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ABSTRACT 

THERMAL COOLING EFFECTS IN THE 
MICROSTRUCTURE AND PROPERTIES OF 
CAST COBALT-BASE BIOMEDICAL ALLOYS 

 
by 

Vladimir Vega Valer 

 

The University of Wisconsin-Milwaukee, 2014 
Under the Supervision of Professor Hugo Lopez 

  

Joint replacement prosthesis is widely used in the biomedical field to 

provide a solution for dysfunctional human body joints. The demand for 

orthopedic knee and hip implants motivate scientists and manufacturers to 

develop novel materials or to increase the life of service and efficiency of current 

materials. Cobalt-base alloys have been investigated by various researchers for 

biomedical implantations.  When these alloys contain Chromium, Molybdenum, 

and Carbon, they exhibit good tribological and mechanical properties, as well as 

excellent biocompatibility and corrosion resistance.  

In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely 

modified by inducing rapid solidification through fusion welding processes and 

solution annealing heat treatment (quenched in water at room temperature.  In 

particular the effect of high cooling rates on the athermal phase transformation 

FCC(Ɣ)↔HCP(ε) on the alloy hardness and corrosion resistance is investigated.  
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The Co-alloy microstructures were characterized using metallography and 

microscopy techniques. It was found that the as cast sample typically dendritic 

with dendritic grain sizes of approximately 150 µm and containing Cr-rich coarse 

carbide precipitates along the interdendritic boundaries.  Solution annealing gives 

rise to a refined microstructure with grain size of 30 µm, common among Co-Cr-

Mo alloys after heat treating.  

Alternatively, an ultrafine grain structure (between 2 and 10 µm) was 

developed in the fusion zone for specimens melted using Laser and TIG welding 

methods.  When laser surface modification treatments were implemented, the 

developed solidification microstructure shifted from dendritic to a fine cellular 

morphology, with possible nanoscale carbide precipitates along the cellular 

boundaries.  In turn, the solidified regions exhibited high hardness values 

(461.5HV), which exceeds by almost 110 points from the alloy in the as-cast 

condition.   

The amount of developed athermal ɛ -martensite phase was determined 

using X-ray diffractrometry. It was found that the amount of ɛ -martensite 

increases significantly from 2% for the Laser surface processing to 13% in the as 

cast specimen, 24% in the annealed specimen, and 51% for the TIG surface 

processing.  Moreover, the corrosion rate in Ringer solution was calculated by 

applying the Tafel extrapolation method on each alloy condition. The lowest 

corrosion rate (0.435 µm/year) was achieved in the Laser treated alloy and it is 

attributed to the lack of appreciable athermal ɛ -martensite.  The highest 



 

 

iv 

 

corrosion rate (15.5 µm/year) was found to occur in the TIG treated alloy, which 

possesses the largest amount of ɛ -martensite. 

In turn, this suggests that surface modification through melting induces 

variable amounts of athermal ɛ -martensite in the as-cast Co-Cr-Mo-C alloys.  

Apparently, rapid solidification of melted surfaces in the Co-alloy is highly 

effective in modifying the induced amounts of HCP phase, and hence, the 

exhibited properties.   
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CHAPTER 1.  INTRODUCTION 

1.1 Problem Statement 

Biomedical implant devices became available in the early 1900’s with poor 

success due to the lack of available biomedical materials at the time. Since then, 

several studies aimed to improve and develop the most suitable material for 

surgical implantations. Mechanical properties, corrosion resistance, and 

biocompatibility are the main factors for designing and manufacturing biomedical 

devices to satisfy those needs. However, depending on the attempted replaced 

part function, the factors may differ to customize and accomplish design 

requirements. 

Wear debris is the most common problem in hip and knee implants when 

they replace synovial joint functions in the human body. Limitations in joint 

movement and movement accompanied by pain lead to new studies to develop 

more alternatives to fill this gap.  

Hip and knee artificial metallic implants were introduced for the first time in 

the United States by Dr. Austin Moore in the 1940’s [1].  Early available materials 

at the time, such as Steel and Iron, were mostly employed for artificial joint 

replacements. These materials generated corrosion between the bone and 

articulations. In addition, materials like Gold and Nickel were also attempted in 

surgical implants without success because of poor wear resistance. The addition 

of Chromium and Molybdenum into the steel produced a newly discovered alloy, 

316L Stainless Steel, with improved corrosion and wear resistance. Later in the 
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middle of the 20th century, Titanium and its alloys were used with better 

properties than the aforementioned alloys [2]. 

Nowadays, modern techniques and materials have become more 

available for total hip and knee replacement, and cast Cobalt-based alloys 

appear to be the best material for this application.  According to the American 

Orthopedic Surgeon [3], only in 2004, 46,000 hip replacements and 40,000 knee 

replacements were performed in the United States, which shows a great demand 

for surgical implants for needed patients. 

When cast Cobalt is alloyed with Chromium and Molybdenum (also known 

as ASTM F-75), the mechanical properties of the alloy improve significantly as 

well as wear and corrosion resistance. Although Sang-Hak Lee has 

demonstrated that wrought Co-Cr-Mo alloys (ASTM F799) have better 

mechanical properties than as cast [4], it is important to balance the alloy 

properties by providing adequate heat treatment and cooling rates to the cast 

alloy. 

The as cast Co-Cr-Mo alloy by nature forms carbide blocks with a coarse 

dendritic microstructure and other defects, which are formed during the 

solidification process.  Hence, carbide morphology and control in grain 

refinement are rather important in the final properties of Co-base alloys. 

 

1.2 Objectives of Present Study 

The present study provides a deeper understanding of thermal effects in 

cast Cobalt base alloys and how much the thermally treated alloy differs from its 
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initial properties. The relationship between the exhibited amount of precipitated 

hexagonal phase and its corrosion rate under different surface thermal conditions 

in the alloy were investigated. The goal was to obtain a near 100% FCC matrix 

with minimal HCP phase under the mentioned conditions.  In addition, it was 

expected to induce grain refinement in the alloy microstructure in order to 

increase the mechanical strength. In order to obtain the desired microstructure, 

this study focuses on achieving the following objectives:   

a) Provide a grain refinement to the alloy microstructure 

b) Promote a near 100% Ɛ-martensitic HCP or FCC phase in the alloy by 

employing surface fusion techniques, such as Laser and Tungsten 

Inert Gas (TIG) welding. 

c) Understand how the corrosion resistance is affected by the amount of 

HCP or FCC phase in the alloy. 

d) Identify any possible relationships between the generated 

microstructures and the corrosion resistance of the alloy. 
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CHAPTER 2.  LITERATURE OVERVIEW 

2.1 COBALT BASE ALLOYS 

2.1.1 Cobalt 

Cobalt is an allotropic metal with 2 crystal structures Face Centered Cubic 

(FCC) and Hexagonal Close Packed (HCP) present in the matrix. In pure Cobalt, 

the most dominant phase at room temperature is FCC crystal structure and it 

exhibits a metastable phase above the equilibrium transformation temperature. 

However, the HCP crystal structure is thermodynamically stable at room 

temperatures below 417⁰C, where the allotropic transformation temperature    

starts by martensitic transformation. This phenomenon may be caused by the 

relatively rapid cooling rates during the casting process, where the FCC↔HCP 

kinetics transformation occurs slowly [5] [6] [7].  

2.1.2 Kinetics Transformation Mechanisms FCC↔HCP 

 In order to understand the FCC↔HCP transformation mechanisms, it is 

necessary to address some primary concepts.  

Defects in crystalline materials, such as dislocations, are necessary to be 

defined to evaluate the mechanical properties of a material. The concept of 

dislocations comes from plastic deformation in crystalline materials, where the 

application of a shear stress to a crystal lattice produces an elastic distortion. 

Further stressing beyond the yield point leads to dislocation slip along slip 

systems [8]. 
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In a FCC crystal unit cell, usually dislocation glide occurs in the close packed 

plane (111) in a       type direction, and the burgers vector magnitude is       〈   〉. For an HCP unity cell, dislocation glide occurs preferentially along 

(0001) planes in 〈    〉 direction with a burgers vector magnitud of          〈    〉. 
Another component which plays a critical role in the case of Ti and its 

alloys is the Stacking Fault Energy, γ.  It can be considered as a surface defect 

and it is defined as the surface energy associated with a a local interruption in 

the stacking sequence of the crystal structure. The local displacement is typically 

seen in planes with ABCABC sequence, such as FCC crystal structures. 

 In the example of Figure 1, the first layer of atoms on the bottom is 

denoted as A, the next layer as B, and the subsequent layer on the top as C. If 

the top layer C creates a direct contact with layer A by depleting layer B, stacking 

fault in the sequence of ABAB is formed. As a result, the continued addition of 

more layers creates the Hexagonal Closed Packed crystal structure HCP.  

Extrinsic stacking faults refers to when one atom layer disrupts the plane 

system and it is introduced between the B or C layer.  In contrast, when an atom 

layer is removed in such a way that it alters the plane sequence, it is called 

intrinsic stacking fault. (See Figure 3).   
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Figure 1.  Position of atoms in layers A B C for a face centered cubic crystal 

(FCC) 

 

Figure 2.  Position of atom layers in a Hexagonal Close Packed crystal structure 

 

Figure 3.  Interruption in the stacking sequence. a) Intrinsic stacking Fault  b) 

Extrinsic Stacking Fault 
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The energy required to induce a change in the stacking sequence to from 

FCC to HCP is given by γ.  When the magnitude of γ is to large, it is not possible 

to promote the development of extended dislocations as the energy needed to 

promote a shift in the stacking sequence is is to large to overcome.  A 

relationship for the conditions needed for a change in stacking sequence can be 

described by the expression:                      Equation 1 

γ = Energy of a stacking fault      

G = Elasctic strain energy 

     = Scalar product of the Burgers vector 

d = distance between burgers vector product 

 

2.1.3 Partial Dislocations 

In contrast to stacking fault theory, Shockley partial dislocations will 

provide a force which favors the spliting of dislocations into extended ones. Due 

to energy considerations in the elastic strain energy  (G= elastic strain energy 

and b= burgers vector), dislocations can split into shorter magnitude burger 

vectors unit “b.” For some crystals like FCC, this reaction becomes favorable 

when γ tends to zero, so the energy barriers are significantly reduced favoring 

the development of dislocation partials according to the following.  
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                    Equation 2 

The burgers vector in an FCC crystal has a dimmension of 
         and split into 

2 burgers vectors of magnitude   
                    and glide in the (111) slip 

plane.  

 

Figure 4.  Dissociation of Shockley Partial Dislocations  

 

The scalar product of the partial burgers vectors meets the equation and it 

becomes energetically favorable to split. The area formed between both partial 

dislocations is known as the stacking fault energy (SFE).  

 

2.1.4 Cobalt Chromium Molybdenum Alloys 

The addition of different chemical elements in Cobalt base alloy, such as 

Chromium, Molybdenum, and Tungsten help to strengthen the material.  Also, 

small additions of Carbon improve the alloy castability. The Carbon content is 

essential because it dissolves in the FCC phase providing a solid solution which 
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together with other alloying elements enhances the strengthening properties of 

the alloy [9] [10].   

Cast Cobalt alloys exhibit a dendritic microstructure with predominant 

Cobalt FCC-matrix. The dendritic structure is formed with predominant carbides 

of the type       blocky carbides and other carbide phases [11] [12].  These 

blocky carbides are formed during the dendritic solidification in the interdendritic 

regions at temperatures around 1200°C [11].  

Chromium, Molybdenum, and Tungsten lower the stacking fault energy in 

the alloy and thus help to stabilize the HCP structure. The presence of extended 

dislocations in low stacking fault Co-alloys causes dislocations to move along the 

slip planes. Hence in the ε-martensite HCP phase the extended dislocation are 

unable to easily climb or cross slip directly affecting the mechanical deformation 

in the alloy [8].  

 

2.1.5 Kinetics Phase Transformation FCC↔HCP in Co-Cr-Mo-C Alloys 

Rearragement of the crystal structure and the kinetcs of the transformation 

exhibited in Co-Cr-Mo alloys can be addressed as a martensitic transformation 

reaction [10 [13].  A martensitic reaction is the lattice deformation of a crystal in 

the solid state due to a fault in the plane of close packed structures, and it could 

be induced by athermal transformations, dislocations, and strain induced 

nucleation [14]. 

According to Saldivar and Lopez [15], the FCC↔HCP transformation 

temperature when the as-cast Cobalt is alloyed with Cr-Mo-C increases in the 
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range between   = 800 to 875°C by isothermal aging. In addition, Saldivar 

considers that    increases to 970°C in wrought Co alloys with low carbon 

addition (Co-27Cr-5Mo-0.05C) [16].  Therefore when temperatures are induced 

above the transformation temperatures in the as cast alloy, the interdendritic 

morphology tends to dissapear and the grains are refined.  However, the ∝-FCC 

phase is retained after the alloy solidifies. 

As discussed before, the FCC phase may promote the martensitic HCP 

phase in Co-Cr-Mo-C alloys if the thermal conditions are met. There are three 

different methods to induce ɛ-martensitic HCP phase in the alloy: athermal HCP 

transformation, isothermal HCP transformation, and starin induced HCP 

transformation. 

 

2.1.6 Athermal Transformation 

 In 1976, Vander Sande, Coke, and Wulff [17] proposed that after heat 

treatment solution annealing in Co-Cr-Mo-C alloys, the FCC phase continue as 

predominant phase in a metastable state in the alloy microstructure. However, an 

increment of stacking faults helped to determined the formation of the HCP 

phase in the alloy. Later in the 1990s, Rostoker and Dvorak [18].  Demonstrated 

by characterization techniques the formation HCP in Co-Cr-Mo-C alloys after 

quenched at room temperature from 1300°C.  
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2.1.7 Isothermal Transformation 

 Initial stages of the FCC↔HCP transformation was observed by Vander 

Sande in Co-Cr-Mo- alloys with low carbon content by annealing solution and 

rapid quench [17].  The small percentage formation of the HCP phase found in 

the alloy microstructure (approximately 5%) led to investigate the alloy using 

isothermal aging heat treatment at 650°C to 750°C. It was observed that after 

long period of time the formation of the ɛ-martensitic HCP phase was 

predominant in the alloy (approximately 95%) due to the increment in stacking 

fault in the FCC phase. Furthermore, Zangeneh, Lashgari, Saghafi, and 

Karshenas confirmed the same results using isothermal aging temperatures of 

from 850°C to 950°C as well as the increment in the alloy hardness.  

 

2.1.8 Strain Induced Transformation 

 The formation of ε-materiste in Co-Cr-Mo-C alloys can be achieved by 

plastic deformation. The development of fine intergranular striations found in the 

α-phase  corresponds to the nucleation of martensitic HCP phase [19].  In 

addition, Mani, Salinas and Lopez [20], found that the development of the 

HCP phase in Co-Cr-Mo-C alloys at room temperature can be induced by 

applying plastic deformation and it increases by isothermal aging prior 

elastic straining of the alloy.  

 

 

 



12 

 

 

2.2 FUSION WELDING THEORY 

2.2.1 Definition 

Fusion welding is described as a process that joins two metallic materials 

by involving melting and solidification from both parts. There are three different 

fusion welding processes in order of heat source increment, and they are 

classified as the following [21]:  

Gas Welding: 

 Oxyacetylene Welding (OAW) 

Arc Welding 

 Shielded Metal Arc Welding (SMAW) 

 Gas Tungsten Arc Welding (GTAW) 

 Plasma Arc Welding (PAW) 

 Gas Metal Arc Welding (GMAW) 

 Flux Cored Arc Welding (FCAW) 

 Submerged Arc Welding (SAW) 

 Electroslag Welding (ESW) 

High Energy Beam Welding 

 Electron Beam Welding (EBW) 

 Laser Beam Welding (LBW) 

The two fusion welding processes, which were used in this investigation, were 

Gas Tungsten Arc Welding and Laser Beam Welding.  
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2.2.2 Gas Tungsten Arc Welding (GTAW) 

GTAW is a fusion welding process that uses a non-consumable Tungsten 

electrode and melts and joins the metal. The welding process is created by 

maintaining the electric arc formed by the electrode and the workpiece. Gas 

Tungsten arc welding is also known as Tungsten Inert Gas (TIG) because the 

welding process employs a Tungsten electrode to protect the work environment. 

The Tungsten electrode is connected by a welding cable directly to an electrical 

terminal and a water coolant system (contact tube) as shown in Figure 5.  The 

environment is shielded or protected by Argon, Helium, or both, and it is fed 

through the torch.  Also, the shielding gas makes contact with the Tungsten 

electrode to avoid oxidation and contamination from air in the weld. 

 

Figure 5.  Gas Tungsten Arc Welding process: a) Entire scheme of the welding 

process. b) Closer view inside the welding area. [21] 
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Selection of the electrode in GTAW process is very important. Tungsten 

possesses a relatively high melting point (approximately ~1980⁰C) and it doesn’t 

vaporize. Therefore the inconsumable Tungsten electrode will not melt, so it is 

not used as filler metal during welding as other fusion welding processes do. 

However, improper operation of the GTAW equipment (wrong current, electrode 

type, or wrong technique used) may cause melting the electrode and deposition 

of Tungsten particles in the weld, which creates brittle intermetallic compounds.  

Tungsten electrodes may either be pure or alloyed with other elements, 

such as thorium, zirconium oxide, cerium, or lanthanum.  A pure Tungsten 

electrode provides good arc stability with either Argon or Helium shielding gases. 

It is commonly used to weld Aluminum and Magnesium. In order to carry high 

current capacity in the welding process, thorium is added in the electrode. The 

addition of thorium will provide a desirable electrode with better electron emission 

quality [22].  

One main factor considered for selecting the proper electrode is the type 

of welding current. There are 3 types of different polarities used in GTAW 

process: Direct current electrode negative (DCEN), direct current electrode 

positive (DCEP), and alternating current (AC). 

 

Figure 6.  Different polarities used in GTAW process [21]. 
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Direct current electrode negative, also known as straight polarity, is 

commonly applied to weld almost all metals, except Aluminum and Magnesium. 

The torch is connected to a negative terminal of the power source and the 

workpiece is connected to a positive terminal. When the electric arc is created, 

the electrons will flow from positive to a negative charge. That is why most of the 

emitted heat (70%) enters to the workpiece and forms a deep penetration in the 

weld joint. 

In contrast, in direct current electrode positive polarity the torch is 

connected to a positive terminal of the power source and the workpiece is 

connected to a negative terminal. The electrons will flow in the same manner as 

DCEN polarity, but now the heat is concentrated in the Tungsten electrode rather 

than in the workpiece. Because of how the electrons flow, this type of polarity is 

known as reverse polarity. The weld joint has a small penetration, large fusion 

zone, and liquid coolant must be employed to avoid melting of the electrode. 

Alternating current polarity will change the direction of current flow. The 

electrode will become positive and the workpiece negative at certain times, and 

the direction of current flow will alternate to negative at the electrode and positive 

at the workpiece during another given time. This type of polarity is mostly used to 

weld Aluminum alloys because it has an intermediate weld penetration and 

shielding gas protects the workpiece. 

The biggest advantage for using the TIG welding process is that it can 

weld thin sections with limited heat input, and it is widely applied for welding 

Aluminum, Magnesium, Copper, Stainless steel, etc. Other advantages for 
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considering TIG process are high weld quality, deep penetration with small HAZ 

region in the weld joint, control of current and energy input, less distortion, and 

no smoke or sparks during the welding process. However, increasing the welding 

current may cause dissolution of the Tungsten electrode and promote brittle 

intermetallic inclusions in the weld joint. 

2.2.3 Laser Beam Welding 

Lasers have been developed since the postulation of emission of stimulated 

electrons and quantum mechanics principles in the 20th century.  Lasers 

continued the interest in physics until 1970s.  In the 1980s, Laser beam welding 

became available in the solid state and CO2 state for the production of metal 

working.  Since then, the efficiency of LBW for joining metals has become more 

attractive and interesting to the welding industry. 

 

 

Figure 7.  Development of LBW process in the market from 1980’s to the 2000’s 

[23]. 
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Figure 8.  Development of Laser sources throughout the years [23]. 

 

Figure 9.  Weld penetration of CO2 Laser at different power sources [23]. 

 

Laser Beam Welding is a technique that melts and joins metals by 

applying high power density.  A scheme in Fig. 9 shows the penetration depth of 

CO2 Laser welding at different power sources.  

LBW can be in solid state laser, gas state laser, and semiconductor or diode 

laser. The reason for using CO2 laser is based on the quality and speed of 

welding on some materials like Nitinol. 
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Figure 10.  YAG Four level laser welding system [24]. 

 

In solid state laser, the Yttrium Aluminum Garnet (YAG) single crystal is 

doped with Neodymium.  Gas molecules become excited from ground state level 

(1) to higher energy levels (4) due to high input intensity. The laser transition 

from state (3) to state (2) occurs once the Neodymium ions decay to level (2) and 

they quickly relax back to the ground state to begin the process again. The 

energy released in the form of photons is called laser. 

 

Figure 11.  CO2 Laser diagram [24]. 
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Similar to the concept in YAG laser, gas state laser follows the same 

principle with the exception of a gas mixture of N2, CO2, and He that are 

employed. The difference between YAG and CO2 lasers is that in CO2 state 

Nitrogen molecules will excite CO2 molecules to emit energy, and finally He atom 

will stabilize CO2 atoms to lower energy states. 

LBW is commonly used in open environments, and the use of gas 

shielding is highly recommended to protect the weld from oxidation and 

contamination. If shielding gas is avoided, the laser beam will be ionized and 

absorbed by the plasma formed during welding.  This phenomenon contributes to 

minimized depth of penetration; therefore removing plasma is necessary to apply 

shielding gas, such as Helium or Argon. Argon will be chosen for better results in 

depth of penetration because the ionization of Helium is more achievable than in 

Argon due to high energy ionization of He (24.5 ev) compared with Ar (1.5 ev) 

[25]. 

 

Figure 12.  Electron Beam Welding process [21] 
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Figure 13.  Energy released by electron emission in Laser beam welding [21]. 

 

Some advantages of using LBW are: 

 Process: High power density, small beam diameter, high welding speed, 

noncontact between the nozzle and the metal. 

 Work piece: Minimum thermal stresses, little distortion, materials can be 

welded at different positions. 

 Installation: Short cycle times, several operation stations can be possible, 

simple automatic installation. 

However, the surface should be modified by roughening, oxidizing, or coating 

in the metal in order to avoid high reflectivity of the laser beam, especially if the 

metal is polished.  Also, the equipment is expensive and high skilled operators 

are needed to obtain high quality results in the weld. 
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2.2.4 Heat Flow 

Once fusion welding process is applied to metallic materials, the power 

density of the heat source will cause a change in the weld joint. Fast solidification 

from the liquid to solid state in the weld pool may promote a different phase in the 

microstructure, as well as different grain size.  In order to control or take 

advantage of physical properties in the solidified region, it is important to 

understand the relationship between power density and heat source. 

The heat source depends on the welding process that is being used, and it 

could produce a narrow and deep penetration keyhole (high energy welding 

process) to a wide and not fully weld penetration (gas welding processes). The 

difference on both processes is how much heat has been introduced and spread 

over the workpiece.  In Figure 14, the relationship between heat input and power 

density of the heat source in LBW shows that the gas flame may produce 

damage to the workpiece due to the slow conduction of heat to the workpiece.  

On the other hand, high energy beam welding process conducts the heat and 

melts a localized area on the workpiece, which results in a high quality weld joint.  

However, high energy beam welding melts and solidifies the metal so fast that 

some elements, such as Mg and Pb may vaporize and damage the vacuum 

system [21].  
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Figure 14.  Scheme of fusion welding processes according to the heat source 

and heat input introduced in the workpiece [21]. 

 

2.2.5 Fusion Zone 

The final properties of the weld joint are directly related to how the metal 

solidifies and promotes the microstructure in the weld pool. The weld 

microstructure contains 3 different zones: the fusion zone, the heat affected 

zone, and the base metal.  

 

Figure 15.  Three different zones produced during fusion welding [21] 
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The fusion zone is formed when the welding temperatures reach the 

liquidus phase in the base metal and it solidifies, creating a new localized 

microstructure. It is very important to understand the effect of solidification in the 

weld because it will determine the final microstructure morphology, grain size, 

solute redistribution, inclusions, etc. Therefore an uncontrolled solidification of 

the melt in the fusion zone is associated with defects and flaws, such as residual 

stresses, porosity, cracks, and distortion. 

Solidification in metal alloys occurs at the liquid solid interface, and it 

starts when the freezing temperature reaches a thermodynamic equilibrium,          where     is the free energy in the liquid and     free energy in the 

solid, and the freezing temperature is defined as “the temperature at which the 

free energy of the solid phase equals that of the liquid” [26].  Freezing in metal 

alloys is promoted by nucleation and growth process, where the nuclei forms first 

and then it leads to grow as a dendrite to finally form grains. The formation of 

new granular crystals during solidification depends on the S/L interface 

breakdown process. When the actual liquid temperature is below the liquidus 

temperature, segregated rich solute builds up and creates a boundary layer at 

the S/L interface.  The difference between both temperatures is called the 

freezing range           and the thickness of the boundary layer is     . If a 

tangent is drawn across the liquidus temperature at the S/L interface, a 

relationship between the freezing range and the growth rate is calculated, which 

is followed by: 
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  ∝               Equation 3 

Where:    Actual temperature gradient    Growth rate     Freezing range     Diffusion coefficient in the liquid 

 

Figure 16.  Development of the solidification mode by the effect of constitutional 

supercoiling and the temperature gradient and growth rate [21]. 

 

2.2.6 Constitutional Supercooling 

Constitutional supercooling is given by the ratio G/R and it determines the 

morphology at the S/L interface after solidification. There 4 modes of 

solidification: planar, cellular columnar, and equiaxed as seen in Figure 16.  Fast 



25 

 

 

solidification rates lead to a fine microstructure (equiaxed) while slow cooling 

rates or high G/R promote a planar microstructure.  

 

2.2.7 Weld Grain Structure  

 As mentioned before, the morphology of the microstructure, grain 

size, and solute redistribution is controlled by the growth rate and temperature 

gradient G/R.  Grain growth is dominated by the solidification of the weld, and it 

tends to grow opposite to the heat direction [21].  However, the welding speed is 

a very important parameter to consider because it provides the cooling time rate 

needed for solidification. In other words, as the weld speed increases, the 

constitutional supercoiling increases as well leading to an epitaxial solidification 

mode. On the other hand, if the weld speed is reduced, most likely columnar 

solidification mode takes place on the weld pool microstructure (See Figure 17). 

 

 

Figure 17.  Weld speed and constitutional supercoiling effect on the weld 

microstructure. a) Low welding speed. b) High welding speed [21]. 
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2.3 Corrosion Theory 

2.3.1 Definition  

Corrosion is the electrochemical reaction of a material when it is exposed to a 

corrosive environment that results in its deterioration. There are four 

requirements for a corrosion cell to initiate the electrochemical reaction process: 

 Anode   

 Cathode 

 Ion path 

 Electron path 

 

Figure 18.  Schematic diagram of a corrosion cell showing the electrochemical 

reaction processes [27]. 

 

At the anode metal atoms will change from solution into ions in the form of 

oxidation reaction, and here is where corrosion will initiate. On the other hand, 

the cathode, metal atoms are consumed in the form of reduction reaction, and no 

corrosion takes place.  
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The following corrosion mechanisms are typically found in deterioration of 

metallic materials:  

 Uniform: When a corrosive environment gets access to the entire metallic 

material and causes general corrosion on the surface of the metal. 

 Galvanic: Two dissimilar metals are in contact with each other in the 

presence of a certain environment. One of them will corrode while the 

other performs resistance to corrosion. 

 Crevice: Form of corrosion deposited in a crevice created by contact with 

another metal. The anode is isolated in the crevice surrounded by a 

passive surface acting as a cathode. 

 Pitting: Localized corrosion formed by the attack of an electrolyte to the 

metal surface. It is caused by the breakdown of the metal protective film at 

isolated sites. 

 Environmentally Induced Cracking 

o Stress Corrosion Cracking: When static load stresses under a 

corrosive envirnoment cause uniform corrosion. 

o Hydrogen Induced Cracking: Decarburization is a typical 

mechanism of hydrogen attack in carbon steels created by the 

diffusion of hydrogen ions and may cause embrittlement in the 

metal alloy.  

o Corrosion Fatigue Cracking: It is caused by cycle stresses in a 

corrosive environment. 
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 Intergranular: When corrosion attacks at the grain boundaries due to 

depletion of certain alloying elements. A classic example is sencitization in 

stainless steel, where Chromium is depleted from the matrix and exposes 

the material to corrosion.  

 Dealloying and Dezincification: Some examples are the the depletion of 

Zinc ions from brass. 

 Erosion: The movement of a corrosive fluid attacks and removes the metal 

alloy protective film creating erosion corrosion.  

 Fretting: Is initiated by repeated small movements, usually vibration, in a 

corrosive environment, and breaks the protective film from the surface of a 

metal alloy.  

The mechanisms of corrosion are a function  of kinetics, thermodynamics and 

difussion mechanisms. The basic process of corrosion in metallic materials 

involves electron transfer, and it is shown in Figure 19 where a metal   is 

exposed in Hydrochloric solution    .  

 

Figure 19. Image of electron transfer mechanism of a metal under a corrosive 

environment [27] 
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The anodic oxidation of the reactive metal     causes the Chloride atoms 

to break in a form of cathodic oxidation, the corrosion reaction and it is given by 

the equation:              anodic reaction                   cathodic reaction                    corrosion reaction 

The corrosion reaction is associated with the change in free energy ∆G and the 

electrochemical potential E by the following equation: 

                 Equation 4 

Where:     Change in free energy     number of electrons     Faraday constant 96,500 Coulombs    Electrode potential 

When the change in free energy is negative, the reacted products have 

lower energy than the reactants. Therefore there is a spontaneous reaction 

involving an exchange or transfer of electrons.  The electrode potential will be 

given by the sum of the potentials for each half cell reaction, the anodic potential 

(  ) reaction plus the cathodic potential reaction (  ).                  Equation 5 

The reaction rate is caused by the electron transfer during oxidation and 

reduction reactions, and it is known as the exhange current density  .  The 
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exchange current density is an experimental term that cannot be calculated from 

theoretical principles.  

 
Figure 20.  Polarization curve between Electrode potential “E” and the 

Current density “i” [28]. 

 

The relationship between the electrode potential   and the exchange 

current density   of both the anodic reaction and cathodic reaction curves are 

governed by corrosion kinetics, which describe the polarization curves of 

corrosion reactions.  

The interpolated point from the anodic and cathodic polarizations curves 

represents the corrosion current       and the corrosion potential       

respectively (Figure 20). 

In order to better understand the term polarization, lets assume equation 5 

and figure 21, the difference in electrode potential     is caused by a deviation 

from the equilibrium half cell reaction, and it is named polarization ƞ. The 
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electrons from the metal M are removed in the form of anocid reaction    ; as a 

result there is a positive electrode potential change which is known as anodic 

polarization   .  For cathodic polarization   , the electrons supplied to the metal 

surface cause a negative electrode potential change [27]. 

  

 

Figure 21. Anodic and cathodic polarization reactions [27]. 

 

                      Equation 6 

                      Equation 7 

The Tafel constant   could be positive or negative depending on the half-

cell reaction. As mentioned above, the anodic overpotential    is positive, 

therefore the Tafel constant for the anodic half-cell reaction     must be positive, 

and the Tafel constant for the cathodic half-cell reaction     is negative due to the 

negative value of the cathodic overpotential   . 
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2.3.2 Passivity 

The formation of a protective oxidized thin film of metallic materials with 

high anodic polarization in corrosive environments is called “passivity” [27].  Most 

metals behave differently as the anodic polarization and electrode potential 

increase. Figure 22 demonstrates how the passive film and the active, passive, 

and transpassive regions are formed in the anodic and cathodic polarization 

curves. 

 

 

Figure 22.  Corrosion passive film protection [27]. 

 

The current density increases at very low electrode potentials within the “Active 

region” to a certain electrode potential  , which is known as passivation potential   , and current density       where the oxide film becomes stable and the anodic 

metal passivation decreases drastically. In the passive region, the stable passive 

film grows in thickness at anodic potential at rates of 1nm to 3nm V−1 equivalent 
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to an electric field of 106 to 107 V cm−1 across the film [29] and the corrosion 

rate decreases      . Once the oxidized passive film becomes unstable and the 

anodic potential and current increase, the transpassive region is formed again 

near the oxygen evolution potential.  

 

2.3.3 Corrosion Rate Measurement 

There are three methods to measure corrosion rate, a conventional 

uniform corrosion rate by weight loss, Tafel extrapolation and polarization 

resistance. The last two methods are measured by electrochemical polarization 

and take much less time than weight loss uniform corrosion measurement. 

 

2.3.4 Weight Loss Method 

Uniform corrosion rate measurement by weight loss method is conducted 

in a laboratory using specialized equipment to simulate and reduce the time of 

exposure in corrosive environments. The specimens are exposed to the 

corrosive environment for a long time in order to obtain sufficient corrosion 

product. Then corrosion rate is calculated from the coupon weight loss, followed 

by metallographic examinations to identify localized forms of corrosion [27].  

Corrosion rate formulas are given by: 

                        Equation 8 

                          Equation 9 

Where: 
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     Corrosion rate in mil per year (1 mil is a thousand of an inch: 0.001in)        Corrosion rate in micrometre per year    Corrosion weight loss in milligrams     Density in grams per cubic meter     Area in square inches      Time in hours 

 

2.3.5 Tafel Extrapolation Method  

The Tafel region is obtained by extrapolating the anodic and cathodic 

polarization currents (see Figure 21), and at this point the extrapolated corrosion 

potential        corresponds to the corrosion rate       in terms of current density. 

This method is more is accurate under ideal conditions than the weight loss 

corrosion rate method.  Also, Tafel plots have the advantage of measuring very 

low corrosion rates and help scientists to determine fast corrosion rates using 

inhibitors.   

 

2.3.7 Polarization Resistance Method  

In this method the applied exchange current density is a linear function of 

the electrode potential. From equations 6 and 7 the polarization resistance    

can be obtained in terms of corrosion rate (      ). 

                                    Equation 10 

                          Equation 11 
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                  Equation 12 

 

It is important to mention that the polarization resistance method uses the 

plot of         .  Also, it can measure corrosion rates at each reading during the 

test. In other words, it can be completed in a very short period of time.  If the           plot is curved, the polarization resistance    can be obtained by 

drawing a tangent line to the curve at the corrosion potential        and at zero 

current density. 
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CHAPTER 3:  EXPERIMENTAL PROCEDURE 

3.1 Cast Co-Cr-Mo-C alloy Process 

In this investigation, the studied material is cast Cobalt Chromium 

Molybdenum alloy, also known as ASTM F-75.  It is part of a combined work by 

the Mexican Corporation for Research in Materials (COMIMSA) in Saltillo, 

Coahuila, Mexico, the Amirkabir University of Technology in Tehran, Iran, and 

the University of Wisconsin Milwaukee, United States. The Co-Cr-Mo alloy was 

processed by using an investment casting technique, thermally treated by fusion 

welding, and delivered by COMIMSA (Saltillo, Mexico) to understand the thermal 

effect of the alloy microstructure on its corrosion resistance. 

In order to make the investment mold prior to pouring the molten metal, a 

pattern shape of the component was designed.   The desired pattern shape was 

made of plaster, then layered with liquid wax, and assembled onto a sprue 

system that creates the final tree or mold required for investment casting. Each 

desired pattern, which is the exact replica of the component, has dimensions of 2 

cm length, 2 cm width, and 0.8 cm thickness.  The pattern is covered by liquid 

wax; once the wax is dried, the pattern will be extracted. This procedure is 

repeated many times to create several patterns. The feeding and gate system is 

also made of plaster, and it will be layered with liquid wax and extracted the 

same as all the other patterns.  In order to create the final mold required for 

investment casting, the wax molds are assembled one by one onto the sprue.  

The tree is submerged into ceramic slurry and then covered by dry sand for six 
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times to produce six ceramic layers to then provide the final ceramic mold. The 

ceramic mold is taken to a furnace to dewax and to add resistance to the final 

mold.  The chemical composition of the as cast Co-Cr-Mo-C alloy is described in 

table 1 in accordance with ASTM F75/12 standard.  

 

 

Table.1 Chemical composition of as cast ASTM F75 alloy [30]. 

 

3.2 Welding Process 

The cast Co-Cr-Mo-C alloy surface was thermally treated by two different 

fusion welding techniques: Laser Beam Welding (LBW) and Gas Tungsten Arc 

Welding (GTAW) 

Laser surface treated samples were sent by COMIMSA in the following 

conditions: 

a) As cast Co-Cr-Mo-C alloy in accordance with ASTM F75 standard. Table1  

b) The as cast Co-based alloy ingot was sectioned in cylindrical disc shapes 

using waterjet equipment with dimensions of 3.92 cm in diameter by 0.70 

cm in width.  The sectioned samples were ground up to 1200 SiC grit 

paper. To avoid surface reflection, samples were sand abrasive. 

c) Laser Beam Welding technique was employed to provide laser melting 

spots on the surface of the as cast Co-based alloy.  

Required Balance >34 27 to 30 5 to 7 0.35 max. 1.5 max.

Experimental Balance 28 5 0.3 1.5

Elements Cobalt Chromium Molybdenum Carbon Silicon
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 Nd:YAG pulsed laser model HTS LS P-160 with a 1064 nm 

wavelength.  

 The welding environment was protected by Argon gas (1.5 L/min) 

to avoid metal oxidation. 

 A laser beam spot has a diameter of 0.8 ± 0.05 mm on the work 

piece.  

 The pulse frequency for all the tests was fixed at 8   .  

 Laser beads were overlapped 50% on top of each other.  A 

schematic representation of the LSM process on the disc plates is 

shown in Figure 23. 

 

Figure 23.  Schematic representation of the LSM process on the Co-Cr-Mo alloy 

disc plates [42] 

 

Amirkabir University of Technology, Tehran, Iran has supported this 

investigation by thermally modifying the surface of the as cast ASTM F75 alloy 
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using the GTAW technique.  The following solution heat treatment and welding 

parameters in the alloy were employed: 

a) An as cast Co-Cr-Mo-C alloy ingot of similar composition as mentioned in 

Table 1 after a solution heat treatment at the temperature of 1230 ±5⁰C for 

3 hours in a tubular furnace under Argon inert gas atmosphere, followed 

by quenching in water at room temperature. 

b) The heat treated alloy was cut into rectangular plates with dimensions of 

100 mm, 25 mm, and 4 mm respectively. 

c) GTAW process was employed to promote melt on the heat treated sample 

surface by using Miller TIG torch with a constant voltage of 15V and 110A 

of current.  A TIG torch speed of 180 mm/min was used on a sample 

subjected to no mobility, and protected by Argon gas. 

3.3 Metallographic Sample Preparation 

First, all samples were cross sectioned and mounted in an automatic 

mounting press Buehler Simplimet 1000. The metallographic samples were 

prepared by mechanical polishing in Silicon Carbide paper 400, 600, 800, and 

1200 followed by cloth polishing in 1µm and 0.5µm of        respectively. The 

sample was electrolytic etched in a solution of 10gr.       5ml.     and distilled 

water at 4 volts for 10 seconds (Figure 24). 
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Figure 24.  Electroetching equipment Buehler Electromet 

 

 3.4 Micro-hardness Test 

A Micro-hardness test was carried out using a Buehler Micromet II digital 

micro-hardness tester. The hardness readings were taken from the weld pool 

surface edge to the core of the sample. Each indentation was separated 0.005 

inch from each other, and they crossed through the Heat Affected Zone until the 

base metal was reached. 

 

Figure 25.  Buehler Micromet II digital micro-hardness tester 
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 3.5 Optical Microscopy 

In order to observe the alloy microstructure, Zeiss Axio Vert.A1 Optical 

Microscope was utilized. 

 

Figure 26.  Optical Microscope Zeiss Axio Vert.A1 (left) and Stereo Microscope 

Zeiss (right) 

 

 3.6 Scanning Electron Microscopy 

The alloy microstructure and quantitative chemical analysis of all specimens 

were performed using a Topcon SM300 Scanning Electron Microscope at 20KV 

of intensity. 
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Figure 27.  Topcon SM300 Scanning Electron Microscope equipment with 

incorporate EDS analysis 

 3.7 X-Ray Diffraction 

The XRD equipment used for this investigation was a Bruker D8 Discover X-

Ray Diffraction using Cu Kα radiation and 40KV primary beam at the 2θ range of 

35⁰ to 55⁰ at room temperature. The quantity of phase transformation 

FCC↔HCP was determined from the integrated X-Ray diffraction patterns.  

Quantitative calculations of the developed HCP phase in the alloy 

microstructure was proposed by Sage and Guillaud [31], They suggest to take 

into account only the diffraction patterns corresponding to          and the     ̅      because they are the only well distinguished and not overlapped  

diffraction patterns at a given 2θ. The formula to calculate quantitatively the 

FCC↔HCP phase transformation in Co-Cr-Mo-C alloys is: 

 

                      ̅                Equation 13 
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Where:                    HCP volume in weight percent              Integrated area of the intensity peak for the cubic phase      ̅       Integrated area of the intensity peak for the hexagonal phase 

 

     

Figure 28.  Extended scheme of the Bruker D8 Discover X-Ray Diffraction 

equipment (left). A closer look of the  X-Ray source and detector (right). 

 

 3.8 Corrosion Test 

The corrosion rate in the alloy was measured by interpolating 

potentiodynamic curves. The instrument used for test corrosion was VoltaLab 

PGZ 100. A saturated calomel electrode (SCE) model RE-2B was employed as 

an electrode reference. The galvanic corrosion cell was protected by Argon gas 

and the specimens were immersed in Ringer solution (1L distilled water, 8.6 

gr.    , 0.33 gr.    , and 0.30 gr.      ) 

 



44 

 

 

 

Figure 29.  Isolated system equipment for the corrosion test 

 

 

Figure 30.  Installation of the corrosion cell system 

 
 

 

Figure 31.  VoltaLab PGZ 100 corrosion test equipment 
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CHAPTER 4. RESULTS AND DISCUSSION 

 
4.1 Microstructure 

4.1.1 As received Cast Cobalt-base Alloy 

Defects, such as porosity, were identified in the as cast microstructure, 

which are typical of casting structures as shown in Figure 33.  

The as cast alloy was found to contain coarse blocky carbide precipitates 

of approximate 25 µm to 200 µm in size with dominant       carbide type at 

interdendritic regions in the alloy microstructure.  Although Kilner [33] has 

reported lamellar pearlitic regions containing α-FCC phase and M6C3 carbide 

type in cast Co-Cr-Mo alloys.  EDS analysis demonstrate Co and Cr as dominant 

elements in the matrix, which are associated to the α-phase (Figure 37). Also, 

pearlitic-like lamellar regions were found in the carbide morphology, where the 

content of Cobalt reduces as Molybdenum and Chromium increases significantly 

(Figure 38). 

 

 

Figure 32.  As received cast Co-Cr-Mo-C alloy 
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Figure 33.  Optical image at 200X of the as received cast Co-Cr-Mo-C alloy 

exhibiting  porosity 

      

 

Figure 34.  Optical image of the cast Co-Cr-Mo-C alloy microstructure taken at 

200X exhibit grain size of approximate 150 µm. 

 

     

  

Figure 35.  SEM image of cast Co-Cr-Mo alloy at 100X magnification 
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Figure 36.  SEM image of alloy microstructure at 2kX magnification 

 

 

 

Figure 37.  EDS analysis of the cast Co-Cr-Mo-C alloy matrix 
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Figure 38.  EDS analysis in the carbide precipitae (Co-Cr-Mo 23 C6) 

 

In addition, little black spots found in the alloy microstructure, which were 

reported by Giacchi as inclusions [33].  EDS analysis confirms the presence of 

inclusions rich in Silicon found in the as cast matrix (Figure 40). 

 

 

Figure 39.  SEM image taken at 1500X confirms the appearance of inclusions 

inside the matrix alloy  
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Figure 40.  EDS analysis of the inclusion rich in Silicon 

 

In cast Co-Cr-Mo-C alloys it is expected to find a dominant FCC phase in 

the alloy microstructure.  The X-Ray analysis displays a large intensity peak at 

the 2θ angle of 50.5°.  This pronounced peak corresponds to the crystal FCC 

phase in the alloy, and a small peak corresponding to the developed HCP phase 

is located at 2θ angle of 46.5° respectively.   

Quantitative calculations of the developed HCP phase using Equation 13 

displays 13% ɛ-martensite phase developed in the as cast microstructure. This 

result can be attributed to the small volumen fraction of HCP remained in the cast 

microstructure upon relative slow solidification [8]. 
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Figure 41.  XRD patterns of the as cast Co-base alloy 

 

                                              

                         

 

4.1.2 Annealed Specimen 

As mentioned before in the experimental section, the received annealed 

heat treated and surface modified using TIG welding Cobalt-base alloy 

specimens were delivered by the Amirkabir University of Technology in Tehran, 

Iran.  An image of both as received specimens is shown in Figure 42. 
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Figure 42.  As received Solution annealed specimen (left). As received TIG 

melted specimen (right) 

Solution heat treatment at 1230⁰C promoted carbide dissolution in the 

alloy microstructure, given rise to increase ductility [34].  A fine distribution of 

carbides at the interdendritic regions was found in the microstructure with 

possible M23C6 carbide type formation along the grain boundaries of 

approximate 7 µm to 15 µm in size (see Figure 43).   

EDS analysis displays Cr-rich carbides with Cr content of up to 53 wt%, 

and silicon rich inclusions (49 wt%) in the FCC-Cobalt matrix were found, similar 

to the as cast sample (see Figure 44 and 45). Apparently the Si-compounds 

remained stable during the solution annealing treatment.  

 

Figure 43.  SEM image taken at 1500X of the annealed specimen exhibiting 

approximate 30 µm in grain size. 
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Figure 44.  EDS analysis image of a possible carbide precipitate 

 

 

 

Figure 45.  EDS analysis of an inclusion rich in Silicon 
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The amount of athermal transformation (HCP phase) after solution 

annealing at 1230°C was calculated quantitatively using the X-Ray diffraction 

patterns and the Sage and Guillaud method [31].  

It was found that approximately 24% HCP phase has been formed after cooling 

from the solution annealing treatment at 1230⁰C.  Apparently, most of the 

metastable FCC phase was retained after quenching in water at room 

temperature.  Also, intensity peaks demonstrate that heat treatment above 

1150°C promotes ε-martensite phase after quenching at room temperature due 

to the FCC↔HCP kinetics of athermal transformation [35].  Furthermore, it has 

been reported that the increment of the HCP phase by athermal transformation is 

a function of the temperature used in solution annealing and the holding time 

[36]. 

 

Figure 46.  XRD patterns of the annealed Co-base alloy at 1230°C 
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4.1.3 TIG Surface Modified Specimen (TIGSM) 

After solution annealing, the sample surface was cleaned and welded 

using TIG fusion welding process. Once the melt on the surface metal solidifies, 

the alloy microstructure rearranges itself into fine grains and dendritic regions.  

However, the difference in solidification rates promotes inhomogeneous dendrite 

distribution in the fusion zone as shown in Figure 47.  

 

 

Figure 47.  Stereo microscope image of the TIG surface modified specimen. The 

fusion zone, the heat affected zone, and the base metal can be identified once 

the alloy is electro-etched for 10sec. 
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Figure 48.  SEM image of the TIGSM specimen at 200X 

 

The weld pool, close to the edge surface, contains uniform solute 

distribution with homogeneous dendritic and equiaxed regions in the 

microstructure as can be seen in Figure 49 and 50.  

 

 

Figure 49.  SEM image of the TIGSM specimen at 300X  
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Figure 50  Optical microscope image of the weld pool at 400x in the TIGSM 

specimen 

 

A reason for presenting a homogeneous microstructure close to the 

surface is the relative difference in solidification time as compared with the HAZ 

[21]. On the other hand, large dendritic regions with direction towards the fusion 

zone can be seen in Figure 51 and 52 as the HAZ is approached. 

 

 

 

Figure 51.  Optical microscope image of the weld pool at 400X in the TIGSM 

specimen 
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Figure 52.  Optical microscope image of the weld pool at 400X in the TIGSM 

specimen 

 

Columnar and equiaxed solidification modes can be distinguished in the 

weld area with grain refinement from 150 µm presented in the as cast alloy to 

approximate 10µm in the TIG surface modified specimen respectively.  

Moreover, according to Figure 56, possible carbide precipitates along 

grain boundaries on a nanoscale size and Cr-rich were found in the solidified 

microstructure. Carbon precipitation in the fusion region may be associated with 

carbide type formation the same as type M23C6 found in the as cast alloy 

microstructure.  Even though there are no confirmed results in literature of the 

type of carbides found in welded Co-Cr-Mo-C alloys, based on EDS results, the 

high cooling rates promoted by the TIG process may follow the same path in the 

precipitation of carbon.  Similar results were found by Zangeneh and Lopez in 

surface melted Co-Cr-Mo-C alloys by TIG, where carbide precipitates in the form 

of CoCrMo23C6 were observed [37].  In addition, Silicon was identified by EDS 

analysis where it precipitated along the grain boundaries (see Figure 57). 
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Figure 53.  SEM image of weld pool at 1500X in the TIGSM specimen 

 

 

Figure 54.  SEM image of the weld pool at 7kx in the TIGSM specimen describes 

an approximate grain and carbide precipitate sizes of 10µm and 5µm 

respectively. 
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Figure 55.  EDS analysis image of the grains inside the weld pool of the TIGSM 

specimen 

 

 

 

 

 

Figure 56.  EDS analysis image of carbide precipitates found in the weld pool of 

the TIGSM specimen 
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Figure 57.  EDS analysis of the weld pool in the TIGSM specimen containing 

silicon inclusions along the grain boundaries 

 

As the heat affected zone is approached, the solidified HAZ region 

presents a heterogeneous dendritic columnar solidification mode due to slow 

growth rate at the solid/liquid interface.  As some coarse grains and interdendritic 

regions are noticed in the HAZ, the weld microstructure returns to its original form 

of the base metal microstructure. 

 

Figure 58.  SEM image of the HAZ at 300X in the TIGSM specimen  
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Figure 59.  SEM image of the HAZ at 2kX in the TIGSM specimen 
 

 

X-Ray diffraction was used to calculate the developed HCP phase in the weld 

region.  The calculation of phase formation in the TIG treated alloy follows the 

same procedures as mentioned before for the as cast specimen.  The TIG 

process promoted the development of partial ε-martensite HCP phase in the alloy 

microstructure (approximately 51%). The kinetics of transformation FCC↔HCP 

phase above 1100°C suggests that after quenching at room temperature from γ-

FCC phase, HCP embryos will start developing and increasing as time and 

temperature is increased [38]. 
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Figure 60.  XRD patterns of the TIGSM specimen 

 

                                                 

 

                   

 

 

4.1.4 Laser Surface Modified Specimen (LSM) 

Figure 61 illustrates how Laser beam process was applied to promote 

local heat in the as cast Co-Cr-Mo-C alloy in order to calculate the developed ɛ-

HCP phase and compare the results with the other specimens.  
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Figure 61.  Image of the as received Co-Cr-Mo-C alloy.  Laser surface modified 

specimen (left) and the laser weld beads profile taken in stereo microscope 

(right). 

 

      

Figure 62.  Optical microscope image of the laser weld  beads taken at 200x   

 

After promoting melting on the surface alloy by the bombardment of 

electron beams, it was found that fine homogeneous cellular solidification mode 

(see Figure 63) takes place in the microstructure with ultrafine grain size of 

approximately 2µm as it is shown in Figure 66. 
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Figure 63.  SEM image of the weld pool taken at 1500X for the LSM specimen 

 

 

Figure 64.  SEM image of the weld pool taken at 5kX for the LSM specimen 

 

 

Figure 65.  SEM image of the weld pool taken at 10kX for the LSM specimen 
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Figure 66.  SEM image of the weld pool taken at 15kX for the LSM specimen 

 

Figures 64 and 65 describe how the possible carbides precipitate at the 

grain boundaries with a compact re-arrangement of homogeneous cellular 

regions containing ultrafine grains.   

EDS analysis refers to possible              carbide type precipitation in 

the dendritic region similar to the thermally surface modified specimen by TIG 

process. The only difference between both specimens is the carbide size 

formation at the grain boundaries.  The LSM specimen is 
   smaller in size 

compared to the TIGSM specimen (less than 1µm in Laser treated and 5µm in 

TIG process), which may lead to improvement in corrosion and wear resistance. 
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Figure 67.  EDS analysis image of grains found in the weld pool of the LSM 

specimen 

 

 

 

Figure 68.  EDS analysis image of possible carbide precipitates found in the weld 

pool of the LSM specimen 
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Laser Beam Welding has the advantage of providing to the weld low heat 

input, good penetration, and small heat affected zone.  Figure 69 describes the 

solidification at the interface between the weld, HAZ, and the base metal. The 

HAZ region is very thin, which is a characteristic in Laser welding processes, and 

it is difficult to identify. However, an SEM image (Figure 70) shows how the 

interdendritic and fine dendritic areas become mixed at the solid/liquid interface 

and the dendrites follow the direction of the liquid.  

 
 

Figure 69.  SEM image of the weld pool taken at 500X for the LSM specimen 

 

Figure 70.  SEM image of the weld pool taken at 500X for the LSM specimen 
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 Even though most areas inside the weld pool exhibit a refined 

microstructure, some layers close to the HAZ and the base metal regions show 

heterogeneous microstructures with some columnar dendrites on the bottom and 

equiaxed grains (Figure 72).  Once the heat input creates the fusion zone, a 

molten layer extends throughout the alloy surface and will solidify depending on 

its cooling time.  In other words, the bottom layer receives relative less time to 

solidify compared to the top layer on the alloy surface, which may lead to a 

change in solute redistribution. However, EDS analysis describes no difference 

of solute in the entire weld.  

 

 

Figure 71.  SEM image of the weld pool taken at 500X for the LSM specimen 

 

 

Figure 72.  SEM image of the weld pool taken at 1500X for the LSM specimen 
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X-Ray diffraction analysis was performed on the alloy surface in order to 

calculate the amount of athermal HCP phase developed in the LSM specimen. 

The intensity peaks at the angles of interest reveal a formation of 2% ε-

martensitic HCP in the alloy microstructure.  

 

Figure 73.  X-Ray diffraction scheme for the LSM specimen 

 

 

Figure 74.  XRD patterns of the LSM specimen 
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4.2 Micro-hardness  

Micro-hardness readings were taken in the as cast alloy with an average 

reading of 353HV (Table 2), which meets the ASTM F-75 standard specifications 

[30]. 

 

Table 2. Micro-hardness reading of the as cast specimen 

 

After the as cast alloy was taken into solution annealing followed by rapid 

quench in water at room temperature, it exhibited a light increment in micro-

hardness values (Table 3).  The reason for the increment in hardness may be 

related to phase transformation in the alloy as demonstrated by X-Ray analysis.  

The annealing temperature of 1230°C introduced in the as cast α-FCC 

alloy promotes thermal activation in the predominant FCC crystal structure. The 

HCP embryos will start the athermal transformation due to the change in free 

energy, which causes faults in the stacking sequence where the theory of 

Shockley partial dislocations governs the FCC↔HCP transformation [15] [39].  

 

 

Table 3. Micro-hardness reading of the annealed specimen 

R1 R2 R3 R4 R5 Average

346.9 361.4 357.2 352.8 348.1 353.28

As Cast 

specimen

Micro-hardness (HV500)

R1 R2 R3 R4 R5 Average

386.4 391.5 376.4 371.9 384.5 382.14

Anneal 

specimen

Micro-hardness (HV500)
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The micro-hardness profile in the surface melted region for the TIG 

processing is shown in Figure 75, and the values for both TIG and Laser surface 

melting were plotted in Table 4 and 5.  The highest micro-hardness value was 

obtained in the Laser melted pool (461.3HV) and for the TIG melted surface was 

nearly 43 points lower (418HV). 

 

 

Table 4.  Microhardness values for the TIGSM specimen 

 

 

Figure 75.  Stereo microscope image of the micro-hardness profile in the TIGSM 

specimen 

0.005 418.0

0.010 392.6

0.020 384.6

0.025 405.8

0.040 417.1

0.070 397.4

0.100 399.4

0.140 392.6

0.160 387.8

Location 

from edge 

surface 

ASTM    

F-75 

TIGSM

Micro-

hardness 

HV 500
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Figure 76.  Vickers Micro-hardness chart taken from edge surface with direction 

towards the base metal in the TIGSM specimen 

 

 

Table 5. Micro-hardness reading of the LSM specimen 

 

One of the reasons for lower micro-hardness values in the alloy melted by 

TIG process could be attributed to the less homogeneous interdendritic areas 

found in the microstructure. The homogeneous carbide distribution and cellular 

regions found in the LSM specimen may cause to obtain consistent and higher 

hardness values.  However, micro-hardness values for the TIGSM specimen 

increase in a certain distance from the surface. This reason could confirm that 

homogeneous fine microstructures in Co-Cr-Mo-C alloys lead to higher hardness 

values.  

R1 R2 R3 R4 R5 Average

456.5 468.2 461.3 451.9 468.6 461.3

LSM 

Specimen

Micro-hardness (HV500)
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Another reason for low values in micro-hardness is because the amount of 

athermal HCP phase formed in the TIG melted region.  The LSM exhibits less ε-

martensite phase transformation than the TIGSM specimen. 

Furthermore, according to tables 2 and 3, the micro-hardness for the 

annealed specimen is 382HV  and for the as cast specimen is 353HV, which 

implies that highest hardness values can be obtained when the alloy 

microstructure is refined  giving rise to less coarse grain and carbide sizes . 

 

 

 

Figure 77.  Relationship between grain size for each alloy condition and 

their respective micro-hardness reading 
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Figure 78.  Relationship between carbide size for each alloy condition and their 

respective micro-hardness reading 

 

4.3 Corrosion 

The driving force for corrosion resistance in Co-Cr-Mo-C alloys is the 

passivation of Chromium in the metal alloy surface [40].  In the active region, Cr 

ions react with oxidants to create an oxidized passive film (Chromium oxide      ). In order to break the oxidized passive film,       will react with Hydrogen 

to re-activate anodic dissolution on the alloy surface.  Then the transpassive film 

is breakdown by the oxidation of Chromium oxide. 

                           passive film formation                          passive film dissolution                               transpassive film dissolution 
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It was found that the corrosion resistance in the as cast Co-Cr-Mo-C alloy 

under Ringer solution (pH=7) is 1.712 µm/year, which confirms the corrosion 

resistance rate of 1.65 µm/year to 2.59 µm/year for Co-Cr-Mo alloys reported by 

Hsu and Wen-Wei [41].  In this investigation, the observed highest corrosion 

resistance value was found for the specimen treated by Laser  (435 nm/year). On 

the other hand, the TIG treated specimen exhibits the least corrosion resistance 

value (15.55 µm/year).   

 

 

Figure 79.  Corrosion potentiodynamic curves for each alloy condition and a 

reference sample  
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Table 6. Corrosion rate for each alloy condition calculated by the Tafel 

extrapolation method  

 

In Figure 79 the anodic and cathodic polarization curves obtained for each 

alloy condition and the reference sample in Ringer solution can be well 

distinguished.    

The reference sample is a Co-Cr-Mo-C alloy and contains the same heat 

treatment parameters and chemical composition as the annealed sample. 

However, the reference sample is processed by powder metallurgy and it is used 

in this investigation for corrosion comparison only. 

The passive zone for both the as cast and LSM specimens is formed at 

the current density value of 0.7µA/cm2 (logarithm scale) and at the corrosion 

potential of -10mV respectively. However, the Laser melted alloy anodic curve 

exhibits a little deviation in current density to finally reach stability at 0.5 µA/cm2 

and 200mV.  

In contrast, the passive film of the anodic polarization curve for the TIGSM 

is shifted at higher current intensity values (above 1 µA/cm2).  In other words, the 

As cast specimen -226.8 0.1673 101.3 -149.9 0.9805 1.712

PM Annealed -154.4 0.5649 127.4 -138.2 0.9791 8.363

TIGSM specimen -243.5 1.0505 117.3 -116.8 0.9807 15.55

LSM specimen -210.9 0.0425644 34.1 -91.5 0.9751 0.435

Corrosion 

Rate 

(µm/year)

Material E (mV)
Icorr 

(µA/cm2)
βa (mV) βc (mV) Coefficient
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corrosion resistance decreases for the TIG treated alloy as the current density 

increases.  

Even though the TIG treated alloy displays similar corrosion potential 

values as those observed in the other alloy conditions (-10 mV to 500mV), the 

formation of the passive zone for the TIGSM specimen becomes critical as its 

corrosion resistance decreases (see Table 6). 

 

  

Table 6. A summary of all values found on this investigation 

 

The presence of low amount of ɛ-martensite phase in the microstructure 

(2% in LSM and 13% in the as cast) for both alloy conditions may have given rise 

to the passive zone caused at shift in potential values (from -10 mV to 500 mV) 

while the current density remains constant at 0.7 µA/cm2.  

 

Cast 150 60 353 13 1.7

Annealed 30 10 382 24

TIGSM 10 5 418 51 15.5

LSM 2 1 461 2 0.4

Carbide 

Size (µm)
Process

Grain Size 

(µm)

Micro-

hardness 

(HV500)

HCP (wt%)

Corrosion 

Rate 

(µm/year)
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Figure 80.  Corrosion resistance for each alloy condition according to the HCP 

phase developed in the microstructure. 

 

According to Figure 80, the corrosion rate for each alloy condition 

increases as the developed HCP-phase in the microstructure increases as well.  

Therefore, it could be considered that the corrosion resistance of Co-Cr-Mo-C 

alloys is attributed to the development of ɛ-martensite in the alloy microstructure.  
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CHAPTER 5. CONCLUSION 

In this work Cast Cobalt-Chromium-Molybdenum-Carbon alloys were 

investigated.  Athermal martensitic transformations were induced to the cast alloy 

to understand the thermal effects on its microstructure and properties.  

Four specimens were investigated: the as received cast alloy, a solution 

annealed specimen, TIG and Laser melted surfaces.  The last three alloy 

specimens were physically modified by inducing annealing heat treatment and 

fusion welding processes in order to promote athermal transformation in the alloy 

microstructure.   

The characterization of the microstructure was performed using 

metallography and microscopy techniques.  The developed ɛ-martensite phase 

was calculated using X-Ray diffraction patterns.  Corrosion test in Ringer solution 

was carried out to build a relationship between the developed ε-martensite and 

the corrosion rate in the alloy.  The present investigation findings are 

summarized as follows: 

1. The as cast Co-Cr-Mo-C alloy exhibits casting defects, such as porosity, 

coarse interdendritic morphology with an approximate grain size of 150 

µm, coarse carbide precipitates type             , and inclusions rich in 

Silicon. 

2. Solution annealing heat treatment at 1230°C promotes finer interdendritic 

microstructure (30 µm grain size and 10 µm carbide precipitation size) 
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3. Grain refinement from 150µm to 2µm in size can be achieved by surface 

modification using TIG and Laser processes.  The precipitation of 

possible carbides occurs along the grain boundaries.  However, it was 

found in the LSM specimen there is a mixed with cellular and columnar 

casting structure. 

4. The amount of athermal martensite (HCP phase) was calculated for each 

alloy condition.  The lowest volume percent of HCP phase developed in 

Co-Cr-Mo-C alloy microstructure corresponds to the LSM specimen (2%) 

followed by 13% in the as cast, 24% in the annealed, and 51% in the 

TIGSM specimen. 

5. Vickers micro-hardness test were performed on each investigated 

specimen.  The fine microstructure developed in the alloy, upon thermal 

gradients were induced, reveals a straight relationship with the obtained 

hardness values.  As the grain size and carbide precipitates refine in the 

alloy microstructure, hardness readings increase reaching a maximum 

point of 461.3 HV found for the Laser processed surface.  On the other 

hand, the lowest hardness value was found in the as cast condition due to 

coarse grains and carbide precipitates exhibited by this alloy. 

6. The corrosion resistance in the alloy increases according to the volume 

fraction of the ε-martensite phase.  The TIG process promoted the largest 

HCP volume percent value by inducing athermal transformation reaction 

FCC↔HCP.  Therefore the corrosion rate increased significantly from 0.4 

m/year found in the LSM to 15.5 m/year in TIGSM specimen.  
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