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Abstract—Thermal coupling between adjacent IGBT or diode 

chips is the result of non-uniform temperature distribution in a 

multi-chip IGBT module. This affects the junction temperatures 

and hence the total power loss predicted for the module. The study 

first investigates the impact of thermal coupling effect on the 

junction temperatures through finite element method (FEM), and 

then develops a thermal coupling impedance model to represent 

such effect. The effect is shown to reduce with the distance  

exponentially. The model result agrees well with test. The 

validated model is then used to predict the junction temperature 

swings during operational power cycling in a DFIG wind turbine, 

showing the difference between the rotor and grid side converters.  

The model presented and the results obtained may be important 

for reliability evaluation and condition monitoring in the wind 

turbine power converters as well as in other multi-chip paralleled 

power electronic systems. 

 
Index Terms—Doubly fed induction generator, wind turbine 

power converter, multi-chip paralleled IGBT module, thermal 

coupling impedance, junction temperature calculation. 

I. INTRODUCTION 

ulti-chip paralleled insulated gate bipolar transistor 
(IGBT) power modules are widely used in wind turbine 

systems including offshore turbines [1–2]. The safe operation 
area (SOA) and reliability of the devices are highly dependent 
on the junction temperature. Thus, junction temperature 
evaluation and thermal modeling with respect to the intended 
operating conditions are important in design to guarantee the 
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service lifetime reliability [3–4]. As reported in [5], nearly 60% 
of failures in electronic systems are associated abnormal 
temperatures, and the failure rate is almost doubled for every 
10⁰C increase of the junction temperature. However, it is 
difficult to know the actual junction temperature during 
operation and hence verify the model because of the sealed 
module packaging. In addition, most traditional thermal 
analysis models can not accurately calculate the junction 
temperatures in a multi-chip paralleled IGBT module due to 
simplification such as the ignorance of thermal coupling 
between the chips [6–7]. Given the strong dependence of power 
losses on the temperature itself, it may be crucial to take into 
account the thermal coupling effect within the multi-chip 
paralleled IGBT modules, for a more valid thermal analysis of 
wind turbine power converters. 

It is challenging to establish an accurate model for the 
thermal behavior of a power device, especially for junction 
temperature evaluation in the context of reliability analysis. An 
FEM model was established to investigate the temperature 
distribution in an IGBT module in [8]. This method is 
time-consuming and could be unsuitable for analyzing a large 
number of transient scenarios. An infrared radiation thermal 
imaging technology for temperature testing was used in [9–10], 
but the method requires modification of the encapsulation, 
which is not allowed outside the laboratory. Various methods 
were proposed to construct a thermal impedance network to 
predict the chip temperatures [11–13]. However, their accuracy 
is always a concern, because the thermal coupling effect among 
chips in a multi-chips paralleled IGBT module is usually 
ignored. Alternatively, some experimental methods were 
proposed based on thermo-sensitive electrical parameters. For 
instance, the gate-emitter voltage (Vge) was used to evaluate the 
chip temperature of multi-chip IGBT modules with thermal 
coupling [14–15], but it is difficult to detect the changes of Vge 
during fast switching process. Furthermore, the method may 
also be invalid for multi-chip IGBT modules with non-uniform 
internal temperature distribution. Thus, for the purposes of safe 
operation and the improvement of reliability of wind turbine 
power converters, the thermal coupling effect in multi-chip 
paralleled IGBT module needs to be further investigated. 

This paper presents a greatly improved thermal coupling 
impedance model to analyze the thermal coupling effect in 
multi-chip paralleled IGBT modules in the power converter of a 
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2MW doubly fed induction generator (DFIG) wind turbine 
system. In Section II, the thermal coupling phenomenon is 
investigated using FEM. In Section III, an improved thermal 
coupling impedance model is proposed and verified by the 
FEM results. In Sections IV and V, the junction temperature 
and the thermal coupling effect in the doubly fed induction 
generator wind turbine power converter are investigated as a 
case study. The presented model is compared to a traditional 
model and is also validated by the SCADA data from real 
operation  

II. STRUCTURE OF IGBT MODULE FOR WIND TURBINE AND 

THERMAL COUPLING DESCRIPTION 

To investigate the thermal coupling effect, a multi-chip 
paralleled IGBT module, FZ1600R17HP4, that is widely used 
in doubly fed induction generator wind turbine power 
converters is considered. The power converter and the module 
structure are shown in Fig. 1. 

Fig. 1(a) shows that each half-bridge module consists of 16 
IGBT and 16 free-wheeling diode (FWD) chips covered with 
silica gel. The packaging structure is divided into seven layers 
from a cross-sectional point of view, as shown in Fig. 1(b). The 
two copper layers of the direct bonded copper (DBC) are 
connected to the devices and the base plate respectively using 
solder. Because all chips are fixed on a single base plate, the 
heat coming from one chip will affect the others, which would 
affect the accuracy of device modeling. 

 
IGBTFWD

c

g

e

 
(a) 

 

Solder 1

Al2O3

Copper layer 1

Module
Base Plate

IGBT FWD

Bond wire

Copper layer 2
Solder 2

DBC
 

(b) 
Fig. 1 Structure of IGBT module with multiple chips.(a) IGBT module in 
converter and (b)  cross-section view of module packaging structure. 

 

Because of the symmetrical structure shown in Fig. 1(a), a 
1/4 unit marked as T1–T4 and D1–D4 of the whole power 
module is chosen in the study, and this is shown in Fig.2. The 
dimensions of and distances between the chips are shown in the 
figure. Chips T1, T4, D1, and D4 are the edge, whereas the 
others are the central chips.  

The material characteristics of each packaging layer of the 
FZ1600R17HP4 module are shown in Table I [16]. 

Assumptions are made as follows: 1) there is no effect of 
different chip temperatures on the dynamic current sharing [7]; 
2) each layer is connected perfectly without relative movement; 
3) there is no heat spreading through the silica gel; 4) all heat 
comes from the active junctions and flows to the cooling air 
below the heat-sink; 5) the ambient temperature is 50 ºC; 6) 
there is no effect of bond wires or internal bus bars on the 
temperature[17]. 
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Fig. 2 Chip size of IGBT module for wind power converter 

 
TABLE I 

MATERIAL PROPERTIES OF IGBT MODULES 
 

IGBT module Material 
Thermal Conductivity 

/W•(m•K)-1 
Height/mm 

Mass Density 

/kg•m-3 

IGBT 

FWD 

Solder1 

DCB Copper1 

Ceramic 

DCB Copper2 

Solder2 

Base Plate 

Si 139 0.3 2329 

Si 139 0.3 2329 

Sn-Ag-Cu 

Cu 

Al2O3 

Cu 

Sn-Ag-Cu 

Cu 

78 

386 

18 

386 

78 

386 

0.05 

0.3 

0.7 

0.3 

0.1 

3 

7400 

8960 

3690 

8960 

7400 

8960 

 

Based on these, a 3D finite element model of the multi-chip 
paralleled IGBT module is established using ANSYS, as shown 
in Fig. 3(a). When 2.27 W/mm3 power losses are injected into 
each of chips T1–T4, the temperature distribution of chips 
T1–T4 is shown in Fig.3 (b). 

 

 
(a)       
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(b)   

Fig. 3 3D model and thermal profile of multi-chip paralleled IGBT module (a) 
3D finite element model and (b) steady thermal profile under the injected 
2.27w/mm3 power loss condition 

 

Fig. 3(b) shows that the maximum junction temperature of 
the IGBT module is about 103.53ºC on chip T2. In addition, the 
thermal distributions of chips T1 to T4 are also different. The 
areas with temperature ranging from 97.888 ºC to 103.53 ºC on 
chips T2 and T3 are wider than those on chips T1 and T4; the 
max maximum junction temperatures are also different. As 
mentioned previously, the reason is likely to be the thermal 
coupling effect among the chips. Because junction temperature 
is important for device selection, heat sink design and condition 
monitoring of the converter, it is necessary to establish a more 
accurate calculation model of the junction temperatures by 
considering the thermal coupling effect. In order to accurately 
describe the thermal coupling effects among the chips, a 
coupling junction temperature concept is established in the 
following section, i.e., the maximum steady-state junction 
temperature when power losses are injected into the nearby 
chips. 

III. THERMAL COUPLING EFFECT AND IMPROVED THERMAL 

COUPLING IMPEDANCE MODEL 

A. Improved Thermal Coupling Impedance Model 

The thermal problem for a typical power module can be 
reduced to a thermal diffusion process, which is dominated by 
heat conduction[18]. In a homogeneous isotropic material, the 
heat conduction equation is described as: 

                              
( )

T
T H c

t
  

   


                               (1) 

where k is the thermal conductivity, H is a position dependent 
volumetric heat source, ρ is the mass density, c is the specific 
heat capacity. Usually the heat sources are the semiconductor 
dies and can be treated as sources of surface heat flux, the heat 
conduction equation simplifies to [19]  

                              

2 2 2

2 2 2
( )

T T T T
c

tx y z
    

  
  

                     
 (2) 

where x, y, z  denote the directions of heat propagation in space. 
As is known to all, IGBT is a vertical power device and its 
thickness is small compared to other dimensions. The heat is 
generally dissipated uniformly across the surface of the chips 
and flows vertically toward the heat sink. Fig.4 shows the heat 
dissipation path in IGBT module. 
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Fig. 4 The path of heat dissipation in IGBT module 
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 Fig. 5 A section of an RC ladder network in a transmission line model 
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Fig.6 Thermal RC network for a single chip 

 

In addition, the effect of temperature on the thermal 
conductivity of a silicon chip can be ignored. Thus, the heat 
conduction process can be treated as a quasi-one-dimensional 
process and equation (2) can be further simplified to: 

                                        

2

2

T T
c

ty
  




                                    

(3) 

with boundary conditions, 

0|
y in

T
S P

y
 


 


 and ( , )

a
T t y L T 

                (4) 

where Pin
 is the input power, S the area perpendicular to the 

heat conduction direction y, L is the vertical length along y 
direction and 

Ta the ambient temperature.  
In the electric domain, the wave equation of a transmission 

line for the potential V can be described with  the distributed 
capacitance C

‟ and distributed resistance R
‟, which can be 

written as[20]: 

                                          

2
' '

2

V V
C R

tx

 


                                    
(5) 

Fig.5 shows schematically a section of a transmission line 
based on equation (5), which is the building block an RC ladder 
network. Similarly, for an IGBT module, a similar transmission 
line equivalent circuit format can be adopted to describe the 
heat conduction path. The power dissipated by an IGBT (or a 
diode) is regarded as a heat source in the thermal circuit. „C‟‟ 
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and „R‟‟ denote the thermal resistance and thermal capacitance 
which are usually labeled as „Rth‟ and „Cth‟ in a thermal network, 
respectively. 
 

Cth_1

Rth_1 Rth_2 Rth_3 Rth_4

Cth_2 Cth_3 Cth_4

Tj Tc

Ta

Ploss Junction to case Zth_jc

 
Fig. 7 Simplified external characteristic equivalent thermal RC network 
between junction and case layer 

 

As shown in Fig.1, the IGBT module consists of seven layers, 
which is further connected to the heat-sink. The thermal 
property of each layer can be described by a lumped RC ladder 
network with thermal resistance and thermal capacitance 
shown in Fig.5.The following equations are used to estimate the 
thermal resistance and capacitance of each layer: 

                      
th th

d
R C c d S

A



    


                        

(6)

 
where d is the thickness of each layer. It is known from Fig.6 
that the thermal property parameters such as Rth and Cth of each 
layer are needed in the RC network, but it is not straightforward 
to obtain these parameters. In order to simplify, a 4th order 
Foster characteristic equivalent circuit is adopted to adequately 
describe the thermal property of IGBT module from junction to 
case[12,13], as shown in Fig.7. The Forster-based junction 
temperature calculation model is also called the traditional 
model used widely, which is compared with the improved 
thermal coupling model in the following section. 
 

TABLE II  
PARAMETERS OF RC NETWORK OF FIG.7  

 
 

Chip 
 

Thermal 
impedance 

i 

1 2 3 4 

 
IGBT 

Rth_i(K/kW) 1.131 11.42 1.482 0.537 

Cth_i(J/K) 1.415 3.52 176.788 7178.77 

 
FWD 

Rth_i(K/kW) 1.621 2.352 18.53 1.84 

Cth_i(J/K) 0.37 1.91 2.08 299.46 

 

Due to the self-heating of chips resulting from the power loss 
Ploss, the transient thermal impedance between junction to case 
layer is defined at time t as 

( ) ( )
j c jc

th_jc

loss loss

T t T t T
Z

P P

 
= =

                            

(7) 

The transient thermal impedance between the case and 
heat-sink layer (Zth_ch) and the heat-sink itself (Zth_ha) can be 
obtained similarly, as shown in Fig.4. From a circuit point view, 
the transient thermal  impedance curve is a step response curve 
with zero-initial conditions and can be fitted into a finite series 
of exponential terms: 

th_i/

1

)
n

t

th_jc th_i th_i th_i th_i

i

Z R R C
 



= (1-e ) , (

        
(8) 

where τth is the time constant. In Fig.7, each of the thermal 
parameters can be found from the manufacturer datasheets for 
the module, which are listed in Table II. Based on the Fig.7 and 

Table II, Zth_jc for IGBT and FWD can be calculated 
approximately as                                                                                          

4
/ / 0.0016

1

/ 0.0402 / 0.0262

/ 3.855

th_it t

IGBT_th_jc th_i

i

t t

t

Z R
 



 



 

 



 -3= (1-e )=10 (1.131 (1-e )+

        11.42 (1-e )+1.482 (1-e )

        +0.537 (1-e ))

  (9) 

4
/ / 0.0006

1

/ 0.0045 / 0.0368

/ 0.551

th_it t t

FWD_th_jc th_i

i

t t

t

Z R
 



 



 

 



 -3= (1-e )=10 (1.621 (1-e )+

        2.352 (1-e )+18.53 (1-e )

        +1.84 (1-e ))

(10)                     

It is assumed that the number of chips is n, a self-thermal 
impedance matrix method is adopted as follows. 

Zself

1

2

n

0 0

0 0

0 0

th_jc

th_jc

th_jc

Z

Z

Z

 
 
   
 
  

                (11) 

Fig.8 shows the simplified heat flow paths inside the IGBT 
module. Because different chips share the same DBC and base 
plate in a multi-chip IGBT module, the existence of thermal 
coupling is inevitable, as shown above in part II.   

 

IGBT FWD IGBT FWD

DBC
Thermal coupling

DBC
Thermal coupling

Base plate
Thermal coupling

Heat-sink

Input power

 
Fig. 8 Simplified heat flow paths inside the IGBT module 

 

A transient equivalent thermal coupling impedance is 
introduced to describe the increment of the maximum junction 
temperature of the concerned chip caused by the power loss of a 
neighboring chip and is defined at time t as 

 ( , ) ( ) ( ) /
thc n m jn a loss_m

Z T t T t P=( )                             (12) 

where Zthc(n,m) is the transient equivalent thermal coupling 
impedance between chips n and m , Tjn the maximum junction 
temperature increment of chip n generated by the power loss 
Ploss_m of chip m, Ta the ambient temperature. 

In this way, a thermal coupling impedance matrix method is 
also adopted to describe the thermal coupling effects among 
chips as 

Zcouple 

(1,2) (1, )

(2,1) (2, )

( ,1) ( ,2)

0

0

0

thc thc n

thc thc n

thc n thc n

Z Z

Z Z

Z Z

 
 
   
 
  

              (13) 
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where Zth(1,2)is the thermal coupling impedance between chips 1 
and 2, which is caused by chip 2. According to the above 
analysis, the improved thermal coupling impedance model is 
derived as shown in Fig.9. Thus, the junction temperature 
considering the multi-chip thermal coupling effects can be 
calculated by equation (14). 
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Fig. 9 Improved thermal coupling impedance model of IGBT module 
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The temperature as a function of time can be obtained by 
ANSYS for a given power loss excitation. And then, according 
to equation (12), thermal coupling impedance Zthc as a function 
of time can also be acquired. Similarly the curve fitting method 
is also applied to the acquired transient thermal coupling 
impedance data as: 

thc/ )t

thc thc thc thc thc
Z t R R C

  ( )= (1-e ) , (                 (15) 

where τthc is the thermal coupling time constant, Rthc and Cthc are 

the coupling thermal resistance and capacitance, respectively. 
Based on this method, the thermal coupling impedance can be 
easily extracted. Table III shows the extracted thermal coupling 
impedance parameters for chips T1–T2 and D1–D2 shown in 
Fig. 2. 

 
TABLE III  

THE COUPLING THERMAL IMPEDANCE OF IGBT MODULE  
 

Chip number  T1 T2 D1 D2 

Zthc 

(Rthc, Cthc) 

T1 - (0.0251,99) (0.0124,290) (0.0074,540) 
T2 (0.0255,98) - (0.0081,493) (0.0128,281) 
D1 (0.0129,279) (0.0083,481) - (0.0041,980) 
D2 (0.0069,579) (0.0124,290) (0.0045,933) - 

 

Theoretically, the thermal coupling impedances between two 
chips should be the reciprocals, but there is a little difference as 
shown in Table III, which would be caused by the extracted 

values from the FEM. As seen in Fig.10, it is shown that the 
thermal coupling impedance between chips T1 and T2 as a 
function of the distance exhibits an approximately exponential 
characteristic, which decreases with the increasing distance. 
When the distance is more than 10 mm, their coupling thermal 
effect may be ignored. 
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Fig. 10 The coupling thermal resistance versus distance between chips 

 

The heat sink is assumed to be at a uniform temperature. The 
thermal capacitance in Zth_ch is assumed to be negligible, and 
the thermal resistances are selected as 9.75 K/kW and 10.5 
K/kW for IGBT and FWD, respectively. The thermal resistance 
and thermal capacitance for the heat-sink are selected as 80 
K/W and 1320.8 J/K. Through the analyses above, the junction 
temperature of any one chip can be calculated more accurately 
based on the proposed model. For example, when the junction 
temperature of chip 2 is calculated, chips 1 and chips 3–n (n=4 
in the case described above) need to be considered as the 
adjacent thermal sources because of the thermal coupling effect. 
However, because the thermal coupling resistance decreases 
with the increase of the distance in FZ1600R17HP4, and the 
effect can be ignored at a distance in excess of 10 mm as shown 
in Fig.10, the junction temperature of chip T2 only needs to 
consider the thermal coupling effects of chips T1, T3 and D1. 
The distinction between the proposed model and the traditional 
foster thermal model is whether to consider thermal coupling 
effect of the nearby chips. Thus, the junction temperature and 
hence the device power losses using the proposed model would 
be more accurate.  

B. Simulation comparison of different thermal models 

To demonstrate the validity of the improved junction 
temperature calculation model, a comparison with FEM is first 
performed for the traditional Foster model and the improved 
model. For the structure of the IGBT module in the 2 MW 
DFIG wind turbine system, as shown in Fig. 1, the distance 
between each 1/4 of the IGBT/FWD pairs of the whole module 
is more than 10 mm. Hence, the 1/4 unit of the IGBT module is  
chosen in the thermal coupling analysis. The mean values of the 
injected power loss are 150 W and 120 W for IGBT and FWD, 
but the transient power losses that are calculated using the 
switching period method in [21] are injected into chips T1–T4 
and D1–D4 for ANSYS simulation by using its transient 
thermal analysis tool. The junction temperatures of chips T1 
and T2 with different thermal models are shown in Fig. 11. 
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Fig. 11 Comparison of different junction temperature models with FEM (a) 
junction temperature of chip T1 and (b) junction temperature of chip T2 

 

The comparison shows good agreement between the 
improved model and FEM results and the improved thermal 
model gives more satisfactory results as compared to the 
traditional thermal network model. Furthermore, the junction 
temperature obtained by the traditional model is lower than that 
by the FEM method and the improved model, suggesting that 
the temperatures and hence losses of chips tend to be 
under-estimated in the traditional model. Therefore, the 
proposed method could be more suitable for multi-chip 
paralleled IGBT modules. It is also noticed that the effect of 
thermal coupling on the magnitude of junction temperature is 
pretty obvious, but for the peak-peak fluctuation magnitude and 
frequency, there is almost no effect. The differences between 
the traditional and improved models, measured in  junction 
temperatures are about 3ºC and 8ºC for chips T1 and T2 
respectively, which would be larger as the power loss increases 
and might have a significant effect on the operational reliability 
evaluation of the large wind turbine power converters. 

Given thermal coupling being significant, the following 
section will further analyze the junction temperature 
calculation and the coupling characteristics of chips T2 and D2 
in the multi-chip paralleled IGBT module as used in a doubly 
fed wind turbine power converter. 

IV. CASE STUDY OF A 2 MW WIND TURBINE POWER 

CONVERTER 

A. Description of DFIG wind turbine 

Due to the variable speed constant frequency characteristics 
of wind turbines, the operational performance and the 
reliability requirement for IGBT may be different to the 

traditional driver system. In addition, the rated capacity of the 
installed on-shore wind turbine is mainly around 1.5-2MW. 
Furthermore, in the current 2 MW DFIG wind turbine system, 
the IGBT module type of FZ1600R17HP4 with the multiple 
chips has been used widely. Taken as an example, a 2 MW 
DFIG wind turbine system is chosen to verify the significance 
of the proposed model. This mechanical power is [21] 

                        

31
( , )

2
mech p w

P AC v                                 (16) 

where ρ is the air density, A the area swept by the turbine blades, 
and vw the wind velocity. β is the blade pitch angle, and λ is the 
tip speed ratio. Cp is the transfer efficiency.  

Fig. 12 shows such a system. The electrical part of the DFIG 
wind turbine consists of a wound-rotor induction machine. The 
stator terminals are directly connected to the medium voltage 
(MV) grid via a three-winding transformer. The rotor is excited 
by a power electronic converter, which consists of two AC-DC 
converters named rotor-side converter (RSC) and grid-side 
converter (GSC) in a back-to-back configuration with a 
common DC-link bus. The GSC feeds the rotor power into the 
grid via an LCL filter and the tertiary winding of the 
transformer. 

 

GridDFIG

Gear box

Rb

GSCRSC

Transformer

LCL Filter

 
Fig. 12 Diagram of a doubly fed wind turbine system 

 

The RSC regulates the torque of the DFIG and the rotational 
speed usually using a double loop controller where the outer 
speed loop generates the reference signal for the inner current 
loop. The current control is conducted in the synchronous 
reference framework (d-q) rotating with the stator flux [22]. 
The GSC maintains the DC-link voltage and by doing so 
transfers the active power from the RSC into the grid, which 
will inevitably produce power losses in the power 
semiconductor modules.  

 
TABLE IV  

PARAMETERS OF A REAL 2MW DFIG WIND TURBINE SYSTEM 
 

Parameters Value Parameters Value 
Rated power 2 MW Stator resistance Rs 0.022 Ω 
Rated voltage 690 V Stator leakage inductance Lls 0.012 mH 

Rated wind speed 12 m/s Rotor resistance Rr 0.0018 Ω 
Cut-in wind speed 3 m/s Rotor leakage inductance Llr 0.05 mH 
Cut out wind speed 25 m/s Mutual inductance Lm 2.9 mH 
Synchronous speed 1500 rpm Pole Pairs 2 

Cooling system air cooling Rated frequency 50 Hz 
Modulation technique SVPWM DC bus voltage 950 V 
Rotor rotational inertia 75kg•m2 Turn ratio  0.3774 

Reactive power at grid and 
rotor side 

0 Var 
Wind speed at synchronous 

speed point 
9.32 m/s 

Starting point wind speed 
at constant power range 

12 m/s 
Starting point wind speed at 
constant rotation rate range 

11.3 m/s 

Switching frequency  
of RSC 

2000 Hz 
Switching frequency  

of GSC 
4000 Hz 
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As shown in Fig. 12, the rotor terminals of the DFIG are 
directly connected to the RSC and the stator terminals are 
connected to the GSC via the three-winding transformer and 
LCL filter. In general, the frequency of current (or voltage) in 
stator winding is higher than that in rotor winding. So, in order 
to reduce the harmonics, the switching frequency of GSC is 
higher than that of RSC; the switching is set at 4000 Hz and 
2000 Hz for the GSC and RSC respectively in this 2 MW DFIG 
wind turbine as shown in Table IV. Other parameters of DFIG 
wind turbine system, such as, modulation technique, cooling 
ystem, turns ratio, DC bus voltage, reactive power at grid and 
rotor sides, pole pairs, etc., are also shown in Table IV.  

B. Power losses of IGBT modules 

The semiconductor power losses are very important for 
thermal design of the converter, which is mainly composed of 
switching and conduction losses. The conduction loss, which is 
related to conduction voltage drop, current, duty cycle, and 
junction temperature, can be derived as the equations below 
[23]. 

       

2
( ) ( ) ( )

( ) 0( )
    

( ) 00
t I t I t

Ic

i tv i r i
P

i t

     
        (17) 

2
( ) ( ) ( )

( ) 0(1- )( )

( ) 00
t D t D t

Dc

i tv i r i
P

i t

     
         (18) 

where PIc denotes the IGBT conduction loss, PDc denotes the 
FWD conduction loss; vI and vD are the conduction and forward 
voltage drops for the IGBT and FWD, respectively; rI is the 
conduction resistance for the IGBT and rD is the conduction 
resistance for FWD, i(t) is the output current of the converter, 
and δ(t) is the duty ratio of IGBT, which is calculated as follows 

1 sin( )

2
t

m t    
（）                            (19) 

where sign „+‟ is used for the inverter and „-‟ for the rectifier 
mode, m is the modulation index, ω the angular frequency; and 
ϕ the phase angle between voltage and current. 

Switching losses are related to the switching frequency and 
the current of the converter as well as the junction temperature, 
which can be expressed as [22] 

( )( ) ( ) /( ) ( ) 0
( ) 00

s on off dc n n
Is

tf E E V i V I i t
P

i t

      
     (20) 

( )( ) ( ) /( ) ( ) 0

0 ( ) 0
s rec dc n n

Ds

f E V i t V I i t
P

i t

    
  

    (21) 

where PIs is the switching loss of an IGBT and PDs the switching 
loss of a FWD;  fs is the switching frequency, while Eon and Eoff 

are the turn-on and turn-off energy losses at rated operation 
condition respectively; Vdc is the DC-link voltage of converter, 
Vn and In are the rated voltage and rated current of IGBT, and 
Erec is the diode reverse recovery losses. 

C. Junction temperature calculation for IGBT module in wind 

power converters 

Fig. 13 shows the calculation flowchart of the junction 
temperature and case temperature (assumed to be uniform) of 
the multi-chip paralleled IGBT module for the 2MW DFIG 
wind power converter in concern. Incorporating the model 
developed in this study, the junction temperatures and case 
temperature can are calculated via the software platform 
PLECS. A traditional control model is used for the DFIG 
system over a full range of the intended operating point. 
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Fig. 13 Flowchart of junction temperature and case temperature calculation of IGBT module for 2MW DFIG wind power converter 

 

As shown in Fig.13, the loss calculation parameters of the 
multi-chip paralleled IGBT module, i.e. those needed for 
computing the conduction loss, switching loss, and thermal 
coupling impedance, can be extracted first according to the 
datasheet. Then the operational parameters of the converter can 
be obtained based on the wind speed profile and the DFIG wind 
turbine model.  The power losses of wind power converter can 
also be calculated during different operation conditions in the 
light of equations(17)-(21). At last, based on the improved 
multi-chip thermal coupling model, the junction temperatures 

of the chips can be obtained in PLECS simulation. Moreover, 
the case temperature of the multi-chip paralleled IGBT module 
can also be obtained. 

V. SIMULATION AND PRELIMINARY TESTING 

A. Comparison of thermal performances at the rated 

operation of wind turbine 

When the DFIG wind turbine is operated at the rated wind 
speed of 12 m/s, the junction temperature Tj of chips T2 and D2 
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in both RSC and GSC are calculated using the traditional model 
and the proposed model. The results are shown in Fig. 14. 
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Fig. 14 Junction temperature of IGBT module for RSC and GSC: (a) for IGBT 
of RSC, (b) for FWD of RSC, (c) for IGBT of GSC, (d) for FWD of GSC 

 

In Fig.14, it can be seen that the junction temperature Tj 

obtained by the improved model is again higher than that 
obtained by the traditional model for both RSC and GSC. This 

confirms that it is necessary to include the thermal coupling 
effect for junction temperature calculation of the multi-chip 
paralleled IGBT module. In the GSC, the effect of coupling on 
junction temperature obtained from the improved model for 
FWD is much more significant than for the IGBT. The 
difference is about 15ºC for the former and 2 ºC for the latter. 
The main reason is that the GSC is in inverter mode when the 
DFIG wind turbine is at the rated wind speed condition and the 
impact of thermal coupling effects of IGBT on FWD is much 
obvious due to the larger duty and power loss of the IGBT. 
Moreover, because of different power losses in GSC and RSC, 
the junction temperatures in the GSC and RSC are quite 
different. In addition, the fluctuation of junction temperatures is 
also different in GSC and RSC and more significant in RSC, 
which perhaps shows that device reliability in RSC needs more 
attentions. 

In the installed wind turbine, direct measurement of the 
junction temperatures of the multi-chip paralleled IGBT 
module in the converter is impossible, due to the sealed module 
packaging, while the case temperature Tc could be acquired 
easily via SCADA monitoring data. Fig. 15 shows the 
steady-state case temperature of the module obtained by the 
traditional model, improved model and the SCADA monitoring 
as a function of average wind speeds over the wind speed range 
from 3.99 m/s to 12.05 m/s.  

It can be seen that Tc shows a very small increase from 3.99 
m/s to 8.17 m/s wind speeds and then a rapid increase with 
further increase of the wind speed to a  saturation level, as the 
wind speed attains the rated value. The error of Tc of the 
improved model is much smaller than that of the traditional 
model. For example, when wind speed is 8.17 m/s, the value of 
Tc on SCADA monitoring is 52.5ºC, while 51.5ºC and 48.5ºC 
are achieved by the improved model and the traditional model 
with a difference of 1.9% and 7.6% respectively. The 
comparisons show the improved model gives higher accuracy 
calculation results for case temperature because the inclusion of 
the coupling effect permits the improved model to more 
accurately predict the increase of power losses at an increased 
temperature. This indirectly demonstrates that the improved 
junction temperature modeling and the thermal coupling 
analysis could be correct. 
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Fig. 15 Tested and simulated results of case temperature of power converter 
module for 2 MW DFIG at the overall wind speed condition 
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B. Power loss and coupling junction temperature analysis of 

IGBT module 

When wind speeds are different, the power losses of IGBT 
modules for RSC and GSC are shown in Fig. 16. The coupling 
junction temperature as a function of the wind speed is shown 
in Fig. 17. 

 

100

200

300

400

500

600

251210.19.28.47.66.85.9

Wind speed(m/s)

B
FWD Sw loss

FWD Con loss

P
o
w

er
 l

o
ss

(W
)

A

IGBT Sw loss

IGBT Con loss

 
       (a) 

100

200

300

400

500

600

251210.19.28.47.66.85.9

B

A

FWD Sw loss

FWD Con loss

IGBT Sw loss

IGBT Con loss

P
ow

er
 l

os
s(

W
)

Wind speed(m/s)
 

(b) 

Fig. 16 Power losses of IGBT module of wind turbine power converter at 
different wind speed points: (a) power losses of IGBT module in the RSC and 
(b) power losses of IGBT module in the GSC 
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Fig. 17 The coupling junction temperature of IGBT modules of wind turbine 
power converter at different wind speeds 

It can be seen in Fig.16(a) that, for the RSC, the total power 
loss of IGBT modules increase with wind speed before point B 
named the rated wind speed point, and the loss remains constant 
beyond point B. Moreover, before point A at which the system 
operates at the synchronous speed, the total power loss of IGBT 
is larger than that of FWD, but there is no significant difference 
after point A. In Fig.16 (b), for the GSC, it is seen that the total 
power loss of the IGBT modules decreases before point A and 
then increase to a saturation level, which is very different 
compared to the RSC. The junction temperature profiles 
previously shown in Fig. 15 are similar to the power loss of 
IGBT modules. Because the junction temperature is related to 
the power loss, which is different in the GSC and RSC, the 
junction temperatures are different. Thus, although the DFIG 
operates under the same condition, such as point A as shown in 
Fig.17, the junction temperatures in the GSC and RSC are also 
different because of the difference of power loss in the two 
converters. In addition, either in the GSC or RSC, the predicted 
junction temperature with the coupling effect reaches 
maximum value at the rated wind speed.  

It is shown that the thermal coupling effect should not be 
ignored in junction temperature calculation for multi-chip 
paralleled IGBT modules. The impact of the thermal coupling 
effect is much higher for the RSC than the GSC, understanding 
this may help to improve the control strategy of the RSC for 
reliability, to adopt a customized IGBT module or to enhance 
the layout of the multiple chips, like the staggered arrangement 
of IGBT and FWD. 

VI. CONCLUSION 

The thermal coupling phenomenon between adjacent chips is 
analyzed using FEM for a real multi-chip paralleled IGBT 
module (FZ1600R17HP4) used widely in 2 MW DFIG wind 
turbines. It is shown that the effect of thermal coupling on 
junction temperature is glaringly obvious. Based on the thermal 
coupling effects, an improved junction temperature calculation 
model with added thermal coupling impedance is proposed. 
The decrease of the thermal coupling impedance has been 
shown to be approximately exponential with the distance. 
Simulation and test results illustrate that the presented model is 
more valid than the traditional model in terms of the calculation 
of junction temperature of chips in multi-chip paralleled IGBT 
modules. According to the presented model, the junction 
temperatures of chips in the GSC and RSC of a 2 MW DFIG 
wind turbine are calculated, which are quite different because 
of the difference of power loss in GSC and RSC. It is also 
shown that the thermal coupling effect on the FWD is more 
obvious than IGBT above the rated wind speed, either for the 
GSC or RSC. The proposed model and the results obtained are 
important for reliability evaluation and condition monitoring of 
the wind turbine power converter, as well as other multi-chip 
paralleled power electronic systems. 
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