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Abstract 

The thermal decomposition reaction of benzaldehyde diperoxide (DFT; 0.001 mol L-1) in nitromethane solution 

studied in the temperature range of 130.0-166.0 °C, follows a first-order kinetic law up to at least 60% DFT 

conversion. The organic products observed were benzaldheyde and benzoic acid. A stepwise mechanism of 

decomposition was proposed where the first step is the homolytic unimolecular rupture of the O-O bond. The 

activation enthalpy and activation entropy for DFT in nitromethane were calculated (H# = 106.3 ± 1.0 kJ mol-1 

and S# = -58.6 ± 1.1 J mol-1K-1) and compared with those obtained in other solvents to evaluate the solvent 

effect. 
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1. Introduction  

Organic peroxides are compounds that have great importance in numerous combustion reactions and 

important industrial applications such as polymerization initiators, bleaches, disinfectants, antimalaric, etc. [1,2] 

The kinetic and mechanistic studies corresponding to the thermolysis in solution of cyclic organic diperoxides 

and the comparisons between them that arise, have been the initial objective of this research group.[3,4] 

However, in recent years the application of this type of compounds as preemergent herbicides has been of 

great interest. [5] 

Tetroxanes are thermally decomposed through a mechanism of reactions in stages, in which the speed 

determining stage is assigned to the unimolecular homology of the peroxide bond. The dissociation energy 

determined for the OO rupture of different peroxy compounds is close to 45 kcal / mol [6], however, the value 

of this energy can be affected by steric effects caused by the different ring substituents [7] or by the change in 

physicochemical properties of the solvent used to carry out the kinetic studies [8,9].  

In this work we present the thermal decomposition reaction of a member of the group, 3,6-diphenyl-1,2,4,5-

tetroxane (benzaldehyde diperoxide,DFT), in a aprotic polar solvent, like the nitromethane and we compared it 

with other studied solvents that present different physicochemical properties, for observe the effect of solvent. 

2. Materials and Methods 

2.1. Synthesis of benzaldehyde diperoxide 

DFT was prepared by dissolving 7.2 mL of benzaldehyde mark Flucka (8.85 mmol) in 20 mL absolute ethanol 

brand Merk. It was added to a vigorously stirred mixture of 2.3 mL of hydrogen peroxide (9.45 mmol), 50 mL 

of sulfuric acid (90% V / V) and 35 mL of ethanol. After stirring the mixture for 2 hours at -20 ° C, centrifuged 

and washed with distilled water (0°C) until the excess of acid was removed. The white solid obtained (crude 

product 75%) was recrystallized from boiling chloroform. Absorption bands obtained by FTIR spectroscopy 

(KBr): 1) 3107.6 (s) cm-1 2) 3095.0 (s) cm-1 3) 3032.1 (m) cm-1 4) 2961.8 (m) cm-1 May ) 1766.8 (m) cm-1 6) 1604.0 

(s) cm-1 7) 1597.0 (s) cm-1 8) 1491.9 (vs) cm-1 9) 1457.1 (s) cm-1 10) 1416.8 (m) cm-1 11) 1397.3 (m) cm-1 12) 
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1271.8 (s) cm-1 13) 1229.9 (m) cm-1 14) 1197.0 (m) cm-1 15) 1080.2 (m) 1.16 (m) 997.5 (s) cm-1 17) 973.2 (s) cm-

1 18) 896.6 (s) cm-1 19) 842.4 (s) cm-1 20) 685.5 (s) cm-1 21) 668.5 (s) cm-1. 

2.2. Solvents 

Nitromethane used as solvent and n-octane (internal standard) were purified according to appropriate 

techniques and their purity controlled by GC.  

2.3. Kinetic method 

Pyrex tubes closed at one end (7 cm long x 4 mm ID) were loaded with ca. 0.5 mL of the DFT solution in the 

nitromethane solvent, some sealed in the presence of oxygen with the flame of a torch and others 

conveniently degassed in the vacuum line (-196ºC) and closed in the same way. These ampoules were 

immersed in a thermostated silicone oil bath (± 0.1ºC) at the chosen temperature, extracted at conveniently 

determined times and stopping the decomposition of the DFT at 0ºC, in an ice and water bath. 

The first-order kexp values were calculated by the least-squares method as the slope of the determined line 

when ln [DFT] is plotted against time. Using the Arrhenius equation, the effect of the temperature on the kexp 

was analyzed and the activation energy and the corresponding preexponential factor were calculated. The 

activation parameters (H# and S#) were calculated using the Eyring representation: 

𝑙𝑛
𝑘𝑒𝑥𝑝

𝑇
= 𝑙𝑛

𝑘𝐵

ℎ
+

∆𝑆#

𝑅
−

∆𝐻#

𝑅𝑇
 

Where kB is the Boltzman constant, h is Planck´s constant, T is the temperature in K, H# is the activation 

enthalpy and S# activation entropy. 

• The quantitative determinations of the remaining DFT in the pyrolyzed solutions, the quantification of the 

benzaldehyde and the qualitative determination of other formed products (benzoic acid, 1,1`-biphenyl) were 

determined by GC using the internal standard method (n-octane). An Agilent gas chromatograph, model 7890 

A, equipped with FID detector, filled column type HP5 ((5%-Phenyl)-methylpolysiloxane) was used and 

nitrogen was used as carrier gas.  

The injector operated in the split mode at 155ºC and the flame ionozation detector at 300ºC, with nitrogen as 

the make-up gas (40 mL min-1). The oven temperature was initially maintaining at 50°C for 2 min and then 

programmed increasing the temperature at a rate of 30°C per minute until reaching a final temperature of 

190°C that was maintained for 15 min. Under these experimental conditions, the retention time of DFT was 9 

min. 

3. Results and Discussion 

The decomposition of the DFT has been studied in nitromethane solution, in the temperature range of 130.0 - 

166.0ºC and initial concentrations of 0.001 mol L-1. The thermolysis of the DFT in nitromethane complies with a 

kinetic law of first order until conversions of the peroxide of ca. 60 percent. Although at low concentrations of 

the DFT the effects of decomposition secondary reactions induced by free radicals originated in the reaction 

medium, can be considered minimal or negligible, some experiences were performed in the presence of 

oxygen. 

The results obtained indicate that there are practically no differences in the values of the rate constants (Table 

1) when the oxygen is present or when it was removed from the medium, which would indicate that the 

generated free radicals do not induce the decomposition of the DFT. In order to corroborate that the 

calculated rate constants do not include a contribution of reactions induced by radical species derived from 

peroxide, the effect of the concentration of DFT on the value of kexp at 150ºC was investigated (Table 1). 
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Because of the low solubility of the DFT in nitromethane, the highest concentration prepared was ca. 0.01 mol 

L-1, observing that there is no effect of the concentration on the reaction rate. 

Table 1. 

To observe the effect of temperature on the velocity constant we have used the arrhenius equation: 

ln 𝑘𝑒𝑥𝑝 =  (23.72 ∓ 1.00) −
(13255,00 ∓ 1.00)

𝑇
 

The corresponding plot is linear (r = 0.999) over a relatively wide temperature range ( 36ºC); therefore, the 

calculated activation parameters for DFT reaction in nitromethane solution belong to a single process which 

could be unimolecular homolysis. The results of density functional calculations with full geometry optimization  

also supported the stepwise mechanism of formaldehyde diperoxide and the methyl diperoxide 

decomposition through intermediate diradical species. [9, 10] 

The values of the activation parameters (ΔH#=102.9 ± 1 kJ mol-1 and ΔS#= -49.8 ± 1.1 J mol-1 K-1) were 

determined using the Eyring equation, whose graphical representation is linear (r2= 0.9990) in the temperature 

range ( 36ºC). the negative value of ΔS# observed (Table 2) reflects the decrease that occurs in the degrees of 

freedom of the molecules of the DFT reagent when passing to a rather rigid «transition state». This allows to 

suppose that its thermolysis takes place with rupture of a peroxidic bond of the molecule assisted by the 

nitromethane solvent, where it could form, for example, hydrogen bonds with the peroxygen oxygen atoms. 

Obviously, nitromethane in the thermolysis of DFT has an intermediate behavior among the other solvents 

studied so far (Table 2). 

In previous studies, it has been found that kexp values obtained from the kinetic determinations in some 

solvents with different physicochemical properties are sentsitive to an increase in solvent polarity. When 

studying the effects of solvent on the thermolysis reaction rate of the DFT, it is not sufficient to consider only 

the change in the activation free energy (ΔG#) corresponding, since it is determined by the contributions of 

the enthalpy and entropy terms, being  linear the correlation between both parameters for that series of 

reactions in particular. 

The linearity of the graphical representation of the Isokinetic Ratio according to Leffler's criterion, ΔH# vs. ΔS# 

(r = 0.989) would confirm the enthalpy-entropy compensation also known as the "compensation effect", 

defining for the DFT studied, the existence of a genuine "series of reactions" in the different solvents. 

The correct interpretation should be that ΔG# is approximately constant within the reaction series and, from it, 

a mathematically necessary correlation arises between ΔH# and ΔS#. Therefore, the representations of enthalpy 

variation versus entropy variation may have a meaning, but in reality, they can only express the trivial fact that 

ΔG# is approximately constant. The slope of the graph gives us the value of the Isokinetic temperature for that 

series of reactions, which is β = 428 K, included within the experimental work range. From a physical point of 

view, it is the temperature at which in all the solvents the thermal decomposition reaction of DFT would 

proceed at the same speed. (Figure 1) 

Table 2 

Figure 1.  

Another point of view according to the criterion of Exner, it is observed that there is a point of intersection 

between three of the studied solvents, the straight lines are cut within the range of experimental 

temperatures, making it possible to apply the statistical treatment to determine the value of β = 458 K, close 

to that obtained according to the previous treatment. (Figure 2) 
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Figure 2.  

It is evident that the reaction of thermal decomposition of the DFT is affected by different mechanisms of 

solute / solvent interaction due to its physicochemical characteristics, in this case Acetonitrile does not meet 

this criterion. 

Regarding the analysis of the reaction products, the formation of benzaldehyde as the main product could be 

verified, expressing the results by means of the relationship: 

molar aldehyde yield = moles of aldehyde formed / moles of decomposed DFT 

If the DFT molecule produces in its thermolysis exclusively aldehyde and oxygen, as it is proposed in the 

reaction pathways mentioned this work, the molar yield of aldehyde should be 2. However, the values 

(comprised between 0.9 - 1.0, which can be reached if the kinetics is allowed to run out until the DFT is 

depleted, at a value of 1.6 at the lowest temperatures of 130 ° and 140 ° C, to rule out the possibility of a 

single path of decomposition of the intermediary biradical. On the other hand, this also supports the 

postulated decomposition mechanism. 

The identification of the products obtained in the thermolysis reaction of the DFT, allows to postulate for its 

thermal decomposition in solution, a mechanism in stages initiated by the homolytic breakdown of the OO 

bond of the molecule, with the formation of the corresponding intermediate biradical as can be seen in the 

following scheme (Scheme 1)  
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Scheme 1. Rupture of the peroxidic bond (O-O). 

In this first stage the biradical generated remains transiently enclosed in an environment of molecules of the 

solvent commonly known as "reaction box". It is possible that the biradical can recombine to give the cyclic 

peroxide again, before diffusion occurs from the reaction box. However, this process is very fast, so it is 

accepted that the initial stage of formation of the biradical would then be the determinant of the speed of the 

reaction. Later this species will suffer C-C or C-O ruptures originating the products observed for each 

particular system. 

This behavior is comparable to that observed in other 1,2,4,5-tetroxanes and it is logical, taking into account 

that the dissociation energy of the O-O bond is considerably lower than the energies corresponding to the 

remaining bonds C-O, C-C or C-H. 

4. Conclusions 

The thermal decomposition of DFT in nitromethane solution follows a pseudo-first order kinetic law until a 

conversion of 60%. The rate constant values are higher for reactions performed in protic polar solvent because 

of the formation of hydrogen bonds with the peroxidic bond contributes to the fast decomposition reaction. 

The nitromethane is an aprotic polar solvent with a high characteristic polarity that can help break the O-O 

bond.  
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The kinetics of the thermal decomposition of the DFT is affected by the nature of the solvent used as a 

reaction medium, which is checked in the well-marked values of the activation parameters. 

A reaction mechanism is proposed based on the analysis of the reaction products, whereby the initial step 

involves the formation of a diradical intermediate via rupture homolytic of the O-O bond. 
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