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Abstract

The onset of natural convection in a fluid-saturated anisotropic porous layer, which

rotates about the vertical axis, under the hypothesis of local thermal non-equilibrium,

is analysed. Since the porosity of the medium is assumed to be high, the more suitable

Darcy-Brinkman model is adopted. Linear instability analysis of the conduction solu-

tion is carried out. Nonlinear stability with respect to L2-norm is performed in order to

prove the coincidence between the linear instability and the global nonlinear stability

thresholds. The effect of both rotation and thermal and mechanical anisotropies on the

critical Rayleigh number for the onset of instability is discussed.

Keywords Light anisotropy · Rotating layer · LTNE Darcy-Brinkman model ·

Linear instability · Energy method

Mathematics Subject Classification 76Dxx · 76Exx · 76Sxx · 76Rxx

1 Introduction

Thermal convection in fluid-saturated porous media is a research topic of great interest

because of its several applications in real life problems, in engineering and geological

context. Convection in porous media finds its remarkable attention in geothermal

energy utilization, thermal insulation technology, cooling of electronic equipment,

tube refrigerators, heat exchangers or more in general, problems on removal or storage

of heat.

In industrial field, high-porosity materials, such as metal foams, are usually involved

since they can be successfully used to manage heat transfer. Moreover, their light
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weight, high porosity and rigidity, and a large surface area make them able to recycle

energy efficiently. When this kind of materials are taken into account, the usual Darcy

model is no longer suitable to describe the fluid motion. The more appropriate Darcy-

Brinkman model needs to be adopted ([1–4]).

Moreover, many porous media are usually man-made so that they exhibit anisotropy

in their mechanical and thermal features. This is because permeability and thermal

conductivity can be tuned in order to manage the onset of convection ([5–11]).

Furthermore, in many industrial applications, such as centrifugal filtration processes

and rotating machinery, rotation plays an important role on the onset of convection,

as well. When investigating these kind of situations where the solid matrix rotates, a

rotating frame of reference needs to be introduced [12]. It turns out that a term due

to Coriolis acceleration appears in the momentum equation. Many papers dealt with

convection in rotating porous media, such as [4,13–17].

As far as thermal convection is concerned, many researchers investigated the prob-

lem of convection under the strict assumption of local thermal equilibrium. Of course,

this hypothesis is no longer satisfying when heat exchange between fluid and solid

matrix is allowed. Therefore, the LTNE (Local Thermal Non-Equilibrium) assump-

tion, which involves two different temperatures T f and Ts , relative to fluid and solid

phase, respectively, becomes relevant. Convection in porous media in local thermal

non-equilibrium has received a huge attention by many researchers ([5,18–22]) due

to the several applications in real life problems, such as in tube refrigerators, in heat

exchangers and in flow in porous metal foams.

This paper is intended to investigate the onset of convection in a rotating high-

porosity medium, whose mechanical and thermal properties are lightly anisotropic,

under the local thermal non-equilibrium assumption. In particular, the influence of

rotation and anisotropy on the onset of instability is analysed.

The plan of the paper is the following. In Sect. 2 the Darcy-Brinkman model is

introduced and the dimensionless system for perturbation fields is obtained. Section

3 is devoted to the proof of the strong form of the principle of exchange of stabilities,

according to which only steady convection can occur. In Sect. 4, the critical Rayleigh

number for the onset of convection is determined by performing a linear analysis.

While, in Sect. 5 the nonlinear stability analysis of the conduction solution is carried

out so as to prove the coincidence between the linear instability threshold and the

global nonlinear stability threshold, with respect to the L2− norm. Finally, Sect. 6

deals with numerical simulations that highlight the influence of rotation, anisotropy

and the Darcy number on the critical Rayleigh number.

2 Mathematical model

Let us take into account a horizontal highly porous medium, whose depth is d, saturated

by an incompressible, homogeneous fluid at rest. The medium is assumed evenly

warmed up from below and rotating about the upward vertical axis z with constant

angular velocity �. As consequence, in addition to the gravitational field, the Coriolis

force acts on the medium. Moreover, we assume that the medium is in local thermal

non-equilibrium so that the heat exchange between fluid and solid skeleton is allowed.
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Convection in Darcy-Brinkman porous layer in LTNE 229

We denote by TL the temperature of the lower plane z = 0 and by TU the temperature

of the upper plane z = d, while we refer to the fluid temperature with T f and to the

solid temperature with Ts . Then

Ts = T f = TL on z = 0, Ts = T f = TU on z = d (1)

with TL > TU .

Besides, we assume that the layer is lightly anisotropic, i.e. its features, such as

thermal conductivity and permeability, are homogeneous in the horizontal direction.

This assumption allows us to write the permeability tensor K∗, the thermal conductivity

tensors of solid phase and fluid phase, D∗
s and D∗

f , respectively, in the following way

K
∗ = KzK K =

⎛

⎝

ξ 0 0

0 ξ 0

0 0 1

⎞

⎠ ξ =
K H

Kz

D
∗
s = κs

z Ds Ds =

⎛

⎝

ζ 0 0

0 ζ 0

0 0 1

⎞

⎠ ζ =
κs

H

κs
z

D
∗
f = κ

f
z D f D f =

⎛

⎝

η 0 0

0 η 0

0 0 1

⎞

⎠ η =
κ

f

H

κ
f

z

.

(2)

being the principal axis (x, y, z) of K∗ coinciding with the conductivity tensors’ ones.

Since the medium porosity is high, a Darcy-Brinkman model is employed. Account-

ing for the Oberbeck - Boussinesq approximation, starting from [5]–[19], the model

is
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

v = μ−1K∗ ·

[

− ∇ p + ρ f gαT f k −
2�ρ f

ε
k × v + μ̃
v

]

∇ · v = 0

ε(ρc) f T
f

,t + (ρc) f v · ∇T f = ε∇ · (D∗
f · ∇T f ) + h(Ts − T f )

(1 − ε)(ρc)s T s
,t = (1 − ε)∇ · (D∗

s · ∇Ts) − h(Ts − T f )

(3)

where v, p, T f and Ts are (seepage) velocity, reduced pressure, fluid phase temperature

and solid phase temperature, respectively; μ̃, μ, ρ f , ρs , c, g, α, �, ε, h are effective

and dynamic viscosity, fluid density, solid density, specific heat, gravity acceleration,

thermal expansion coefficient, angular velocity, porosity and interaction coefficient,

respectively.

The following boundary conditions are coupled to (3)

Ts = T f = TL on z = 0, Ts = T f = TU on z = d,

v · n = 0 on z = 0, d
(4)

being n the unit outward normal to planes z = 0, d.

System (3) admits the following conduction solution m0:
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m0 =

{

vb =0 , T̄s = T̄ f =−βz+TL , pb =−ρ f gαβ
z2

2
+ρ f gαTL z+cost

}

(5)

where β =
TL − TU

d
(> 0) is the adverse temperature gradient.

We are interested in studying the stability of the steady solution (5). Let us introduce

the following perturbation fields {u, θ, φ, π} so as to obtain a new solution for (3)

v = u + vb T f = θ + T̄ f Ts = φ + T̄s p = π + pb. (6)

Once the dimensionless quantities are introduced

xi = x∗
i d, t = t∗

εd

U
, π = π∗ P, ui = u∗

i U , θ = θ∗T ′, φ = φ∗T ′ (7)

where

P =
Uμd

Kz

, U =
εκ

f
z

(ρc) f d
, T ′ = βd

√

√

√

√

κ
f

z εμ

βgαKzρ
2
f c f d2

, (8)

the dimensionless system for the perturbation fields, omitting all the asterisks, is

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

K−1 · u = −∇π + Rθk − T k × u + Da
u

∇ · u = 0

θ,t + u · ∇θ = Rw + η
1θ + θ,zz + H(φ − θ)

Aφ,t − ζ
1φ − φ,zz + Hγ (φ − θ) = 0

(9)

where

γ =
εκ

f
z

(1 − ε)κs
z

, A =
(ρc)sκ

f
z

(ρc) f κs
z

, H =
hd2

εκ
f

z

R2 =
Kzρ

2
f c f d2βgα

μεκ
f

z

Rayleigh number

Da =
Kzμ̃

μd2
Darcy number , T =

2�ρ f Kz

εμ
Taylor number.

To system (9) we append the following initial conditions

u(x, 0)=u0(x) , θ(x, 0)=θ0(x) , φ(x, 0)=φ0(x) , π(x, 0)=π0(x) (10)

where ∇ · u0 = 0, and the following stress-free boundary conditions

u,z = v,z = w = θ = φ = 0 on z = 0, 1. (11)
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In order to study the stability of the null solution of (9), let us assume that per-

turbations are periodic in x and y directions with periods
2π

ax

and
2π

ay

, respectively.

Let

V =

[

0,
2π

ax

]

×

[

0,
2π

ay

]

× [0, 1] (12)

be the periodicity cell, we assume that perturbations belong to W 2,2(V ), ∀t ∈ R
+

and they can be expanded as a Fourier series uniformly convergent in V .

3 Principle of exchange of stabilities

In order to perform a linear instability analysis, we rewrite (9)1 in a more convenient

form in which only relevant unknown fields appear. Hence, let us apply the double curl

and the curl to (9)1 and let us retain only the third component. The resulting equations

are multiplied by ξ so as to obtain

{

ξ
1w + w,zz = ξ R
1θ + ξT
(

u,yz − v,xz

)

+ ξ Da

w

(1 − ξ Da
)
(

u,yz − v,xz

)

= −ξT w,zz

(13)

where (13)2 is consequence of a further derivation with respect to z. A single equation

is obtained once the operator (1 − ξ Da
) is applied to (13)1 and (13)2 is substituted

in the resulting equation. This procedure allows us to write the linear version of (9) as

follows

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ξ
1w + w,zz − ξ2 Da

1w − ξ Da
w,zz = ξ R
1θ

−ξ2 RDa

1θ − ξ2T 2w,zz + ξ Da

w − ξ2 Da2


w

θ,t = Rw + η
1θ + θ,zz + H(φ − θ)

Aφ,t − ζ
1φ − φ,zz + Hγ (φ − θ) = 0

(14)

Since (14) is autonomous, we look for solutions whose time dependence is separated

from the temporal one, i.e.

ϕ̂(t, x) = ϕ(x) eσ t ∀ϕ̂ ∈ (w, θ, φ) σ ∈ C (15)

By virtue of (15), (14) becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ξ
1w + w,zz − ξ2 Da

1w − ξ Da
w,zz + ξ2 RDa

1θ

−ξ R
1θ + ξ2T 2w,zz − ξ Da

w + ξ2 Da2


w = 0

σθ − Rw − η
1θ − θ,zz − Hφ + Hθ = 0

Aσφ − ζ
1φ − φ,zz + Hγφ − Hγ θ = 0

(16)

Then we denote by (·, ·) and ‖ · ‖ the scalar product on the Hilbert space

L2(V ), and the related norm, respectively. Let us multiply (16)1 by
w∗

ξ
, (16)2 by
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(1 − ξ Da
)
1θ
∗ and (16)3 by (1 − ξ Da
)
1

φ∗

γ
, where the asterisks denote the

complex conjugate. By virtue of boundary conditions (11), integrating over the peri-

odicity cell V yields

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−‖∇1w‖2 − ξ−1‖w,z‖
2 − ξ Da‖∇∇1w‖2 − Da‖∇w,z‖

2

−R (
1θ,w∗) + ξ RDa (

1θ,w∗) − ξ T 2‖w,z‖
2

−Da‖∇∇w‖2 − ξ Da2‖∇∇∇w‖2 =0

−σ‖∇1θ‖2 − σ ξ Da‖∇∇1θ‖2 − R (w,
1θ
∗) + ξ RDa (w,

1θ

∗)

−η‖
1θ‖2 − ξ η Da‖∇
1θ‖2 − ‖∇1θ,z‖
2 − ξ Da‖∇∇1θ,z‖

2

−H (φ,
1θ
∗) + Hξ Da (φ,

1θ

∗) − H‖∇1θ‖2

−ξ H Da‖∇∇1θ‖2 = 0

−
A σ

γ
‖∇1 φ‖2 −

A σ

γ
ξ Da‖∇∇1φ‖2 −

ζ

γ
‖
1φ‖2

−
ξ Da ζ

γ
‖∇
1φ‖2 −

ξ Da

γ
‖∇∇1φ,z‖

2 −
1

γ
‖∇1φ,z‖

2 − H‖∇1φ‖2

−H ξ Da‖∇∇1φ‖2 − H (θ,
1φ
∗) + H ξ Da (θ,

1φ

∗) = 0

(17)

Since (φ,
1θ
∗) = (
1φ, θ∗) and (φ,

1θ

∗) = (

1φ, θ∗), (17) yields

σ

[

‖∇1θ‖2 + ξ Da‖∇∇1θ‖2 +
A

γ
‖∇1 φ‖2 +

A

γ
ξ Da‖∇∇1φ‖2

]

=

= −‖∇1w‖2 − ξ−1‖w,z‖
2 − ξ Da‖∇∇1w‖2 − Da‖∇w,z‖

2

− R

[

(


1θ,w∗
)

+
(

w,
1θ
∗
)

]

+ ξ R Da

[

(



1θ,w∗
)

+
(

w,

1θ
∗
)

]

− ξ T
2‖w,z‖

2 − Da‖∇∇w‖2 − ξ Da2‖∇∇∇w‖2 − η‖
1θ‖2

− ξ η Da‖∇
1θ‖2 − ‖∇1θ,z‖
2 − ξ Da‖∇∇1θ,z‖

2

− H

[

(


1φ, θ∗
)

+
(

θ,
1φ
∗
)

]

+ H ξ Da

[

(



1φ, θ∗
)

+
(

θ,

1φ
∗
)

]

− H‖∇1θ‖2 − ξ H Da‖∇∇1θ‖2 −
ζ

γ
‖
1φ‖2 −

ξ Da ζ

γ
‖∇
1φ‖2

−
1

γ
‖∇1φ,z‖

2 −
ξ Da

γ
‖∇∇1φ,z‖

2 − H‖∇1φ‖2 − H ξ Da‖∇∇1φ‖2

(18)

Every term in (18) is real, then necessarily σ is real as well. Thus, we have shown

the validity of the strong form of the principle of exchange of stabilities. Therefore,

convection can occur only through a steady motion.
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4 Linear instability analysis

Since our aim is to determine the critical Rayleigh number beyond which instability

occurs, we focus on the marginal state in (16). By virtue of principle of exchange of

stabilities, we set σ = 0 in (16) so as to obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ξ
1w + w,zz − ξ2 Da

1w−ξ Da
w,zz −ξ R
1θ + ξ2 RDa

1θ

+ ξ2
T

2w,zz − ξ Da

w + ξ2 Da2


w = 0

−Rw − η
1θ − θ,zz − Hφ + Hθ = 0

−ζ
1φ − φ,zz + Hγφ − Hγ θ = 0

(19)

Because of periodicity of perturbation fields, accounting for boundary condi-

tions (11) and since the sequence {sin nπ z}n∈N is a complete orthogonal system for

L2([0, 1]), we look for solution of (19) such that

f (x, y, z) =

+∞
∑

n=1

f̄n(x, y, z) ∀ f ∈ {w, θ, φ} (20)

where f̄n = f̃n(x, y) sin(nπ z) and


1 f̄n = −a2 f̄n

∂2 f̄n

∂z2
= −n2π2 f̄n (a2 = a2

x + a2
y) (21)

where a is the wavenumber arising from spatial periodicity.

Let us define the following operators

L1 ≡ ξ
1 + ∂,zz − ξ2 Da

1 − ξ Da
∂,zz + ξ2
T

2∂,zz − ξ Da



+ ξ2 Da2




L2 ≡ −η
1 − ∂,zz + H

L3 ≡ −ζ
1 − ∂,zz + Hγ

(22)

so that the system (19) becomes

⎧

⎪

⎨

⎪

⎩

L1w = (1 − ξ Da
) Rξ
1θ

L2θ = Rw + Hφ

L3φ = Hγ θ .

(23)

Now let us apply L1 and L3 to (23)2 so that

L1L2L3θ = RL3L1w + HL1L3φ . (24)

By substituting (23)1-(23)3 in (24), we get

L1L2L3θ = R2
L3 (1 − ξ Da
) ξ
1θ + H2γL1θ . (25)
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By splitting L3 in the first term, we obtain

L1L2

(

−ζ
1 − ∂,zz

)

θ + L1 Hγ
(

−η
1 − ∂,zz

)

θ

= R2
(

−ζ
1 − ∂,zz + Hγ
)

(1 − ξ Da
) ξ
1θ . (26)

By splitting L2 in the first term in (26)

L1 H
(

−ζ
1 − ∂,zz

)

θ + L1

(

−η
1 − ∂,zz

) (

−ζ
1 − ∂,zz + Hγ
)

θ

= R2
(

−ζ
1 − ∂,zz + Hγ
)

(1 − ξ Da
) ξ
1θ . (27)

Let us substitute (20) in (27) and retain only the n-th component. Then, from (27)

[

−ξa2−n2π2−ξ2a2 Daδn −ξn2π2 Daδn −ξ2
T

2n2π2−ξ Daδ2
n −ξ2 Da2δ3

n

]

[

H
(

ζa2 + n2π2
)

+
(

ηa2 + n2π2
) (

ζa2 + n2π2 + Hγ
)]

= −R2
(

ζa2 + n2π2 + Hγ
)

(1 + ξ Da δn) ξa2 (28)

being δn =
(

a2 + n2π2
)

.

From (28) it follows that the critical Rayleigh number for the onset of steady

convection is

RS = min
(n2,a2)∈N×R+

f (n2, a2) (29)

being

f (n2, a2) =
ξa2+n2π2+ξ2 Da a2δn +ξ Da n2π2δn +ξ2T 2n2π2+ξ Da δ2

n +ξ2 Da2δ3
n

(1 + ξ Da δn) ξa2

[

ηa2 + n2π2 + H
ζa2 + n2π2

ζa2 + n2π2 + Hγ

]
(30)

We can easily remark that the minimum with respect to n2 is attained in n2 = 1, since

f (·, a2) is a strictly increasing function. Hence

RS = min
a2∈R+

[

ξa2 + π2 + ξ Da δ2

ξa2
+

ξ2T 2π2

(1 + ξ Da δ) ξa2

]

·

[

ηa2 + π2 + H
ζa2 + π2

ζa2 + π2 + Hγ

]
(31)

where δ =
(

a2 + π2
)

.

Let us remark that f (1, a2) is a strictly increasing function of T and η, therefore

the stabilizing effect of rotation and fluid thermal conductivity has been proved. In

particular, the effect of rotation on the onset of instability is expected since the Coriolis

force acts in the horizontal direction, discouraging the motion in the vertical one.
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Moreover, it is easy to note that if Da = 0, (31) coincides with the result found

in [5]–[19]. While, for a low porous medium in absence of rotation, i.e. T = 0 and

Da = 0, results coincide with the ones found in [6]. In addition, by assuming that the

layer is isotropic, i.e. ξ = η = ζ = 1, the critical Rayleigh number (31) is the same

as that one found in [18].

5 Nonlinear stability

In this section we want to perform a nonlinear stability analysis of conduction solution

m0. The application of the energy method yields a loss of the rotation term. Therefore,

we employ a differential constraint approach ([19,20]) in order to capture the influence

of rotation. Then, let us multiply (9)3 by θ and (9)4 by φ and integrate over the

periodicity cell V . By defining the Lyapunov functional E(t)

E(t) =
1

2
‖θ‖2 +

A

2γ
‖φ‖2, (32)

the production term I (t)

I (t) = (θ, w) (33)

and the dissipation function D(t)

D(t) = η‖∇1θ‖2 + ‖θ,z‖
2 +

ζ

γ
‖∇1φ‖2 +

1

γ
‖φ,z‖

2 + H‖φ − θ‖2 (34)

we find out that
d E

dt
= −D

(

1 − R
I

D

)

≤ −D

(

1 −
R

RE

)

(35)

where
1

RE

= max
H∗

I

D
(36)

with

H
∗ = {(w, θ, φ) : w = θ = φ = 0 on z = 0, 1; periodic in x and y

directions, with period
2π

ax

,
2π

ay

respectively; D < ∞; verifying (16)1}

(37)

the space of the kinematically admissible perturbations. Equation (35) tells us that

R < RE is a sufficient condition for the nonlinear stability of m0.

123



236 F. Capone and J. A. Gianfrani

Let us define

g(x) = ξ
1w + w,zz − ξ2 Da

1w − ξ Da
w,zz − ξ R
1θ

+ ξ2 RDa

1θ + ξ2
T

2w,zz − ξ Da

w + ξ2 Da2


w

H = {(w, θ, φ) : w = θ = φ = 0 on z = 0, 1; periodic in x and y

directions, with period
2π

ax

,
2π

ay

respectively; D < ∞}.

(38)

The variational problem (36) is equivalent to

1

RE

= max
H

I +
∫

V
λ g dV

D
(39)

where λ(x) is a Lagrange multiplier.

By employing the Poincaré inequality in (34), we get

D(t) ≥ aπ2‖θ‖2 + b
π2

γ
‖φ‖2 (40)

being a = min{1, η} and b = min{1, ζ }. Hence, if R < RE , from (35) it turns out that

d E

dt
≤ −

(

aπ2‖θ‖2 + b
π2

γ
‖φ‖2

)(

1 −
R

RE

)

≤ −π2

(

RE − R

RE

)

cE(t) (41)

where c = min

{

2a,
2b

A

}

. Equation (41) yields the exponential decay of temperature

perturbation fields.

Now let us remark that, by multiplying (9)1 by u and by virtue of Cauchy-Schwartz,

we obtain the exponential decay of u, i.e.

‖u‖2 ≤ ξ∗ R2‖θ‖2 (42)

where ξ∗ = max{ξ, 1}.

Thus, we have shown that the condition R < RE implies the global nonlinear and

exponential stability of conduction solution m0.
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Now let us solve the variational problem (39) to determine the critical Rayleigh

number RE . The Euler-Lagrange equations, together with the constraint equation, are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ
1w + w,zz −ξ2 Da

1w−ξ Da
w,zz − ξ RE
1θ + ξ2T 2w,zz

+ξ2 RE Da

1θ − ξ Da

w + ξ2 Da2


w=0

θ + ξ
1λ+λ,zz −ξ2 Da

1λ − ξ Da
λ,zz +ξ2T 2λ,zz −ξ Da

λ

+ξ2 Da2


λ=0

REw + ξ2 R2
E Da

1λ − ξ R2

E
1λ + 2η
1θ+2θ,zz +2H (φ − θ)=0

ζ
1φ + φ,zz − Hγ (φ − θ) = 0

(43)

Recalling the definitions in (22), (43) becomes

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L1w = (1 − ξ Da
) REξ
1θ

L1λ = −θ

2L2θ = REw + 2Hφ − (1 − ξ Da
) R2
Eξ
1λ

L3φ = Hγ θ

(44)

By applying L1 to (44)3 and substituting (44)2 and (44)1, we obtain

− L1L2θ + HL1φ + REL1w = 0. (45)

The application of L3 to (45) leads to the following equation

− L1L2L3θ + HL1L3φ + REL3L1w = 0 (46)

which coincides with (24). As consequence, we have obtained the coincidence between

the global nonlinear stability threshold RE and the linear instability threshold RS ,

implying the absence of subcritical instability region. This result allows us to claim

that the condition R < RE = RS is a necessary and sufficient condition for the

stability of m0, therefore in this respect the result is optimal.

6 Numerical analysis

In this section we would like to point out how parameters affect the onset of convection.

Given the complex expression obtained in (31) for the critical Rayleigh number RS ,

it is not always easy to show analytically how parameters modify the occurrence of

instability. That is why the expression for the critical Rayleigh number (31) is analysed

numerically for different values of parameters with the aim of highlighting how they

affect the onset of convection. In particular, we will show the dependence of RS

with respect to the Taylor number, permeability, thermal conductivities and the Darcy

number.

We would like to point out that results are reported as function of the inter-phase

heat transfer coefficient H . This parameter is not easily measurable, as claimed in [5].
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Fig. 1 Critical Rayleigh number as function of the inter-phase heat transfer coefficient H for different

values of the Taylor number T with ξ = ζ = η = 0.5, γ = 0.4 and Da = 2

That is why we have decided to fix the range (10−2, 106) in which H can vary and to

show the influence of parameters on RS for any H .

Figure 1 shows the behaviour of the critical Rayleigh number RS for increasing

values of T . The stabilizing effect of rotation on the onset of convection is clear,

for any value of H , even though it is less remarkable when H → 0. This result is

not surprising since we have previously pointed out that the derivative of RS in (31)

with respect to T is strictly positive. Moreover, the stabilizing effect is expected from

a physical point of view since rotation acts on the fluid in the horizontal direction,

making the motion along the vertical axis more difficult.

We would like to underline that both for small and large values of H , the curves

tend to become parallel to the x axis. The region where a plateau is reached represents

the local thermal equilibrium situation and it will characterize the following figures,

as well. Physically, if H → 0, the solid phase is separated from the fluid one and it

ceases to affect the fluid thermal field. While, if H → ∞, solid and fluid temperature

end up with being identical.

In Fig. 2, the stabilizing effect of the Darcy number Da on conduction is highlighted.

Note that if Da = 0, results are valid for the classical Darcy model, as pointed out

previously. It is well known that when porosity ε tends to 1, the classical Darcy model

needs to be replaced by the Darcy-Brinkman model, for which Da 
= 0. Since the

Darcy-Brinkman model is closer to a model describing the fluid motion in absence

of porous medium (clear fluid), for which it is common knowledge that the critical

Rayleigh number is greater than that one in a porous medium, result in Fig. 2 is

consistent.

In Fig. 3a, the behaviour of RS with respect to permeability parameter ξ is shown.

The destabilizing effect of permeability is evident, for any values of H , in agreement

with findings of [5] and [6]. Recalling the definition of the Rayleigh number, this kind

of behaviour is expected, since R is directly proportional to Kz . Physically, increasing
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Fig. 2 Critical Rayleigh number as function of the inter-phase heat transfer coefficient H for different

values of the Darcy number Da with ξ = ζ = η = 0.5, γ = 0.4 and T 2 = 20
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Fig. 3 a Critical Rayleigh number b critical wavenumber as function of the inter-phase heat transfer

coefficient H for different values of ξ with ζ = η = 0.5, γ = 0.4, T 2 = 20 and Da = 2

K H eases the fluid motion in the horizontal direction, implying an easier occurrence

of instability. Figure 3b shows how cell dimension changes for different values of

permeability. In particular, when permeability in the horizontal direction K H grows,

periodicity cells get wider.

Now let us analyse how RS varies with respect to thermal conductivities. Figure 4a

shows the stabilizing effect of solid thermal conductivity on conduction. The growth

of RS with ζ means that solid thermal conductivity delays the onset of convection.

Physically, the greater the solid thermal conductivity is the more easily the solid matrix

absorbs heat from the fluid. The delaying effect is evident for large values of the inter-

phase heat transfer coefficient H , while it is less remarkable for smaller values of H .
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Fig. 4 a Critical Rayleigh number b critical wavenumber as function of the inter-phase heat transfer

coefficient H for different values of ζ with ξ = η = 0.5, γ = 0.4, T 2 = 20 and Da = 10
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Fig. 5 a Critical Rayleigh number b critical wavenumber as function of the inter-phase heat transfer

coefficient H for different values of η with ξ = ζ = 0.5, γ = 0.4, T 2 = 20 and Da = 10

This is not surprising since, as already pointed out, when H → 0 solid phase does not

affect the fluid thermal field. This behaviour is evident also in Figure 4b, where it is

highlighted how cell dimension varies with respect to ζ . In particular, for small values

of H , the influence is negligible, while if H is great, ζ promotes wider periodicity

cells.

Analogous result is obtained when looking at the effect of the fluid thermal conduc-

tivity parameter η on the periodicity cell dimension. Figure 5b shows that η promotes

wider periodicity cells, as well.

The stabilizing effect of η is highlighted in Fig. 5a, where for any H , RS grows

for increasing η. This behaviour is consistent with the analytical result for which the

derivative of RS in (31) with respect to η is strictly positive. From a physical point of

view, increasing κ
f

z implies that heat flows easier in the vertical direction within the

fluid, fostering the onset of instability.
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Fig. 6 Critical Rayleigh number as function of the inter-phase heat transfer coefficient H for different

values of γ with ξ = ζ = η = 0.5, T 2 = 20 and Da = 10

The effect of κ
f

z on the critical Rayleigh number is evident also by looking at Fig.

6, where the behaviour of RS with respect to the thermal conductivities’ ratio γ is

shown. Since γ =
εκ

f
z

(1 − ε)κs
z

by definition, increasing κ
f

z implies growing γ , which

yields a decrease for RS , i.e. a destabilizing effect, as shown in Fig. 6.

7 Conclusions

The linear and nonlinear stability analysis of the conduction solution in an anisotropic

rotating porous medium with high porosity in local thermal non-equilibrium has been

studied. Only steady convection is allowed, since the principle of exchanges of sta-

bility holds. A detailed proof of that has been performed. In order to study the global

nonlinear stability, the energy method has been adopted. Coincidence between the

linear instability and the global nonlinear stability thresholds is proved. This means

that a necessary and sufficient condition for the onset of convection has been obtained.

Numerical simulations have been required in order to highlight the influence of

parameters on the onset of convection. It has been pointed out that permeability has a

destabilizing effect on conduction. This is because increasing permeability eases the

fluid motion, implying an easier occurrence of instability. Whereas, thermal conduc-

tivities stabilize conduction, delaying the onset of convection. Moreover, it has been

shown that, as expected, rotation and the Darcy number have a stabilizing effect on

conduction, as well as the thermal conductivities’ ratio γ .
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