended molecular chains, and the other

is series combination part of crystal and amorphous. In

this mechanical model composed of continuous crystal

region and series combination part composed of crystal

and amorphous, thermal conductivity of the PEF in fiber
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Figure 9: Thermal conductivity of high-strength PE fiber with γ-
rays treatment [30].

direction is dominated by that of continuous crystal region
composed of extended molecular chains [20].

2.2.3. Radiation Effect on Thermal Conductivity of High-
Strength Polyethylene Fiber by γ-Ray [30]. The contribution
to thermal conductivity by the length of the molecular
chains in high-strength PEF is reported in this section. It is
known that polyethylene undergoes main chain scission by
irradiation with γ-rays (γ-rays treatment) in the presence of
oxygen [52].

Thermal conductivities of PEFs with γ-rays treatments
are shown in Figure 9 [30]. The used PEF was DF. Irradiation
was carried out with Co-60 γ-rays, and the total absorbed
dose was 0.5 MGy; that is hereinafter abbreviated to DF
(γ-rays treatment). The DF without γ-rays treatment is
abbreviated to DF (Blank). Thermal conductivity of DF
decreases to 50% by γ-rays treatment at every temperature
[30].

The measured molecular weight of DF (Blank) was
2.0× 106. It decreased to 2.6× 104 by 0.5 MGy irradiation.
This result shows the main chain scission of DF by the γ-
rays treatment. On the other hand, the change of the crystal
structure of DF by γ-rays treatment could not be observed.
Therefore, the decrease of thermal conductivity of DF by γ-
rays treatment was explained by the molecular main chain
scission as similar to the case of ramie described in the above
mentioned. This result suggested the contribution of the
length of extended molecular chains due to high molecular
weight on the thermal conductivity of DF [30].

2.2.4. Summary. With aforementioned, high-strength PE
fiber has a high thermal conductivity in fiber direction,
and this high thermal conductivity is explained by the

UD-DF

DF

RP

Matrix resin

X

Y

Z

Figure 10: Schematic diagram of UD-DFRP.
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Epoxy.

mechanical series-parallel model composed of crystal and
amorphous including continuous crystal region composed of
long extended molecular chains [20, 30].

2.3. Thermal Conductivity of High-Strength Polyethylene Fiber
Reinforced Plastics [18, 53]. In order to apply the PEFs to the
cryogenic use, for example, coil bobbin or spacer of super-
conducting coils, thermal conductivities of PEF-reinforced
plastics are important as described in the following sections.
In this section, the PEF used as the reinforcement is DF.
Hereinafter, DF-reinforced plastics is abbreviated to DFRP.
The schematic diagram of unidirectional (UD) DFRP is
shown in Figure 10.

Thermal conductivities of UD-DFRP in parallel and
perpendicular to fiber direction are shown in Figure 11 [18].
Thermal conductivity of DFRP in parallel to fiber direction
shows about medium value between those of DF and epoxy
resin. Dependence of thermal conductivity on volume frac-
tion (Vf) of DF in UD-DFRP is shown in Figure 12. Thermal
conductivity of UD-DFRP is proportional to Vf of DF as
shown in Figure 12 [18]. Therefore, thermal conductivity
of DFRP in parallel to fiber direction is proportional to
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Figure 12: Vf dependence of thermal conductivity of UD-DFRP on
fiber direction.

the cross-sectional ratio of DF oriented in the conduction
direction [18].

Thermal conductivity of UD-DFRP in the perpendicular
to fiber direction is one order magnitude smaller than that in
the parallel to fiber direction [18].

It is known that the thermal conductivity of hybrid FRP
including DF can be expressed by the law of mixtures [53].

3. Application of High-Strength
Polyethylene-Fiber-Reinforced Plastics for
Conduction-Cooled High-Temperature
Superconducting Coil

3.1. Instability of HTS Coil by Local Temperature Rise of HTS
Tape. When the cooling power of a refrigerator exceeds the
loss in HTS coil and conduction heat along the current leads,
steady state operation of conduction-cooled coil is possible
[54]. However, if a cooling condition of the HTS tape in
the coil is partly insufficient, a local hot spot occurs in the
conduction-cooled coil during operation of the coil [55].
The local temperature rise of the tape is one of instabilities
of the conduction-cooled HTS coils. To prevent the HTS
tape from locally raising a temperature, it is necessary to
drain heat from HTS tape to electrical insulation materials
in the coil effectively. For effective heat drain from HTS tape
to electrical insulation materials, high-thermal-conduction
electrical insulator is necessary for coil bobbin or spacer [6].

Usually, glass-fiber-(GF-) reinforced plastics (GFRP)
were used as electrical insulation materials for HTS coil, for
example, coil bobbin or spacer. However, GFRP is a thermal
insulator. Therefore, heat drain from HTS tape to GFRP is
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Figure 13: Frictional coefficients of DFRPs and GFRPs [33].

insufficient. On the other hand, aluminum nitride (AlN) is
known as an electrical insulator and a thermal conductor.
However, the AlN is hard and brittle, and, hence, difficult for
coil makers and users to process the electrical insulation parts
in the coil, for example, spacers [6].

In the following sections, effect of heat drain of PEF-
reinforced plastics for electrical insulation material of HTS
coils is reported. DFRP reinforced plastic is used as a PEF-
reinforced plastic in the following sections.

3.2. Important Physical Properties of High-Strength Poly-
ethylene-Fiber-Reinforced Plastics for HTS Coil. Important
physical properties of DFRP except for thermal conductivity
are reported in this section in order to report the HTS coils in
the following sections. Frictional coefficients, surface spark
voltages, and thermal contraction by cooling of DFRP are
shown in Figures 13, 14 and 15. DFRP has a lower frictional
coefficient and higher spark voltage than those of GFRP
[33, 34]. DFRP has a negative thermal expansion coefficient
in fiber direction [35, 36]. Therefore, DFRP expands in fiber
direction by cooling down from room temperature to liquid
nitrogen temperature as shown in Figure 15 [35, 36].

3.3. Heat Drain Effects from HTS Tapes to High-Strength
Polyethylene-Fiber-Reinforced Plastics [38]. In this section,
the heat drain effect of the DFRP with a steady-state current
to the HTS tape is reported. The schematic illustration of
experimental arrangement is shown in Figure 16. Bi-2223
is used as a HTS tape in this section. DFRP, GFRP, and
AlN were used as structural materials in Figure 16. Volume
fraction of fiber of DFRP and GFRP were 50% (hereinafter
abbreviated to DFRP-50 and GFRP-50). The structural
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Table 1: Specifications of Bi-2223 tape and clamping materials.

Bi2223 tape Clamping materials

Width (mm) 4.1 9

Thickness (mm) 0.21 9

Length (mm) 150 124

Ag ratio 2.2

Ic at 77 K 60 A

Material Ag, Bi-2223 DFRP, GFRP, AlN

materials were used as clamping materials. Specifications of
the clamping materials and the Bi tape are listed in Table 1.
The set of the clamping materials, the clamped tape, and the
weight is on a cold head of a refrigerator and is cooled down
to 77 K. A steady current of 60 A, which equaled to the critical
current of the Bi tape, was applied to the tape, and the voltage
between the tapes was observed [38].

The voltages of the tape clamped by GFRP-50, DFRP-
50, and AIN are shown in Figure 17. As shown in Figure 18,
when the clamping material is the AlN, the voltage keeps
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Figure 18: Schematic illustration of HTS coil [8].

relatively low, that is to say, the temperature rise of the tape
is very slow [38]. On the contrary, the voltage of the GFRP-
50 took off within a short time from the current start, and
the temperature rise of the tape was fast [38]. DFRP-50
shows the middle behavior between GFRP-50 and AlN. The
voltage rise is caused by temperature rise induced by joule
heating. Thermal conductivity of DFRP-50 is higher than
that of GFRP-50 and lower than that of AlN. Therefore, the
difference of the data in the GFRP-50, DFRP-50, and AlN is
due to thermal conductivity of the clamping materials and
heat transfer from the Bi tape to the clamping materials [38].
It is known that the voltage rise becomes slower by increasing
content ratio of DF and contact stress to Bi tape in the case
of DFRP [38]. It is considered that the negative thermal
expansion of DFRP contributes to increasing contact stress
in the HTS coil. The stability of HTS coil is reported in the
next section.

3.4. Evaluating Cooling Performance of High-Strength Poly-
ethylene-Fiber-Reinforced Plastics in Conduction-Cooled HTS
Coils [8]. In this section, thermal stabilities of HTS coils
composed of DFRP, GFRP, and AlN bobbins shown in
Figure 18 are reported. DFRP and GFRP bobbins were pipes
shown in Figure 19, and those were made by filament wind-
ing (FW) method. The specimens of coil and superconductor
are shown in Table 2. FW angles of DFRP pipes were 30,
45, and 60 deg. Those are denoted as DFRP60, DFRP30, and
DFRP45, respectively. If the angle is larger than 45 degrees,
the bobbin expands radially when cooled [36]. When is
smaller than 45 degrees, on the other hand, the bobbin
contracts when cooled [36]. FW angle of GFRP was 60deg.
AlN and GFRP bobbins do not expand when cooled.

The time profiles of voltage tape signals of those coils
are shown in Figure 20. Applied current to the HTS coil
corresponds to 86A (Ic). The voltage profile of the AlN coil

Fiber

FRP bobbin

θ

Figure 19: Bobbin shape and fiber angle in bobbin [8].

is almost same as that of the DFRP60 coil even though the
thermal conductivity of AlN is more than twice of DFRP60
[56]. The reason is the heat transfer from the tape to the
bobbin. The DFRP60 bobbin expanded, and, hence, its heat
transfer became better [57]. The AlN bobbin, on the other
hand, contracted, and its heat transfer became worse. The
thermal conductivity of GFRP is lower than that of the other
four materials used in the experiment, and the heat transfer
of the GFRP coil is bad because the material contracts when
cooled. This is why the measured thermal stability was worst
for the coil wound on the GFRP bobbin. Therefore, the
thermal stability of the coils depended not only on the
thermal conductivity of the bobbin but also on the heat
transfer from the tape to the bobbin. Thus, DFRP60 would
be a good heat sink material for the bobbin of a conduction-
cooled coil [8].
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Table 2: Specifications of coil, coil bobbins, and Bi-2223 tapes in
the HTS sample coils shown in Figure 19.

Coil and
bobbin

Height (mm) 50

Inner diameter of bobbin
(mm)

40

Outer diameter of bobbin
(mm)

55

Turn/layer 4 turns and single layer

Winding tension
10 N at room
temperature

Conductor

Superconductor Bi-2223

Sheath Silver alloy

Width (mm) 3.3

Thickness (mm) 0.7

Silver ratio 2.2

Ic at 77 K 86A
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Figure 20: The time profiles of voltage tap signals of HTS coils
wound on DFRP, GFRP, and AlN bobbins [8].
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