
This paper is included in the Proceedings of the

24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

Open access to the Proceedings of

the 24th USENIX Security Symposium

is sponsored by USENIX

Thermal Covert Channels on Multi-core Platforms

Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,
Lothar Thiele, and Srdjan Čapkun, ETH Zürich

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti

USENIX Association 24th USENIX Security Symposium 865

Thermal Covert Channels on Multi-core Platforms

Ramya Jayaram Masti∗, Devendra Rai†, Aanjhan Ranganathan∗, Christian Müller†

Lothar Thiele†, Srdjan Capkun∗

∗Institute of Information Security, ETH Zurich

{rmasti, raanjhan, capkuns}@inf.ethz.ch
†Computer Engineering and Networks Laboratory, ETH Zurich

{raid, thiele}@tik.ee.ethz.ch, chrismu@student.ethz.ch

Abstract

Side channels remain a challenge to information flow

control and security in modern computing platforms. Re-

source partitioning techniques that minimise the number

of shared resources among processes are often used to

address this challenge. In this work, we focus on multi-

core platforms and we demonstrate that even seemingly

strong isolation techniques based on dedicated cores can

be circumvented through the use of thermal channels.

Specifically, we show that the processor core tempera-

ture can be used both as a side channel as well as a

covert communication channel even when the system im-

plements strong spatial and temporal partitioning. Our

experiments on an Intel Xeon server platform demon-

strate covert thermal channels that achieve up to 12.5 bps

and weak thermal side channels that can detect processes

executed on neighbouring cores. This work therefore

shows a limitation in the isolation that can be achieved

on existing multi-core systems.

1 Introduction

Covert and side channels have for a long time remained

an open threat to information flow control and isolation

techniques in a variety of contexts including cloud and

mobile computing [50, 71, 76]. Such channels can be

used for data exfiltration from a victim [17] and be ex-

ploited by colluding applications to covertly exchange

information [46].

A common technique to mitigate covert and side chan-

nel attacks that leverage co-location is to dedicate re-

sources (e.g. processor cores, memory) to individual pro-

cesses for the duration of their execution. Although

seemingly inefficient, such a technique is becoming vi-

able with the appearance of multi and many-core sys-

tems which contain hundreds of cores [12]. However,

it has already been shown that, due to their architec-

ture and use, multi-core systems do not trivially pro-

tect against all types of information leakage — covert

channels have been demonstrated by exploiting shared

caches [35], memory bus [34], network stacks [54], vir-

tual memory [72], I/O devices [64], etc. These covert

channels, however, still exploit the resources that par-

ticular multi-core platforms, for performance and other

reasons, share among the processes. The threats arising

from covert and side channel attacks led to the develop-

ment of mitigation techniques such as partitioning of the

shared resources when possible, for example, partition-

ing caches [68] and bus bandwidth [31].

In this paper, we show that even strong isolation tech-

niques based on dedicated cores and memory can be cir-

cumvented in multi-core systems through the use of a

thermal channel. For this, we leverage the temperature

information that is exposed to processes for performance

reasons on multi-core platforms and two aspects of the

thermal behaviour of these systems. First, the thermal

capacitance and resistance of computing platforms result

in remnant heat from computations, i.e. the heat is ob-

servable even after that computation has stopped. As a

result, information about one process may leak to another

that follows it in the execution schedule. Second, the

effects of heat resulting from processes running on one

core can be observed on other cores across the chip. This

leaks information about a process to its peers running on

other cores in a processor chip. We demonstrate our at-

tacks on commodity multi-core systems. So far, thermal

(heat) channels have not been studied on these systems.

There is a trend towards exposing thermal data to users

and allowing them to make thermal management deci-

sions based on it [21]. For example, temperature infor-

mation is accessible from user-space on modern Linux

systems [1]. This paper highlights the tension between

building thermally-efficient systems which requires ex-

posing high-quality temperature data to applications and

securing them.

In summary, we make the following contributions: (i)

We demonstrate the feasibility of using thermal covert

866 24th USENIX Security Symposium USENIX Association

channels for communication between colluding applica-

tions. We measure the throughput of such a channel on

an Intel Xeon server with two processors containing 8

cores each. The challenges in building such a channel in-

clude the system’s thermal capacitance, effect of cooling

on multi-core systems and resolution limitations of the

thermal sensors available on these platforms. Although

thermal covert channels have a low throughput, sensitive

data such as credit-cards (16 digits) can be transmitted

within 5 seconds to 4 minutes even on systems that use

resource partitioning. (ii) We explore the factors that in-

fluence the throughput of this covert channel — proces-

sor frequency and relative locations of the colluding ap-

plications (processes) and show the throughput varies be-

tween 0.33 bps and 12.5 bps. (iii) We demonstrate the ex-

istence of limited thermal side channel leakage from pro-

cesses running on adjacent cores that allow identification

of applications based on their thermal traces. On existing

systems, heat-based leakage is non-trivial to avoid with-

out a performance penalty; we discuss possible counter-

measures to eliminate or limit the impact of such attacks.

The rest of this paper is organised as follows. In Sec-

tion 2, we discuss the background and motivation for

our work. Section 3 discusses the thermal behaviour of

x86 platforms and Section 4 describes how these prop-

erties can be exploited to create thermal channels. In

Section 5, we demonstrate the feasibility of using ther-

mal channels for covert communication even in systems

with isolation based on resource partitioning. Section 6

demonstrates that limited side channel leakage can oc-

cur through thermal channels which can be exploited for

unauthorised application profiling. Section 7 and Sec-

tion 8 summarise countermeasures against thermal chan-

nels and related work respectively. Finally, we conclude

in Section 9.

2 Background and Motivation

In this section, we summarise the use of thermal infor-

mation in modern processors and resource partitioning-

based isolation techniques, as well as provide a motiva-

tion for our study.

2.1 Thermal Management

Thermal management is key to the safe and reliable op-

eration of modern computing systems. Today, thermal

sensors are incorporated into a number of system com-

ponents including hard-drives, DRAM, GPU, mother-

boards and the processor chip itself [9]. In this work, we

focus on the information available from thermal sensors

that are embedded in processor chips.

Ensuring the thermal stability of a processor is be-

coming increasingly challenging given the rising power-

density in modern processor chips. As a result, major

processor vendors (e.g. Intel, AMD, VIA) incorporate

thermal sensors to enable real-time monitoring of pro-

cessor temperature. ARM-based processors also include

thermal sensors inside the system-on-chip for power and

temperature management.

Initially, thermal management was done statically in

hardware and included mechanisms to power-off the pro-

cessor to prevent melt-downs. This later evolved to

more sophisticated dynamic frequency and voltage scal-

ing techniques that change processor frequency to lower

its temperature [13,39]. Hybrid software- and hardware-

approaches to thermal monitoring have become popular

over time; operating systems today poll temperature sen-

sors and use this to manage cooling mechanisms such

as processor frequency-scaling and fan-speed [2]. More

recently, there is a trend towards user-centric thermal

management that exposes thermal data to users and al-

lows them to implement customised thermal manage-

ment policies. For example, Linux-based systems today

enable users to configure thermal policies [14, 21].

The number and topology of thermal sensors de-

pend on the processor vendor and family. For example,

while Intel and VIA processors expose temperature data

for individual cores using on-die sensors, some AMD

(e.g. Opteron K10 series) processors only allow moni-

toring the overall temperature of the entire chip using a

sensor in the processor socket [1]. Optimising the num-

ber and placement of thermal sensors on processors is an

active research topic [47, 53, 55].

2.2 Resource Partitioning-based Isolation

Isolation techniques for multi-core platforms that are

based on resource partitioning offer a number of ben-

efits. First, resource management approaches that rely

on partitioning reduce the size of the software Trusted

Computing Base (TCB). In fact, resource partitioning is

gaining popularity as a means to create multiple, iso-

lated execution environments without the need for a soft-

ware TCB in servers [6] and networked embedded sys-

tems [57]. Second, the simplicity of partitioning-based

resource management eases formal verification and this

is leveraged by separation kernels like Muen [23]. Third,

modern processors rely on partitioning techniques to

build Trusted Execution Environments (TEEs). TEE

technologies such as Intel Trusted Execution Tech-

nology (TXT) [40], Intel Software Guard Extensions

(SGX) [52] and ARM TrustZone [15] protect the execu-

tion of security-sensitive software from a compromised

operating system. Intel TXT relies on temporal parti-

tioning of resources such as CPU and memory between

trusted and untrusted software. Intel SGX and ARM

TrustZone use temporal partitioning only for the CPU

USENIX Association 24th USENIX Security Symposium 867

and implement spatial partitioning for memory resources

in the system.

Resource partitioning has already been proposed as

a countermeasure against covert channels [30] and side

channels [68]. This is because most covert and side chan-

nels exploit shared resources. For example, a process can

modify shared resources (e.g. cache, file) to communi-

cate covertly with another colluding process. An attacker

can also exfiltrate sensitive information from a victim

process by tracking the state of a shared resource such

as cache. Therefore, there have been proposals for min-

imising shared resources to reduce the number and effec-

tiveness of covert and side channels. Examples include

partitioning of caches [68] and bus-bandwidth [31].

2.3 Motivation

The main motivation behind this work is our observa-

tion that despite its security advantages, resource parti-

tioning on multi-core systems might not be able to com-

pletely eliminate some types of inference or communi-

cation across partitions. More specifically, we want to

investigate if the exposure of core temperature informa-

tion could be used to build both side channels and covert

communication channels between processes that execute

on different cores within a multi-core system. Our goal

is to study these channels primarily in terms of their fea-

sibility and throughput.

Thermal channels are particularly interesting in the

context of multi-core systems for two main reasons:

(i) today, these platforms expose the information from

thermal sensors to users and (ii) thermal channels can

be tested for their effectiveness under the resource

partitioning-based isolation mechanisms that multi-core

systems can support. To build thermal channels, it is nec-

essary to understand the type and quality of temperature

data available on systems today. One must also account

for the nature of temperature variations on such systems

and the factors that affect them. We focus on Intel x86

platforms for our study given their wide spread use.

3 Thermal Behaviour of x86 Platforms

In this section, we present theoretical and empirical as-

pects of the thermal behaviour of x86 systems. More

specifically, we first discuss recent attempts to analyse,

model, and simulate the thermal behaviour of the state-

of-the-art processors. Then, we discuss the on-die ther-

mal sensors available on Intel processors and the thermal

behaviour of these platforms under a CPU-intensive load.

3.1 Models of Thermal Behaviour

The most common abstraction of the thermal behaviour

of processors is the resistor-capacitor mesh network

model. This model is based on the well-known duality

between thermal and electrical phenomenon [36]. Each

physical layer of the processor is modelled separately as

a resistor-capacitor mesh. The heat flow between the lay-

ers itself and eventually to the environment is represented

by connecting the various meshes using additional resis-

tors and capacitors. Such an approach [28] assumes that

it is possible to approximate the thermal properties of a

processor using a linear model. It also captures factors

such as high thermal resistivity of silicon, heat-sinks and

fan cooling that affect overall processor temperature.

Alternative empirical approaches that approximate

thermal behaviour using measurements from on-die ther-

mal sensors and machine learning techniques have also

been explored (e.g. [60]). The advantage of such an

approach over using traditional models is that it does

not need information such as detailed design parameters

(e.g. floorplan of the processor) which are usually not

readily available.

Given the complexity of modern commodity proces-

sors and the lack of public information required to ac-

curately model them, in this paper, we focus on a more

empirical approach. We use measurements from the on-

die thermal sensors to understand the thermal behaviour

of commodity systems.

3.2 Temperature Sensors in Intel

Processors

Intel labels each of its processors with a maximum junc-

tion temperature which is the highest temperature that

is safe for the processor’s operation. If the processor’s

temperature exceeds this level, permanent silicon dam-

age may occur. To avoid such processor melt-down, Intel

facilitates processor temperature monitoring by incorpo-

rating one digital thermal sensor (DTS) into each of the

cores in a processor. The layout of the cores within a

processor chip can be identified using lstopo [7] on a

Linux machine. For example, on the Xeon server used

in our experiments, the cores are arranged along a line

(as shown in Section 5.1). Each DTS reports the dif-

ference between the core’s current temperature and the

maximum junction temperature [3]. The accuracy of the

DTS varies across different generations of Intel proces-

sors. They typically have a resolution of ±1◦C.

The absolute value of a core’s temperature in ◦C is

computed in software by subtracting the thermal sensor

reading from the maximum junction temperature. Ther-

mal data from a sensor can be obtained using special

CPU registers of the corresponding core. The data from

868 24th USENIX Security Symposium USENIX Association

Time (s)
0 50 100 150 200

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45

Figure 1: Thermal Response of a CPU Intensive Ap-

plication. Temperature trace resulting from the execu-

tion of an application that does RSA decryption in a loop

for 100 s. The start and end times of the application’s

execution are indicated using the two red lines. Temper-

ature increases rapidly initially and saturates over time as

an application runs. Similarly, it falls rapidly as soon as

the core becomes idle and gradually returns to the ambi-

ent temperature.

all sensors is exposed using the coretemp kernel mod-

ule [1] on Linux systems. This information is accessible

from user space through the sysfs filesystem which is

refreshed every 2 ms.

3.3 Example Temperature Trace

To illustrate how computations affect the temperature of

a core, we ran a CPU intensive application – more specif-

ically, one that does an RSA decryption continuously in

a loop. We ran the application on core 3 of an octa-core

processor (for setup details, refer to Section 5.1). Fig-

ure 1 shows the recorded temperature trace of core 3 dur-

ing the execution of the application for 100 s (between

the dotted red lines) on it and for about 50 s thereafter

when the core cools. We observe that 25 ms after the ap-

plication begins execution, the temperature rises by 5◦C

from approximately 35 ◦C to 40 ◦C. Following this rapid

rise, the temperature increases very slowly and saturates

at 43◦C. As soon as the application stops executing, the

temperature falls rapidly to 38 ◦C in about 25 ms and

takes an additional 11 s to reach 35 ◦C.

The exponential nature of the temperature rise and fall

is a result of the system’s thermal capacitance and resis-

tance. The temperature fall curve shows that the temper-

ature changes caused by such an application’s execution

can be observed for sometime after it has stopped.

Time (s)
0 50 100 150 200 250

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45

2.9 GHz

2.4 GHz

1.9 GHz

1.5 GHz

Figure 2: Effect of Processor Frequency on Thermal

Behaviour. Temperature profiles produced by running a

CPU intensive application on a core at different proces-

sor frequencies for 100 s.

3.4 Factors Influencing a Core’s

Temperature

The major factors affecting the temperature at a par-

ticular core are the fan speed, processor frequency and

heat propagation from neighbouring cores. Since, in our

experiments, we do not control the server fan speed (see

Section 5.1), we only discuss the effect of the processor

frequency and heat propagation on a specific core’s

temperature below.

CPU Frequency. Most Intel processors are designed to

run at a set of discrete frequencies for optimising power

consumption. For example, in our setup (Section 5.1),

the Xeon server can run at frequencies between 1.2 GHz

and 2.9 GHz. All cores within a single processor chip

run at the same frequency. Changes in frequency at a

given core are reflected across all the other cores. The

actual frequency can be controlled either by the user or

by the kernel; for example, Ubuntu systems allow users

to control this using the sysctl interface.

Figure 2 shows how the processor frequency affects

temperature when a CPU-intensive application runs for

100 s. We can observe that higher frequencies result

in more heat and higher saturation temperatures. This

is because processor operation at a higher frequency

results in a larger power density and therefore, more heat.

Heat Propagation From a Neighbour. The heat

resulting from computations on one core will propagate

to neighbouring cores. As a result, the temperature at a

certain core depends not only on that core’s workload

(type of computation and schedule) but also those of its

neighbours.

USENIX Association 24th USENIX Security Symposium 869

Time (s)

0 50 100 150 200 250

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45

Core 2

Core 3

Core 4

(a) 1 Hop

Time (s)

0 50 100 150 200 250

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45

Core 1

Core 3

Core 5

(b) 2 Hops

Time (s)

0 50 100 150 200 250

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45

Core 0

Core 3

Core 6

(c) 3 Hops

Time (s)

0 50 100 150 200 250

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45

Core 3

Core 7

(d) 4 Hops

Figure 3: Heat Propagation from a Neighbouring Core. Effect of running a CPU-intensive application on core 3 of

an octa-core processor for 100 s on the temperature sensors of its adjacent cores.

Figure 3 shows the effects of a CPU-intensive applica-

tion executing on a central core (core 3) of an octa-core

processor for 100 s. We notice that the computation on

core 3 affects the temperature sensors of its neighbouring

cores which remain idle all through. Additionally, we

observe that the saturation temperature of a neighbour-

ing core decreases with increasing distance from core 3.

This effect is not symmetric as one would expect on ei-

ther side of core 3. We suspect that this is due to an

asymmetrically located processor hotspot or asymmetri-

cally positioned thermal sensor.

4 Exploiting Thermal Behaviour

In this section, we present the intuition underlying the

construction of thermal channels on multi-core systems.

4.1 Isolation based on Spatial and

Temporal Partitioning

Isolation techniques that rely on resource partitioning are

becoming increasingly popular and there have been a

number of proposals for using such partitioning to pre-

vent covert and side channels [31, 68]. In our work,

we consider two most common types of process isola-

tion and partitioning techniques: Spatial and Temporal

as shown in Figure 4. In spatially partitioned systems,

processes are isolated by being assigned exclusive com-

putation resources, i.e. no two processes share cores or

memory. Such an approach prevents certain types of side

channels between processes that execute concurrently.

For example, cache-partitioning prevents any informa-

tion leakage that may occur based on the state of the

cache-lines in a processor (e.g. how many cache-lines

are full). In such systems, processes do not share any

processor temperature sensors because they do not use

any common CPU resources.

In temporally partitioned systems, the processes share

the same resources but run in a time-multiplexed man-

ner. For example, this technique is used by TEEs like

Intel TXT in which only one of two partitions (trusted

or untrusted) are active at a time but have access to com-

mon cores and memory. In systems that employ temporal

partitioning, processes that share one or more cores have

access to the corresponding temperature sensor(s) during

their execution time-slice.

Thermal channels that leverage system thermal be-

haviour can be used to circumvent both these types of

isolation techniques as we describe below.

870 24th USENIX Security Symposium USENIX Association

SOURCE SINK

PROCESSOR

...........C1 C2 C3 CnCn-1

CORE

S1 S2 S3 Sn-1 Sn

THERMAL SENSOR

TIME

ON

OFF

TIME

TEMP The sink uses its recorded temperature
trace to decode the information sent
by the source

On core C, the source executes a heat-
intensive task (ON) to send bit '1' or
remains idle (OFF) to send bit '0'

.......

TIME

TEMP Heat flow

.......

TIME

ON

OFF

On core Cn-1, the sink continuously
records the temperature of the core on
which it is executing

1 0 1 0 1
.......

1 0 1 0 1

......

TIME

On core C, the source executes a heat-
intensive task (ON) to send bit '1' or
remains idle (OFF) to send bit '0' during
its time-slice.

The sink continuously records the
temperature of its core during its time-slice

TIME

TEMP

1 0 1

The sink uses its recorded temperature
trace to decode the information sent
by the source

time-slice

C C

(OFF)

C CC

(ON)

HEAT-BASED CHANNEL IN TEMPORALLY PARTITIONED SYSTEMS

HEAT-BASED CHANNEL IN SPATIALLY PARTITIONED SYSTEMS

S S S S S

INTERLEAVED EXECUTION ON THE SAME CORE

C

(ON)

S

Figure 4: Covert communication using Thermal Channels. We demonstrate that the temperature sensors on com-

modity multi-core platforms can be misused for covert communication by two colluding processes in spatially and

temporally isolated systems.

4.2 Constructing Thermal Channels

Based on our discussion in Section 3, we make two ob-

servations that can be used to construct thermal channels.

Remnant Heat. Since temperature variations that

result from a computation can be observed even after

it stops, these variations leak information regarding

the computation to the process that follows it in the

execution schedule especially if they share the same

core. This remnant heat can be exploited as a thermal

side channel and may allow a process to exfiltrate sensi-

tive information from its predecessor thereby violating

temporal partitioning. Furthermore, it can also be used

for communication between two colluding processes

that time-share a core. Note that while it is possible

to reset most resources (e.g. CPU registers, caches)

to prevent other types of channels before switching

between applications, the remnant heat from a compu-

tation (and hence, a thermal channel) is hard to eliminate.

Heat Propagation to a Neighbouring Core. The ther-

mal conductivity of the processor results in heat propaga-

tion between cores, i.e, the heat that results from a com-

putation not only affects its underlying core’s tempera-

ture but also its neighbouring cores. This heat flow can

be exploited as a thermal channel by an attacker to make

inferences about a potentially sensitive computation at a

neighbouring core. Colluding processes can also use the

heat flow to communicate covertly. Since it is hard to

eliminate heat flows within processors, thermal channels

are a viable threat even in spatially partitioned systems.

There are several challenges involved in the construc-

tion of thermal channels. First, the nature of temperature

changes makes it hard to control the effect that an ap-

plication’s execution will have on the temperature of its

own core and its neighbours. Second, the limited res-

olution of the temperature sensors available on current

x86 platforms prevents fine-grained temperature moni-

toring. Finally, fan-based cooling mechanisms affect the

rate and extent of temperature variations.

5 Covert Communication Using Thermal

Channels

In this section, we present the feasibility and through-

put of communication using thermal covert channels in

spatially and temporally partitioned multi-core systems.

We first describe our experimental setup that implements

such isolation mechanisms. Throughout, we refer to the

data sender as the source and the recipient as the sink.

5.1 Experimental Setup

Our setup is based on an Intel server containing two octa-

core Xeon processor chips and running an Open SUSE

installation (Figure 5). We use cpusets [4] to implement

spatial and temporal partitioning. Using cpusets, we re-

strict the OS to one of the processor chips (Processor 2)

and isolate it from the rest of the system. We achieve

spatial partitioning by running the source and the sink on

USENIX Association 24th USENIX Security Symposium 871

INTEL
XEON

OS + cpusets + scheduler

SOURCE SINK

S1 S2S0 S7
I/O

DRAM

DRAM

C3

S3

C4

S4

C5

S5

C6

S6

C0 C1 C2 C7

INTEL
XEON

S1 S2S0 S7

C3

S3

C4

S4

C5

S5

C6

S6

C0 C1 C2 C7

P
R
O

C
E
S
S
O

R
 1

P
R
O

C
E
S
S
O

R
 2

Figure 5: Our Experimental Setup. Our framework

consists of an Intel Xeon-based server platform running

Suse Linux. We use cpusets to achieve spatially or tem-

porally isolated source and sink applications. We wrote

a custom source application that uses RSA decryption

operations to generate heat and a sink application that

records its own core’s temperature continuously.

separate cores on the Processor 1 with minimal interfer-

ence from the OS. To realise temporal partitioning, our

system incorporates a scheduler that controls the dura-

tion and cores on which the source and sink execute.

We wrote a custom application that performs an RSA

decryption (using PolarSSL [10]) continuously in a loop

and we use it as the source application of the covert chan-

nel. We chose a compute intense benchmark like RSA

because thermal sensors are typically located in the pro-

cessor’s region which is most likely to experience very

high temperatures, such as the ALU [53]. Hence, this

benchmark can quickly increase CPU temperature. This

choice of benchmark also complies with popular thermal

benchmarks (e.g. CStress [5], mprime [8]), that contain

applications which extensively use the CPU register file

and ALU.

We rely on the server fan for cooling the cores. Our

server allows the fan-speed to be configured only through

the BIOS. We set the fan-speed to the maximum allowed

value (15000 rpm) for our entire study. We chose this

setting because it is the most likely setting for servers

which run computationally intensive tasks. Our server is

currently in a room whose ambient temperature is around

22◦C. We also implemented a custom sink application

that records the temperature of the core on which it exe-

cutes continuously.

Our experimental framework is implemented using

C. It allows configuration of run-time parameters like

the processor frequency, set of applications to run, their

schedule and mapping to cores. Initialisation and tear

down of the measurement framework is performed using

a set of Perl and Bash scripts. Our setup allows us to

achieve spatial and temporal isolation; this makes it an

ideal platform for our investigation of thermal channels.

5.2 Covert Communication in Spatially

Partitioned Systems

This section addresses the construction of thermal

channels in the scenario where the source and sink appli-

cations run on dedicated cores and execute concurrently.

The sink has access only to its own core’s temperature

sensor and not that of the source as described in the

upper part of Figure 4. To communicate covertly in such

a scenario, the source exploits the heat propagation from

its own core to the sink that runs on a neighbouring

core. In this section, we demonstrate the feasibility

of achieving this on a commodity multi-core platform

and evaluate the throughput of such a communication

channel. Below, we first present the encoding scheme

that we use for data transmission and then describe the

experiments that realise covert communication using the

thermal channel.

Encoding and Decoding. The source and sink use On-

Off Keying for their communication. To send bit ‘1’,

the source application runs RSA decryption operations

to generate heat and to transmit bit ‘0’, it remains idle. It

is important that the source application runs long enough

to affect the sink’s temperature sensor on a neighbouring

core to send bit ‘1’, i.e. it must generate enough heat to

raise the temperature of the sink’s core above the ambient

temperature. We denote the minimum duration for which

the source application needs to execute to transmit a ‘1’

bit to the neighbouring cores as Tb. The source remains

idle for the same duration to send a ‘0’ bit. We assume

that the source and sink a priori agree on Tb and a fixed

preamble to mark the start of the data.

The sink that records the temperature of its own core

continuously does the following to decode the data. It

first searches the recorded temperature trace for a fixed

preamble. We choose a preamble starting with bit ‘1’

because it can clearly be identified by the sink. To detect

the start of the preamble, the sink searches for a ‘1’

bit by detecting the first rising edge, i.e. a temperature

increment ≥ 2◦C given its ambient temperature. We

use this threshold because the resolution of the sensors

on the platform is ±1◦C. It then tries to decode the bits

following this to see if they match the preamble. The

source repeats this until it recovers the preamble from

the temperature trace. It then decodes the remaining bits

using a simple edge detection mechanism in which a

rising edge indicates bit ‘1’, a falling edge indicates bit

‘0’ and a no-change implies that the value is the same as

the previous bit.

872 24th USENIX Security Symposium USENIX Association

Time (s)
0 100 200 300 400

 T
em

p
er

a
tu

re
 (
°
 C

)

30

32

34

36

Figure 6: Temperature Drift due to the Sink’s Execu-

tion. The temperature drift caused by the execution of

the sink itself is very slow as shown here. This trace was

recorded over 400 s by running the sink application on

core 3 with all the other cores idle. Note that the resolu-

tion of the sensor is ±1◦C.

Temperature Drift due to the Sink’s Execution. The

sink relies on the source to affect its core’s temperature

sensor for communication. However, to do this, it is

necessary to isolate any temperature drifts that may be

caused by the sink’s execution itself on its own tempera-

ture sensor.

To understand these drifts better, we run the sink for

a long time and observe its temperature. Figure 6 shows

the temperature trace of core 3 when the sink is running

on it for 400 s and the other cores are idle. The core’s

temperature remains stable at around 33◦C for 200 s and

later drifts slowly towards 34◦C. Therefore, we conclude

that the temperature changes caused by the execution of

the sink process itself is negligible over a long duration

of time (e.g., 200 s).

Calibration of Tb. Before the actual transmission of

data, we have to determine the optimal value of Tb, i.e.

the duration for which the source executes or remains

idle to send bit ‘1’ and bit ‘0’ respectively. Note that the

actual value of Tb depends on the relative locations of

the source and the sink. This is because the effect of the

source’s execution affects the cores farther away from it

to a lesser extent (see Section 3). For our first experi-

ments, we fix the source to execute on a core 3 because

it is a central core and the sink to execute on core 2. We

later describe the effects of increasing the distance be-

tween the source and the sink on Tb.

To estimate Tb, we first set it to a value between 50 ms

and 1500 ms. We then attempt to send 100 data bits from

the source on core 3 to the sink on core 2 and observe

the resulting temperature traces on core 2. We do this

by configuring the source application to be active and

Tb(ms)
Bit Error (%)

Core 2 Core 1

(1-hop) (2-hop)

250 18 –

500 14 –

750 13 –

1000 11 24

1250 9 26

1500 8 15

Table 1: Calibration of Tb in Spatially Partitioned

Systems. We send a block of 100 bits consisting of al-

ternating ones and zeroes using different Tb values from

the source (core 3) to the sink that runs at one and two

hop distances from it. The processor frequency was set

to 2.9 GHz and this table shows the resulting bit-error

rates (‘–’ indicates that the data could not be decoded).

We observe when Tb≥ 500 ms, we can decode data with

less than 15% error at one hop but this does not improve

much by increasing Tb to 1500 ms. We also notice that

the required Tb increases with greater distance from the

source. At a one hop distance, setting Tb = 750 ms and

using Hamming(7,4) error correction code results in a

channel throughput of up to 0.33 bps.

idle for Tb alternately. Our data consist of 50 alternating

ones and zeros. We choose this data sequence because

it is important to ensure that the chosen Tb consistently

results in the desired temperature increment on core 2.

We were unable to decode data when Tb was smaller

than 250 ms. We observe that data transmission using

Tb ≥ 500 ms results in about 10% bit errors (Table 1).

Furthermore, we notice that the bit error rate does

not improve much by increasing Tb from 500 ms to

1500 ms. Figure 7 shows the temperature traces of the

two cores during the data exchange using a Tb = 750 ms.

The data shown here has been post-processed to remove

noise using a smoothing function. We observe that the

temperatures of core 3 and core 2 are well-correlated

(correlation co-efficient ≃ 0.55, p-value = 0).

Error Rate. To understand the nature of errors in ther-

mal channels, we send a pseudorandom sequence of a

1000 bits in 100-bit blocks. Each block begins with a

preamble to enable the sink to detect the start of data

transmission.

From our initial experiments, we observe that the tem-

perature traces of core 2 and core 3 are well-correlated

in time over a sequence of alternating ones and zeros

(Figure 7). Therefore, we choose a preamble of five

alternating ones and zeroes (10 bits in total). The source

and sink synchronise in 9 out of 10 tests and the average

error rate is 13.22 % (± 5.19) for a Tb value of 500 ms.

On increasing Tb to 750 ms and 1000 ms, the source and

USENIX Association 24th USENIX Security Symposium 873

Time (s)
0 5 10 15 20 25

 T
em

p
er

a
tu

re
 (
°
 C

)

30

35

40

45
Core 3

Core 2

Figure 7: Thermal Communication in Spatially Iso-

lated Systems. Temperature traces recorded during the

transmission of the 30 bits (15 ones and 15 zeroes)

from the source (core 3) to the sink (core 2) using a

Tb = 750 ms.

sink synchronise over all 10 tests and the average er-

ror rate is 11.3% (± 2.83) and 11% (± 3.83) respectively.

Varying the Sink’s Location. We repeat similar experi-

ments by running the sink on core 1 and core 0 which are

two and three hops away from the core 3 to see how the

error rate varies with increasing distance from the source.

At a two hop distance, we observe that for a given Tb, the

error rate is higher than in the case of the one hop (Ta-

ble 1). At a three hop distance, we were unable to decode

data at 1500 ms. However, increasing the value of Tb suf-

ficiently will allow data transmission at a 3-hop distance.

For example, Figure 3(c) shows an extreme case in which

Tb is set to 200 s to transmit bit ‘1’.

The increased error rate and deterioration in the

ability to decode data is expected. This is because heat

resulting from computations at a given core affects the

cores closer to it more than the cores farther away. We

repeated the experiments to estimate the error rate from

the source (core 3) to a sink running on core 1 at a

two hop distance. We observe that the source and sink

synchronise successfully in 9 out of 10 tests. We can

transmit data at the rate of 1 bit in 1.5 s (Tb = 1500 s)

with an error rate of 18.33% (±4.21).

Effect of Frequency on Tb. To understand the effect of

processor frequency on Tb, we repeated our experiments

for 1-hop communication at lower frequencies, namely,

2.4 GHz and 1.9 GHz. As shown in Table 2, for a given

Tb, the error rate increases at lower processor frequen-

cies. When the processor frequency is set to 1.9 GHz,

we could not decode data even at 1500 ms. We note that

using a larger value for Tb would solve this problem and

can be done using the same methodology we used for

Tb(ms)
Bit Error (%)

2.9 GHz 2.4 GHz

250 18 –

500 14 23

750 13 24

1000 11 23

1250 9 14

1500 8 14

Table 2: Effect of Processor Frequency on Required

Tb. We send a block of 100 bits consisting of alternat-

ing ones and zeroes using different Tb values from the

source (core 3) to the sink (core 2). The table shows the

resulting bit-error rates at different processor frequencies

(‘–’ indicates that the data could not be decoded). We ob-

serve that when the processor runs at lower frequencies,

Tb has to be increased to achieve lower bit-error rates.

our experiments. This deterioration in error rates and the

ability to decode data itself is expected because lower

frequencies result in lesser heat generation from a given

computation. Therefore, the rise in temperature may not

be significant enough to detect a bit ‘1’ .

We repeated the data transmission experiments when

the processor frequency is set to 2.4 GHz. We transmit

a pseudo-random sequence of 1000 bits in 100-bit

blocks. Each block is preceded by a preamble and is

sent from the source (core 3) to the sink (core 2) using

Tb = 1250 ms and 1500 ms. In both cases, the source

and sink synchronise in all 10 tests. The observed error

rates in both cases is similar, i.e. 14.9% (± 3.9) and

15.9% (± 6.08) for Tb = 1250 ms and Tb = 1500 ms

respectively.

Throughput Estimation. From the above discussion,

we conclude that the throughput of thermal covert chan-

nels in spatially partitioned systems depends on number

of factors. This includes the time required to transmit one

bit of information (Tb) and error rates. Both these param-

eters in turn depend on the processor frequency and the

distance between the colluding processes.

At 1-hop distances, given a Tb of 750 ms, the through-

put would be 1.33 bps in the ideal case without any er-

rors. However, due to the 11% errors that we observe

in the experiments, actual communication would require

error correction to be implemented. When we analysed

the nature of the errors, we found that for every four bits,

with a probability of over 0.9, there was one or no er-

rors. Therefore, we could use a Hamming (7,4) error-

correction code to correct for these errors. This would re-

sult in 75% overhead and hence, an effective throughput

of 0.33 bps. When the frequency is changed to 2.4 GHz,

the throughput is about 0.2 bps using a Hamming (7,4)

error correction code. A similar trend was observed on

874 24th USENIX Security Symposium USENIX Association

Time (s)
2.55 2.6 2.65

 T
em

p
er

a
tu

re
 (
°
 C

)

33

34

35

36

37

38
Trace from Sink

Figure 8: Thermal Communication in Temporally Iso-

lated Systems. Temperature traces recorded during the

transmission of the 6 bits (3 ones and 3 zeroes) from the

source to the sink. The source and the sink execute in

alternate time-slots of 10 ms (marked in grey) on core 3.

The thick lines are the actual temperature traces recorded

by the sink and the dotted lines represent the temperature

changes that occur as a result of the source’s execution.

increasing the distance between the source and sink. Al-

though the thermal channel’s throughput is low, it still

allows the transfer of sensitive data like credit-card infor-

mation (16 digit) in a few minutes. We discuss other fac-

tors that affect the thermal channel’s throughput in Sec-

tion 5.4.

5.3 Covert Communication in Temporally

Partitioned Systems

Temporal partitioning schemes securely multiplex the

same resources (e.g. cores, memory) between several

applications. Systems that use this technique mitigate

information leakage through side channels by clearing

caches, registers, etc. while switching between pro-

cesses. However, the thermal footprint of an application

(the source) remains intact for observation by the other

application that executes after it on the same core

(the sink). This is a result of the thermal capacitance

and resistance of processors and can be exploited to

communicate covertly as our experiments demonstrate.

Scheduling, Encoding and Decoding Schemes. In

temporally partitioned systems, a scheduler determines

the order in which different partitions execute on a core.

Therefore, we implement a scheduler (Figure 5) that

realises this functionality. Since the sink and source

share the same core, they run in an interleaved manner

and the sink has access to the temperature sensors only

during its execution time-slice (ts). Note that ts is con-

trolled by the system’s scheduler while Tb is controlled

Tb(ms)
Bit Error (%)

2.9 GHz 2.4 GHz 1.9 GHz

10 0 4 0

15 0 1 1

20 0 0 1

25 0 0 0

30 0 0 0

Table 3: Effect of Processor Frequency on Required

Tb. We send a block of 100 bits consisting of alternat-

ing ones and zeroes using different Tb values from the

source (core 3) to the sink that runs on the same core.

The table shows the resulting bit-error rates at different

processor frequencies. We observe that the error rates do

not change much even at lower processor frequencies.

Setting the frequency to 2.9 GHz, Tb to 10 ms and using

Hamming(7,4) error correction code leads to the channel

throughput of up to 12.5 bps.

by the applications. If the execution time-slice (ts) ≤ Tb,

then communication becomes difficult because the

source cannot generate enough heat to transmit ‘1’ bits.

However, if ts ≥ Tb, then the source can choose to

execute for long enough to cause a temperature change

that the sink notices. Note that temperature variations

over the course of the source’s execution within one

time-slice are not visible to the sink; instead the sink

only has access to the final temperature after the source’s

execution time-slice. Therefore, in our implementation,

the source sends a single bit per time-slice (using the

temperature at the end of that time-slice) to the sink over

a thermal covert channel, i.e. Tb = ts. We use the same

On-Off keying technique as before in Section 5.2.

Calibration of Tb. We consider the scenario in which

the sink and the source share a core and run in a round-

robin fashion. The source heats up the processor (bit ‘1’)

or stays idle (bit ‘0’) to send one bit of information to the

sink application that runs immediately after.

In order to understand how fast one can transmit bits

over such a channel, we do the following. We try to

send an alternating sequence of 50 ones and 50 zeroes

from the source to the sink. We vary Tb between 10 ms

which is the minimum value that our framework allows

and 30 ms. The source and sink run on core 3 in our

experiments. Figure 8 shows an example temperature

trace that the sink records during its execution. Note

that the sink has access to the shared core’s temperature

sensor only during its own time-slice. We observed no

errors in the data that the sink decodes for Tb ≥ 10 ms

and therefore, use this value for further experiments. We

also repeated the experiment on the cores at the corners

(core 0 and core 7) and noticed similar results.

USENIX Association 24th USENIX Security Symposium 875

Error Rate. To understand the nature of errors in this

channel, we send a pseudorandom stream of 1000 bits

in 100-bit blocks using Tb = 10 ms. We send 10 bits for

synchronisation at the beginning of every block similar

to the experiments in Section 5.2. The synchronisation

using the preamble was successful in all cases and the

data transmission resulted in error rates of 7.6% (± 1.9),

9.5% (± 4.86) and 7.1% (± 2.23) for experiments on

cores 0, core 3 and core 7 respectively.

Effect of processor frequency on Tb. We repeated

our experiments at two lower processor frequencies to

understand how it may affect the required Tb for reliable

communication. In the Tb calibration experiments,

the error rates remain low despite the decrease in

frequency (Table 3). In the actual data transmission tests

(of 1000 bits in 100 bit blocks) at 2.4 GHz, the source

and the sink successfully synchronise in all 10 tests

and the error rate is about 6.5% (±3.58). At 1.9 GHz

however, the synchronisation succeeds only 5 out of 10

times and the error rate is 9.5% (±2.55). This indicates

that a higher Tb value is required for more reliable

communication at this lower processor frequency.

Throughput Estimation. The throughput of the thermal

channel in temporally partitioned systems depends on the

execution schedule of the applications and the time re-

quired to send one bit of information (Tb = ts). We note

that typical Linux systems have a time-slice of about 100

ms which is 10 times bigger than the one we need for

implementing thermal covert channels.

When Tb is 10 ms, we would expect the throughput of

the thermal channel would be 50 bps. However, since

the communication is error prone and results in up to

10% error, the encoding scheme would have to incor-

porate error correction codes. On analysing the nature

of the errors during the transmission of a 1000 bits, we

see that with a probability of over 0.9, there is 1 or no

errors in every four data bits. Therefore, we can use a

Hamming(7,4) code to overcome these errors and this re-

sults in an effective throughput of about 12.5 bps. This

throughput is independent of which particular core the

source and sink share (core 0/3/7). A Tb of 10 ms re-

sults in low error rates even at a processor frequency of

2.4 GHz and hence, the throughput is roughly 12.5 bps.

We note that this data rate would allow the transmission

of sensitive information such as credit-card details (16

digits) in about 5 s.

5.4 Other Factors Affecting Throughput

We have explored how factors like processor frequency

and relative locations of the source and sink affect the

throughput of the thermal covert channel. Below we

discuss additional parameters that affect the throughput.

An exhaustive evaluation of these factors is beyond the

scope of the paper and is intended as part of future work.

Noise from Other Workloads. On a given system,

the throughput of a thermal communication channel

will depend on the actual workloads running on that

platform. In the case of thermal channels in spatially

partitioned systems, the exact effect of a concurrent

workload on the throughput will likely depend on the

nature of the workload and its relative distance from the

sink’s core. On the one hand, a workload that saturates

its own core’s temperature is only likely to increase

the sink’s temperature by a constant amount without

disturbing the actual communication patterns. On the

other hand, a workload that runs in the opposite schedule

as the source (i.e. it is active whenever the source is idle

and vice-versa) is likely to result in increased errors at

the sink’s core. Analogous discussions hold in the case

of temporal channels. Finally, if the attacker controls

more than one core on the platform, then he could

potentially generate more heat and build faster channels

but this requires further exploration.

Other Encoding and Error-Correction Schemes. In

our experiments, we used the On-Off keying technique

to transmit data. Instead, to improve throughput, one

could borrow techniques from signal processing and

telecommunications such as multi-level encoding. One

could alternatively use bi-phase encoding schemes such

as Manchester-coding that would lower the data rate

(e.g. by half) but also result in fewer errors. Further-

more, in order to detect and correct more than single-

bit errors, one could implement alternative error correc-

tion schemes such as Reed-Solomon [62] or BCH [18].

For example, a Reed-Solomon RS(32,28) code encodes

a 28-word data into a 32-word codeword and is capable

of correcting errors up to 2-words in length.

We note that our experiments were performed in con-

ditions that minimise any noise that may arise from other

concurrent workloads such as the OS. Given this and the

low resolution of the thermal sensors (±1◦C), we believe

that an order of magnitude improvement in the through-

put is unlikely.

6 Thermal Channels for Unauthorised

Profiling

In this section, we present a preliminary study of how

thermal side channels enable unauthorised thermal pro-

filing of processes even in systems that implement strong

isolation mechanisms like spatial resource partitioning.

In contrast to thermal covert channels in which the source

876 24th USENIX Security Symposium USENIX Association

and the sink collude to exchange data, thermal side chan-

nels allow an attacker to exfiltrate information from a vic-

tim without requiring any cooperation from the victim.

The heat generated from an application (which we

refer to as the victim) can be observed from its neigh-

bours. This may leak information regarding the nature

of its computation to processes at other cores. More

specifically, if the attacker has reference thermal traces

for victim applications, he can recognise if and when

such an application executes on a neighbouring partition.

For example, identifying that a sensitive or potentially

vulnerable application is running on a neighbouring

core may aid an attacker in preparing or launching an

attack. Application identification based on temperature

traces has not been addressed previously in literature.

Below we present a first study that tries to understand its

effectiveness as an attack vector.

Goal and Intuition of the Attack. We assume that

an attacker has access to a reference thermal trace of

the victim application (say RSA decryption). Such a

trace can be obtained by the attacker if he has access

to a similar platform as the one he is attacking. The

attacker’s goal is to verify if the temperature trace of

his core is a result of the victim application’s execution

on a neighbouring core. Note that the attacker does not

have access to the temperature trace of its neighbouring

core(s) but only to that of his own core. For simplicity,

we assume that only the attacker and the victim are

active during the attack and that they are collocated

on adjacent cores. The attacker continuously monitors

his own core’s temperature and then, correlates it with

a reference trace of the victim application. A strong

correlation indicates that the attacker’s temperature trace

was a result of the execution of the victim application

with high probability.

Experiments and Analysis. We chose a set of five CPU-

intensive applications including RSA decryption and

four applications from a benchmark suite, MiBench [32]

(ADPCM, Quick Sort, BitCount, BasicMath) and use

them as the universal set of applications that a victim

core (core 3) executes. We intentionally chose similar

applications all of which stress the ALU and register file

region of the core. This choice makes our task harder

than distinguishing between applications with very dis-

tinct thermal behaviour, for example, an idle applica-

tion vs. a thermal benchmark. A deeper exploration of

the thermal behaviour of different classes of applications

(memory intensive, I/O intensive, etc.) and their distin-

guishability is out of the scope of this work.

To understand the feasibility of identifying these ap-

plications, we ran each of them for 200 s on core 3 of our

setup (Section 5.1) and collected the temperature traces

Time (s)
0 50 100 150 200 250

 T
em

p
er

a
tu

re
 (
°
 C

)

25

30

35

40

RSA

BitCount

QSORT

BasicMath

ADPCM

Figure 9: Example Temperature Traces of Different

Applications. We used a set of five CPU intensive

applications (RSA decryption, BitCount, QSort, Basic-

Math, ADPCM) from a popular MiBench benchmark

suite [32]. We ran each application for 200 s separately

and recorded the resulting temperature traces on a neigh-

bouring core.

of a neighbouring core (core 2). We repeated this five

times for each of the applications and Figure 9 shows

one such trace for each of them. We observe that the sat-

uration temperature for the RSA decryption application

is higher than the rest.

We use simple correlation as a metric to measure sim-

ilarity/differences between pairs of applications. We first

correlated the traces from the RSA application. Since

there are 5 runs, we have 10 pairs to correlate. We ob-

serve that the correlation is higher than 85% in seven

out of ten occasions. Using this same correlation thresh-

old of 85% also results in 28% false positives when the

RSA application is correlated with the others from the

benchmark suite. In general, traces belonging to the

same application have high correlation values (≥ 80%).

However, traces belonging to different applications also

show high correlation because they are all CPU inten-

sive and stress similar parts of the CPU (≥ 75%). There-

fore, we conclude that using a simple correlation metric

would only allow distinguishing applications that behave

very differently. More sensitive metrics (such as ther-

mal models [60] or machine-learning based classifiers)

are required for better accuracy in other cases.

Finally, more fine-grained data exfiltration such as de-

ducing AES or RSA keys on commodity x86-systems

using the thermal side channel is an open, unexplored

problem. A key challenge is the limited resolution of the

temperature sensors which is ±1◦C and the rate at which

the sensors are refreshed (currently, once every 2 ms).

USENIX Association 24th USENIX Security Symposium 877

7 Discussion

In this section, we present possible countermeasures

against thermal channels and discuss their limitations.

We also discuss a potential security application for

thermal channels.

Countermeasures. Since we leveraged the tempera-

ture information exposed to software to construct ther-

mal channels, a natural solution to this problem would

be to restrict access to temperature sensors on the sys-

tem. However, such information cannot always remain

hidden. For example, centralised control and monitor-

ing of thermal states does not scale well with the ad-

vent of many-core processors [41]. Such processors con-

tain hundreds of cores and host a large number of au-

tonomous processes on separate cores. In fact, research

prototypes like Intel’s SCC platform [41] already allow

subsets of cores to administer their frequency and volt-

age independently for power-efficiency; temperature in-

formation is a vital input to this decision process. The

software at each core should track thermal information

to schedule intelligently and to detect if any of its threads

are misbehaving. Therefore, there is a tension between

securing platforms and improving their energy-efficiency

by exposing thermal data to software applications.

Even if one restricts access to the temperature sensors,

related parameters may still leak information about the

system’s thermal state. Examples of such parameters

are clock skew, fan speed and even processor frequency

in systems that allow dynamic frequency scaling. Since

all these parameters are usually common across cores

or subsets of cores within a processor chip, they can

still provide a signalling mechanism. Finally, while it

may be possible to separate processes temporally and

spatially to limit the effectiveness of thermal channels,

such resource allocation strategies are wasteful and

result in low resource utilisation.

Thermal Fingerprinting For Security. So far we dis-

cussed only how thermal behaviour of systems can be ex-

ploited by attackers. The same properties could be used

for achieving better security. Since temperature changes

resulting from computations are difficult to avoid, we hy-

pothesise that thermal profiling techniques can also be

used to detect any anomalous behaviour in the execution

of an application. More specifically, it is highly likely

that run-time compromise of an application results in a

temperature trace that does not match its original ther-

mal fingerprint. It has been shown to be possible to ex-

tract thermal models by monitoring the application under

controlled conditions [60, 61]. By comparing the actual

execution trace to the expected trace, it may be possible

to detect run-time compromise of software applications.

More generally, understanding the capacity of thermal

channels using information theory will help assess the

throughput of covert communication. Similarly, a the-

oretical estimation of the entropy of such channels will

help bound fingerprint accuracy and hence, side channel

leakage. A more detailed study along these lines is an

interesting direction for future work.

8 Related Work

We review previous work on covert and side channels

on x86 systems and on thermal channels in general.

We also provide examples of existing literature on

optimising computing systems for thermal efficiency

because it highlights the advantages of exposing thermal

data as opposed to the other work that misuses this data

to undermine security.

Thermal Channels and Attacks. There is no previous

work that demonstrates the feasibility of thermal covert

and side channels on commodity multi-core systems as

we do in this paper. Previously, two works discussed

and one implemented thermal covert channels on FPGA

boards [19, 38, 51]. There have also been attempts to

transmit data between two processes by changing fan-

speed [20]. The ability to remotely monitor a system’s

clock-skew (influenced by the changes in the system

temperature) has also been exploited in the past for ex-

posing anonymous servers [56, 75] and covert commu-

nication with a remote entity [74]. We note that although

some of these works [20, 74] use the term thermal chan-

nel, none of them use the thermal information available

on modern systems to covertly communicate between

processes on the same host as we do in this paper.

More recently, it has been shown that it is possible to

use temperature variations to induce processor faults [59]

which can in turn be also be used to extract sensitive in-

formation like RSA keys [37]. Thermal information can

also be used for coarse-grained data-exfiltration. For ex-

ample, since temperature directly reflects the intensity

of computation, it can be used to estimate the load or

resource utilisation of a machine. This was illustrated

by Liu et al. who computed the resource utilisation of

servers in Amazon’s EC2 using the temperature data that

is exposed to virtual machines [49].

Previous research has identified other security risks

that arise from hardware and software thermal manage-

ment techniques on modern systems. For example, mali-

cious processes may cause a denial-of-service by slowing

down the processor [33] or permanently damaging hard-

ware by causing thermal hotspots [27]. Such processes

could exploit the fact that certain architecture compo-

nents (e.g. instruction cache) are ignored by thermal op-

timisation approaches on processors [45].

878 24th USENIX Security Symposium USENIX Association

Covert and Side Channels on x86-Systems. Originally

defined by Lampson as part of the confinement prob-

lem [46], today, several covert channels have been iden-

tified and explored in the context of x86 systems. Covert

channels can be classified either as timing or storage

channels. Timing covert channels transmit information

in terms of the timing of certain events. Examples of

timing covert channels include cache-based and mem-

ory bus-based channels both of which were first demon-

strated by Hu [34, 35]. Wang et al. identify more timing

channels that arise out of processor extensions such as

multi-threading and speculative execution [68]. Wu et al.

achieve improved data rates on bus-based channels [71].

Covert timing channels that use other types of shared re-

sources like virtual memory deduplication [72] and input

devices such as keyboards [64] have also been studied.

In contrast to timing channels, storage channels rely

on the source writing the data (indirectly) into a shared

resource which the sink reads at a later point in time.

Lampson’s file system based covert channel [46] and

covert channels that exploit CPU registers (e.g. FPU reg-

isters that signal exceptions) [65] are examples of such

channels. Interestingly, certain types of covert channels

such as those based on the hard-disk [70] and processor

cache [22, 35] can be used to realise timing and storage

channels. We could classify the thermal covert channels

as storage channels because they use the CPU registers

to (indirectly) exchange information.

While covert channels rely on two colluding entities

for data exfiltration, side channels can be used to ex-

tract information from a unsuspecting victim without

any co-operation from it. Side channels can be clas-

sified as access-driven channels, trace-driven channels

and timing-driven channels. Access-driven side chan-

nels rely on a victim’s modifications to a shared resource

(e.g. cache) to extract sensitive information (e.g. AES

keys [76]). Trace-driven channels require measuring a

certain aspect of the system such as power (e.g. [43])

or electromagnetic emanations (e.g. [29]) continuously

as the victim executes. Finally, timing-based side chan-

nels measure the time consumed by sensitive opera-

tions (e.g. cryptographic functions) to extract informa-

tion (e.g. such as AES keys [17]). In general, side chan-

nels are used for cryptanalysis. Example attacks include

extraction of AES keys [11, 17, 42, 76], DES keys [58]

and RSA keys [22, 43, 44]. They can also be used

to extract more coarse-grained information such as co-

residency [63], existence of files [67], etc. The thermal

side channel can be viewed as a trace-driven side chan-

nel that continuously tracks temperature to identify the

computation at a neighbouring core.

One way to mitigate timing channels (both covert

and side channels) in general is to expose less accurate

timing information [34]. This technique is unlikely

to be effective against thermal channels because they

do not exploit timing information. Another general

approach against side and covert channels is to partition

system resources. This is for example used to mitigate

cache-based channels [68] and bus-based channels [31].

However, such partitioning techniques will not eliminate

temperature-based channels completely as demonstrated

in this paper.

Thermal Monitoring of Processors. Temperature man-

agement of computing systems has gained importance

over the last few years due to the increasing on-chip

temperatures of modern processors. This has resulted

in efforts to design and implement better thermal man-

agement techniques for processors. Examples include

optimisation of sensor placement (e.g. [53, 55]), im-

proving algorithms for dynamic temperature manage-

ment (e.g. [73]) and cooling techniques [25]. There are

also ongoing efforts to develop frameworks to thermally

profile applications [61], build temperature-aware sched-

ulers [24, 26] and micro-architectures [48, 66]. Thermal

profiling can further be used to detect compromised pro-

cess in embedded systems [69] and design schedulers

such that they do not leak information through thermal

fingerprints of applications [16].

9 Conclusion

In this paper, we demonstrated the feasibility and poten-

tial of thermal channels on commodity multi-core sys-

tems. We showed that such channels can be built by

exploiting the thermal behaviour of current platforms.

Thermal channels can be used to circumvent strong iso-

lation guarantees provided by temporal and spatial par-

titioning techniques. Our experiments indicate that it is

possible to use them for covert communication between

processes and achieve a throughput of up to 12.5 bps. We

also demonstrated that thermal channels can be exploited

to profile applications running on a neighbouring core.

Our work points to a limitation in the isolation guaran-

tees that resource partitioning techniques can provide.

Attacks based on thermal channels are further facil-

itated by the increasing trend towards exposing system

temperature information to users. This would enable

users to make thermal management decisions for effi-

cient system operation. This paper highlights the tension

between designing systems to support user-centric ther-

mal management for efficiency and security.

10 Acknowledgments

This work was carried out as a part of the SAFURE project,

funded by the European Union’s Horizon 2020 research

USENIX Association 24th USENIX Security Symposium 879

and innovation program under grant agreement number

644080. This work was partially supported by the Zurich

Information Security and Privacy Center. It represents

the views of the authors.

References

[1] CoreTemp. http://www.alcpu.com/CoreTemp/.

[2] CPU frequency and voltage scaling code in the Linux(TM)

kernel. https://www.kernel.org/doc/Documentation/

cpu-freq/governors.txt.

[3] CPU Monitoring With DTS/PECI. http:

//www.intel.com/content/www/us/en/

embedded/testing-and-validation/

cpu-monitoring-dts-peci-paper.html.

[4] CPU Sets. http://man7.org/linux/man-pages/man7/

cpuset.7.html.

[5] CPUBurn-in. http://manpages.ubuntu.com/manpages/

precise/man1/cpuburn.1.html.

[6] Hitachi Embedded Virtualisation Technology. http://www.

hitachi-america.us/supportingdocs/forbus/ssg/

pdfs/Hitachi_Datasheet_Virtage_3D_10-30-08.pdf.

[7] lstopo. http://manpages.ubuntu.com/manpages/

oneiric/man1/lstopo.1.html.

[8] Mersenne Prime Search. http://www.mersenne.org/.

[9] Open Hardware Monitor. http://openhardwaremonitor.

org/.

[10] SSL Library PolarSSL. https://polarssl.org.

[11] ACIIÇMEZ, O., SCHINDLER, W., AND KOÇ, C. Cache based

remote timing attack on the aes. In Topics in Cryptology — CT-

RSA. 2007.

[12] ADAPTEVA. Ephiphany Multicore IP. http:

//www.adapteva.com/products/epiphany-ip/

epiphany-architecture-ip/.

[13] ADVANCED MICRO DEVICES. Cool and Quiet Technology

Installation Guide for AMD Athlon 64 Processor Based Sys-

tems. http://www.amd.com/Documents/Cool_N_Quiet_

Installation_Guide3.pdf.

[14] AMIT DANIEL, VINCENT GUITTOT, R. L. A Simplified Ther-

mal Framework for ARM Platforms.

[15] ARM. Building a Secure System using TrustZone Technology.

http://www.arm.com, 2009.

[16] BAO, C., AND SRIVASTAVA, A. A Secure Algorithm for Task

Scheduling Against Side-channel Attacks. In Workshop on Trust-

worthy Embedded Devices (2014), TrustED ’14.

[17] BERNSTEIN, D. J. Cache-timing Attacks on AES.

http://palms.ee.princeton.edu/system/files/

Cache-timing+attacks+on+AES.pdf, 2005.

[18] BOSE, R. C., AND RAY-CHAUDHURI, D. K. On a Class of Error

Correcting Binary Group Codes. Information and control.

[19] BROUCHIER, J., DABBOUS, N., KEAN, T., MARSH, C., AND

NACCACHE, D. Thermocommunication, 2009.

[20] BROUCHIER, J., KEAN, T., MARSH, C., AND NACCACHE, D.

Temperature Attacks. Security Privacy, IEEE (2009).

[21] BROWN, L., AND SESHADRI, H. Cool Hand Linux* Handheld

Thermal Extensions. In Linux Symposium (2007).

[22] BRUMLEY, D., AND BONEH, D. Remote timing attacks are prac-

tical. In Proceedings of the USENIX Security Symposium (2003),

USENIX-SS ’03.

[23] BUERKI, R., AND RUEEGSEGGER, A.-K. Muen-an x86/64 sep-

aration kernel for high assurance. http://muen.codelabs.

ch/muen-report.pdf, 2013.

[24] CHOI, J., CHER, C.-Y., FRANKE, H., HAMANN, H., WEGER,

A., AND BOSE, P. Thermally-Aware Task Scheduling at the Sys-

tem Software Level. In Symposium on Low Power Electronics

and Design (2007), ISLPED ’07.

[25] CHU, R. C., SIMONS, R. E., ELLSWORTH, M. J., SCHMIDT,

R. R., AND COZZOLINO, V. Review of Cooling Technologies for

Computer Products. IEEE Transactions on Device and Materials

Reliability (2004).

[26] COSKUN, A. K., ROSING, T. S., WHISNANT, K. A., AND

GROSS, K. C. Static and Dynamic Temperature-aware Schedul-

ing for Multiprocessor SoCs. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems (2008).

[27] DADVAR, P., AND SKADRON, K. Potential Thermal Security

Risks. In Semiconductor Thermal Measurement and Manage-

ment Symposium (2005).

[28] DONALD, J., AND MARTONOSI, M. Techniques for Multi-

core Thermal Management: Classification and New Exploration.

In International Symposium on Computer Architecture (2006),

ISCA ’06.

[29] GANDOLFI, K., MOURTEL, C., AND OLIVIER, F. Electromag-

netic analysis: Concrete results. In Cryptographic Hardware and

Embedded Systems, CHES ’01. 2001.

[30] GLIGOR, V. A guide to understanding covert channel analysis of

trusted systems. Tech. rep., DTIC Document, 1993.

[31] GUNDU, A., SREEKUMAR, G., SHAFIEE, A., PUGSLEY, S.,

JAIN, H., BALASUBRAMONIAN, R., AND TIWARI, M. Memory

Bandwidth Reservation in the Cloud to Avoid Information Leak-

age in the Memory Controller. In Workshop on Hardware and Ar-

chitectural Support for Security and Privacy (2014), HASP ’14.

[32] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,

T. M., MUDGE, T., AND BROWN, R. B. MiBench: A free, com-

mercially representative embedded benchmark suite. In Work-

shop on Workload Characterization (2001), WWC ’01.

[33] HASAN, J., JALOTE, A., VIJAYKUMAR, T., AND BRODLEY, C.

Heat stroke: Power-density-based Denial of Service in SMT. In

Symposium on High-Performance Computer Architecture (2005),

HPCA’05.

[34] HU, W.-M. Reducing Timing Channels With Fuzzy Time. In

Research in Security and Privacy (1991).

[35] HU, W.-M. Lattice Scheduling and Covert Channels. In Re-

search in Security and Privacy (1992).

[36] HUANG, W., GHOSH, S., VELUSAMY, S., SANKARA-

NARAYANAN, K., SKADRON, K., AND STAN, M. HotSpot: A

Compact Thermal Modeling Methodology for Early-stage VLSI

Design. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems (2006).

[37] HUTTER, M., AND SCHMIDT, J.-M. The Temperature Side

Channel and Heating Fault Attacks. IACR Cryptology ePrint

Archive (2014).

[38] IAKYMCHUK, T., NIKODEM, M., AND KEPA, K. Temperature-

based Covert Channel in FPGA Systems. In Workshop on Recon-

figurable Communication-centric Systems-on-Chip (ReCoSoC)

(2011).

[39] INTEL CORPORATION. Intel SpeedStep FAQ. http:

//www.intel.com/support/processors/sb/CS-032349.

htm?wapkw=intel+speedstep.

[40] INTEL CORPORATION. Intel Trusted Execu-

tion Technology Measured Launched Environ-

ment Programming Guide. http://www.intel.

eu/content/www/eu/en/software-developers/

intel-txt-software-development-guide.html.

880 24th USENIX Security Symposium USENIX Association

[41] INTEL CORPORATION. SCC External Architecture Speci-

fication. https://communities.intel.com/servlet/

JiveServlet/previewBody/5852-102-1-9012/SCC_EAS.

pdf.

[42] IRAZOQUI, G., INCI, M., EISENBARTH, T., AND SUNAR, B.

Wait a Minute! A Fast, Cross-VM Attack on AES. In Research

in Attacks, Intrusions and Defenses (2014), RAID’14.

[43] KOCHER, P., JAFFE, J., AND JUN, B. Differential power analy-

sis. In Advances in Cryptology (1999), CRYPTO ’99.

[44] KOCHER, P. C. Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems. In Advances in Cryp-

tology (1996), CRYPTO’96.

[45] KONG, J., JOHN, J., CHUNG, E.-Y., CHUNG, S. W., AND HU,

J. On the Thermal Attack in Instruction Caches. IEEE Transac-

tions on Dependable and Secure Computing (2010).

[46] LAMPSON, B. W. A Note on the Confinement Problem. Com-

mun. ACM (1973).

[47] LEE, K.-J., SKADRON, K., AND HUANG, W. Analytical Model

for Sensor Placement on Microprocessors. In International Con-

ference on Computer Design: VLSI in Computers and Processors

(2005), ICCD ’05.

[48] LIM, C. H., DAASCH, W. R., AND CAI, G. A Thermal-

Aware Superscalar Microprocessor. In International Symposium

on Quality Electronic Design (2002).

[49] LIU, H. A Measurement Study of Server Utilization in Public

Clouds. In 2011 IEEE Ninth International Conference on De-

pendable, Autonomic and Secure Computing (2011), DASC ’11.

[50] MARFORIO, C., RITZDORF, H., FRANCILLON, A., AND CAP-

KUN, S. Analysis of the Communication Between Colluding Ap-

plications on Modern Smartphones. In Computer Security Appli-

cations Conference (2012), ACSAC ’12.

[51] MARSH, C., AND MCLAREN, D. Poster: Temperature side

channels. In Workshop on Cryptographic Hardware and Embed-

ded Systems (2007), CHES’07.

[52] MCKEEN, F., ALEXANDROVICH, I., BERENZON, A., ROZAS,

C. V., SHAFI, H., SHANBHOGUE, V., AND SAVAGAONKAR,

U. R. Innovative Instructions and Software Model for Isolated

Execution. In Workshop on Hardware and Architectural Support

for Security and Privacy (2013), HASP’13.

[53] MEMIK, S. O., MUKHERJEE, R., NI, M., AND LONG, J. Op-

timizing Thermal Sensor Allocation for Microprocessors. IEEE

Transactions on Computer-Aided Design of Integrated Circuits

and Systems (2008).

[54] MILEVA, A., AND PANAJOTOV, B. Covert channels in TCP/IP

protocol stack - extended version. Central European Journal of

Computer Science (2014).

[55] MUKHERJEE, R., AND MEMIK, S. O. Systematic Temperature

Sensor Allocation and Placement for Microprocessors. In Design

Automation Conference (2006), DAC ’06.

[56] MURDOCH, S. J. Hot or Not: Revealing Hidden Services by

Their Clock Skew. In Computer and Communications Security

(2006), CCS ’06.

[57] NOORMAN, J., AGTEN, P., DANIELS, W., STRACKX, R.,

VAN HERREWEGE, A., HUYGENS, C., PRENEEL, B., VER-

BAUWHEDE, I., AND PIESSENS, F. Sancus: Low-cost Trustwor-

thy Extensible Networked Devices with a Zero-software Trusted

Computing Base. In USENIX Conference on Security (2013),

USENIX-SS ’13.

[58] PAGE, D. Theoretical Use of Cache Memory as a Cryptanalytic

Side-Channel. https://eprint.iacr.org/2002/169.pdf.

[59] RAHIMI, A., BENINI, L., AND GUPTA, R. Analysis of

Instruction-Level Vulnerability to Dynamic Voltage and Temper-

ature Variations. In Design, Automation Test in Europe Confer-

ence Exhibition (2012), DATE’12.

[60] RAI, D., AND THIELE, L. A Calibration Based Thermal Mod-

eling Technique for Complex Multicore Systems. In Design, Au-

tomation Test in Europe Conference Exhibition (2015), DATE’15.

[61] RAI, D., YANG, H., BACIVAROV, I., AND THIELE, L. Power

Agnostic Technique for Efficient Temperature Estimation of Mul-

ticore Embedded Systems. In Compilers, Architectures and Syn-

thesis for Embedded Systems (2012), CASES ’12.

[62] REED, I. S., AND SOLOMON, G. Polynomial codes over certain

finite fields. Journal of the Society for Industrial and Applied

Mathematics (1960).

[63] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,

S. Hey, you, get off of my cloud: Exploring Information Leakage

in Third-party Compute Clouds. In Computer and Communica-

tions Security (2009), CCS’09.

[64] SHAH, G., MOLINA, A., AND BLAZE, M. Keyboards and

Covert Channels. In USENIX Security Symposium (2006),

USENIX-SS’06.

[65] SIBERT, O., PORRAS, P., AND LINDELL, R. An Analysis of the

Intel 80x86 Security Architecture and Implementations. Software

Engineering, IEEE Transactions on (1996).

[66] SKADRON, K., STAN, M. R., HUANG, W., VELUSAMY, S.,

SANKARANARAYANAN, K., AND TARJAN, D. Temperature-

aware Microarchitecture. SIGARCH Comput. Archit. News

(2003).

[67] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Memory

Deduplication As a Threat to the Guest OS. In European Work-

shop on System Security (2011), EUROSEC ’11.

[68] WANG, Z., AND LEE, R. Covert and Side Channels Due to Pro-

cessor Architecture. In Computer Security Applications Confer-

ence (2006), ACSAC ’06.

[69] WOLF, T., MAO, S., KUMAR, D., DATTA, B., BURLESON,

W., AND GOGNIAT, G. Collaborative Monitors for Embed-

ded System Security. https://hal.archives-ouvertes.

fr/hal-00089605, 2006.

[70] WRAY, J. An Analysis of Covert Timing Channels. In Research

in Security and Privacy (1991).

[71] WU, Z., XU, Z., AND WANG, H. Whispers in the Hyper-space:

High-speed Covert Channel Attacks in the Cloud. In USENIX

Security Symposium (2012), Usenix-SS ’12.

[72] XIAO, J., XU, Z., HUANG, H., AND WANG, H. Security Impli-

cations of Memory Deduplication in a Virtualized Environment.

In Dependable Systems and Networks (2013), DSN’13.

[73] YEO, I., LIU, C. C., AND KIM, E. J. Predictive Dynamic Ther-

mal Management for Multicore Systems. In Design Automation

Conference (2008), DAC ’08.

[74] ZANDER, S., BRANCH, P., AND ARMITAGE, G. Capacity of

Temperature-Based Covert Channels. Communications Letters,

IEEE (2011).

[75] ZANDER, S., AND MURDOCH, S. J. An Improved Clock-

skew Measurement Technique for Revealing Hidden Services. In

USENIX Security Symposium (2008), USENIX-SS’08.

[76] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.

Cross-VM Side Channels and Their Use to Extract Private Keys.

In Computer and Communications Security (2012), CCS ’12.

