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Abstract 
The ignition and flame initiation in a gaseous reacting mixture subject to a 
local source of thermal energy is analysed by means of large activation energy 
asymptotics. The ignition transient is assumed to be long enough for heat 
conduction to be the dominant cooling mechanism. We show the existence of 
a critical value of the Damkohler number, defined as the ratio of appropriate 
characteristic times of conduction and chemical reaction, such that ignition 
only occurs for supercritical values. Additional conditions are required to 
ensure self-propagation of a flame after ignition. These are obtained, with the 
thermal-diffusive model, for a source of energy represented by an instantaneous 
point, line or planar source. The analysis, involving an unsteady free-boundary 
problem, shows that the initial flame kernel evolves to a self-propagating flame 
only if the energy released by the source is greater than a critical value. 

1. Introduction 

A gaseous reacting mixture can be ignited by a localized deposition of energy that raises 
the temperature in a small region of the gas, where the times required for the typical reactions 
occurring in combustion are strongly decreased, since their rates grow greatly with temperature. 
For ignition to be successful, the rate of chemical heat release must exceed the rate of cooling 
of the hot spot by either expansion waves or heat conduction. 

The first mechanism, associated with fast ignition events, was analysed in a companion 
paper [16]. In that case the characteristic times of external heating and chemical reaction were 
short enough to be comparable to the time required by the acoustic waves to travel across the 
hot spot. For subcritical values of the ratio of the acoustic and reaction times, the cooling 
effects associated with the expansion waves lower rapidly the temperature in the hot spot. 
The peak temperature decreases, in a time of the order of the acoustic time, from the peak 
value Tm, resulting from the external heat release, to a lower value T/n, which leads to a much 
larger ignition time. 



In this paper we shall consider the diffusive ignition, in which, after the deposition of 
energy, the cooling associated with heat conduction across the hot spot, with a characteristic 
time tc, competes with the chemical heat release, with a characteristic time iCh determined 
by the maximum temperature at the hot spot, to define the conditions for ignition. The heat 
conduction time is much larger than the acoustic time, ia, since the ratio fa//c is also the 
Knudsen number, the ratio of the mean free path to the size of the hot spot, which is typically 
very small compared with unity. In this slow, diffusive regime we find ignition at times of order 
?Ch if the Damkohler number, tc/tch, is larger than a critical value; i.e. if the conductive heat 
losses from the hot spot to the surroundings are overcome by the heat released by the chemical 
reaction. Although this ignition problem has already been treated by Berman et al [1], it will 
be revisited in section 2, with the aim of clarifying the model, completing their results and 
introducing the flame initiation problem. 

After the thermal runaway, which defines the ignition time, the limiting reactant is rapidly 
depleted in the core of the hot spot; see Dold [5]. However, the achievement of ignition does 
not guarantee the formation of a self-sustained travelling combustion front, detonation or 
deflagration, which requires additional conditions. Thus, in the nondiffusive regime, Short [14] 
has derived the critical conditions leading to a ZND detonation in a reactive mixture subject to 
small disturbances; He and Clavin [8] and Eckett [6] have calculated the minimum energy to 
be released by an instantaneous point source in order to develop a detonation wave. When, in 
the diffusive regime, we consider heated spots with a size large compared with the thickness 
of the planar flame, we may expect that the conditions for ignition will also ensure flame 
propagation. The energy required for ignition will increase with the size of the hot spot, 
so that if we reduce this size, to minimize the ignition energy, to values smaller than the flame 
thickness, we may not succeed in establishing a flame unless we use energies much larger than 
those required for ignition by hot spots of small size. 

A full detailed analysis of the transition from diffusive ignition to a self-propagating 
flame, similar to that of Kapila [11], appears to be very involved if we want to account for 
initial perturbations of arbitrary amplitude, because the process will be strongly dependent 
on the specific initial conditions. But if we are mainly concerned with the determination of 
the minimum energy for flame generation, we can consider a simpler approach, close to that 
of [6,8], assuming that the initial energy is released by an instantaneous point source. In this 
case the high temperatures at the very beginning after the deposition of energy, represented by 
the mathematical singularity of the temperature distribution, produce, for Arrhenius reactions, 
the instantaneous ignition of the mixture and the appearance of a combustion front. Thus, the 
problem is reduced to the analysis of the dynamics of the front. 

For point-source initiation the steady flame-ball solution of Zel'dovich etal [17], although 
unstable, plays an important role. Without the effects of the heated core, we can expect that 
flames with a radius larger than the Zel'dovich radius, which depends on the Lewis number, 
grow and those with a lower radius collapse. The Zel'dovich flame-ball concept can be used 
to analyse the spherical flame initiation, which will be successful only if the flame kernel, 
established by the released energy, reaches a radius larger than the critical radius. Joulin [9] (see 
also [2-4,10]) assumes that the characteristic time for the evolution of the kernel is determined 
by the time for spontaneous evolution of a flame around the equilibrium state. For light reactants 
this time is very large, and the flow field can be divided into two regions: a quasi-steady near-
field, where the main structure of the flame is located, and an unsteady far-field. The matching 
between both leads to an evolution equation for the flame radius. Numerical experiments with 
this model allow one to obtain critical conditions for noninstantaneous sources. 

Recently, He [7] has considered a different approach in which the flame-ball does not play a 
central role, focusing the analysis on the critical conditions for the existence of a self-sustained 



expanding flame. Using a quasi-steady model, He shows that for mixtures with large Lewis 
numbers such a flame can only exist if its radius is larger than a critical radius, which is 
smaller than the corresponding flame-ball radius (for small Lewis numbers critical and flame-
ball radius are the same). To obtain a successful initiation the external energy source must 
sustain the expanding flame kernel until it reaches the critical radius, from which the flame 
will self-propagate. For the quasi-steady model to be consistent the duration of the energy 
source must be very long, which limits the scope of the analysis. 

The flame initiation problem will be considered in section 3, in the frame of the thermal-
diffusive model, but without restricting ourselves to a quasi-steady description. As a result we 
shall find the critical energy for successful flame initiation for a symmetrical (planar, line or 
point) configuration of the source and arbitrary Lewis numbers close to unity. 

2. Diffusive, or slow ignition, regime 

Let us consider a gaseous reacting mixture of two reactants, F and O, diluted in an inert gas 
at the initial conditions po. Po and To. This uniform state is perturbed by the addition of an 
amount of energy, Q(r, t) per unit volume and time, in a domain of characteristic length /v We 
assume that the energy addition takes place during a finite time interval te large compared with 
the acoustic time t'a = rh/^/yRTo/M, where R/M is the gas constant, but short compared 
with both the homogeneous ignition time evaluated at the maximum temperature resulting 
from the energy addition and the conduction time t'c = r^/Dr, where Dr is the initial value 
of the thermal diffusivity. Therefore, when describing the ignition process, which involves 
the timescale t'c, the energy deposition appears to take place instantaneously without chemical 
reaction effects. Since t'a <gC re <SC t'c, after the external energy deposition the gas conditions 
are given by 

U « t «t'Q: T = Th(r), p = p0, p = ^ ( r ) , (1) 

where Ph = poM/RT^. The temperature distribution, Th(r), after the energy addition can be 
numerically calculated as a function of Q(r, t). In our analysis of the ignition stage we shall 
consider Tb(r) as a given symmetrical, bell-shaped function of r, with the scale rh such that 
Th/To — 1 -*• 0 as r/rt¡ ->• oo. Th has its maximum value Tm = Th(0) at r = 0. 

The chemical reaction between fuel and oxidizer is modelled by a single reaction 
F + sO —> P +q, where s and q stand for the mass of oxidizer consumed and heat released, 
respectively, per unit mass of fuel. The fuel consumption rate is given by an Arrhenius law, 
with activation energy E much larger than the thermal energy RT, written in the form 

w = pY^YZ°Be-E/RT, (2) 

where Yp and YQ are the mass fractions of fuel and oxidizer, «p and «o are the reaction orders, 
and B is the pre-exponential factor. 

Therefore, the equations describing the ignition and symmetrical flame propagation 
process take the following form: 

po = pTR/M, (3) 

| = - * L ( r V ) . (4) 

DT 1 3 / , . dT\ 
PC"~D¡ = rlYr{

rkj;)+qW (5) 



P-=— = 7 7 - ( r ' p D v — - - w, (6) 
Z5i W 3r V 3r 

7>F0 1 3 / j _ 9*o\ ,-, 
P—— = — — r JpD0 — \-sw, (7) 

Z)i r^ or \ dr J 

where D/Dt = d/dt + ud/dr is the material derivative. In the symmetrical form of these 
equations we have not included the momentum equation. This is used to estimate the order, 
Po(/h/ic)2' of the spatial pressure variations, which are very small compared with po, allowing 
us to simplify the equation of state to the form (3). We shall consider the mean molecular 
mass M to be constant. We have used Fick's law to calculate the diffusion fluxes, with mass 
diffusion coefficients DF and D0 of fuel and oxidizer, respectively. We also assume that DF 

and Do, the specific heat cp and the thermal conductivity k to be constant. These equations 
must be supplemented with the following initial and boundary conditions: 

t = 0: T - Th = YF - yF,0 = YQ - YOt0 = 0, (8) 

dT dYF dY0 r = 0: u = — = = = 0, (9) 
dr dr dr 

r -> 00: T - 7b = 7F - yF,0 = Y0- y0,o - 0. (10) 

In absence of diffusion and heat conduction effects, the chemical reaction would produce 
a thermal runaway at a time iR defined by tR(r) = (cpRT¿(r)/qEBY^0Yo

r°0)e
E/RTb(r). Its 

minimum value is ích = ÍR(0), given by 

^^J^*"'6™ (H) 
c £ ' /

F , 0 ' i O , 0 

much shorter than the value íoo = ÍR(OO), associated with the initial temperature 7b. Notice that 
the conditions far from the hot spot are time dependent due to the reaction which takes place 
homogeneously and could result in a self-ignition time t^/y = (CVRTQ /q EBYF

,T
0Yo

lo
0)e

E/RT°. 
However, t^ is exponentially large compared with ich if the Zel'dovich number holds 
E(Tm — To)/RT^ ^> 1, which allows us to consider (10) as the appropriate boundary conditions 
at r —> 00 during the ignition period. 

The homogeneous chemical time, ÍR, is of order fCh only in the Frank-Kamenetskii region, 
located at the centre of the hot spot, where Th(r) - Tm ~ RT*/E «. Tm if e = RTm/E «. 1. 
In this region the chemical reaction will produce changes in temperature of order RT^/E at 
times of order t^. Outside the Frank-Kamenetskii region the temperature is lower and the 
reaction appears to be frozen at times t ~ /Ch-

If we admit that the hot spot produced by the external energy release is not flat at the 
centre, we can define the characteristic size r^ in terms of the curvature of the initial profile 
as r\ = — 2Tm/(d27h/dr2),.=o. The characteristic size of the Frank-Kamenetskii region, rc, 
is then given by rc = -Jer^, so that the initial temperature in the core region of the hot spot 
is given by Tb = Tm(l — e(r/rc)

2). For small times compared with t'c and r ~ rc the inert 
temperature, given by the solution of the problem (3)—(10) with B — 0, reads 

-(-) - 2(1+./)(-V (12) 
£ ' m \ fe / \ K . 

where ic = r^/DT is the conduction time through the Frank-Kamenetskii region, required 
to decrease the inert temperature by an amount of order eTm. If fch ^> tc, the heat released 
by the source is conducted outside the core of the hot spot, and the chemical reaction will be 
frozen without significant thermal effects. Hence, ignition will not occur at times of order tc. 



Conversely, if ích <5C íc, ignition occurs at a time t = ich before conductive losses of energy 
appear. Finally, if íCh ~ tc there is a competition between heat conduction and chemical 
reaction and we will find an ignition event for values of the Damkohler number 

t r1 aYn* Yn° 
S = ± = - ^ W o - ° Z ? e - ™ - , (13) 

?ch DT cpTm 

larger than a critical value of order unity to be determined. 
To describe the evolution of the reacting mixture in the Frank-Kamenetskii region, r ~ rc, 

for times t ~ tc ~ iCh we use the variables 

i. r * u-ui P-Pi T-Ti 
? = - . r = 7 ' u = 7 77T' /° = ' < P = — ^ - (14) 

rc tc (erc/tc) spm sTm 

where the inert solutions p\ and u\, readily obtained from (3)—(10), are given by p\ = 
An(l + ̂ (?2 + 2(1 + j)x2)) and «i = — 2s(rc/tc)%. When equations (3)-(7) are written in 
the new variables we observe that all convective terms are of order s, so that they can be 
neglected in first approximation during the ignition stage. In addition, the equations for the 
mass fractions show that their changes are also of order e, so that in first approximation we can 
write Yp = Ypo and io = ^o,o- Therefore, the nondimensional increment in temperature <p, 
due to the chemical reaction, is given by the nonlinear problem 

S = ^ ( ^ | ) + 5 e X P ^ - ^ - 2 ( 1 + ^ (15) 

<p(0, £) = ^ (T, 0) = <p(z, oo) = 0. (16) 

Once (p has been computed, the density and velocity disturbances are given by the equation of 
state, cp + p = 0, and the continuity equation, 3( | Ju)/9^ = — £ J9p/9r . 

This model of the diffusive ignition, first formulated by Berman et al [1], differs from 
that described by Kassoy et al [12], who consider small initial temperature disturbances and 
include the heating by homogeneous compression. 

The solution of (15) and (16), giving the temperature rise (p due to the chemical reaction, 
shows blow-up at r = T¡(¿) when S is larger than the critical value ác. For 8 < <5C there is no 
ignition and <p evolves to the steady solution cp = 0 corresponding to the frozen solution. To 
obtain the numerical solution, for a given value of S, we use the Newton-Kantorovich method. 
The resulting linear problem was discretized via an implicit finite-volume method, with a 
nonuniform mesh. The Crank-Nicholson method was used, allowing a variable time-step size 
to achieve fast convergence. In the supercritical cases the accurate value of the ignition time 
was obtained from the behaviour <p ~ — ln(<5e""2(1+-')Ti(rj — r)) for T¡ — r -C 1 [5]. Figure 1 
shows the maximum temperature ^(0, T) as a function of r for different values of 8. The critical 
values, ác, of the Damkohler number are 3.2788, 7.6260 and 12.427 for the planar, cylindrical 
and spherical cases, respectively. Figure 2 shows the ignition time as a function of 8. 

The ignition process has a local character and is determined by local properties of the initial 
temperature profile, i.e. the maximum temperature, Tm, and the curvature at the centre of the 
hot spot where T = Tm. Although the kinetics for ignition may involve activation energies and 
pre-exponential factors different from those appropriate for flame propagation, we shall write 
here the Damkohler number for the ignition problem in terms of the characteristic parameters 
of the planar flame: the adiabatic temperature Tb = T0 + qY^ft/Cp (here we assume that the 
fuel is the limiting reactant); the Zel'dovich number ft = E(Tt, — To)/RT¿ ^> 1; and the 
planar flame velocity i/p or, equivalently, the thickness of the preheat zone lv = DT/UP = 
(ADT^+leE/RT"/2BY^0'

1YQ°0)
1/2, where DT = k/pcp is the thermal diffusivity and A is a 



Figure 1. The maximum temperature ^>(0, T) as a function of T for several values of 6 (showed in 
the inset). 
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Figure 2. The ignition time r¡ as a function of S. 

parameter of order unity to be defined later, after equation (26). The Damkohler number S can 
be written in terms of lv and the hot-spot size r^, then the condition for ignition is given by 

2 

2 \lP) 
P nF+l Jb Th-Tn 

exp 
( Tb(Tm-Tb)\ (17) 

' p / *m \ im(7b — 7b)/ 

For large values of /3 and values of rh/ Zp not very large or very small compared with 
unity, we obtain ignition if (Tm — Tb) > 0, or no ignition if (Tm — Tb) < 0; this criterion 
is practically independent of the ratio rh//p, except for unreasonably small or large values 
of rh//p. For given values of <5C, np, a = (Tb — 7b)/7), and fl, the relation (17) determines 
the minimum value of rb/lv that leads to ignition for each value of (̂ n, — 7o)/(Tb — 7b). 
In figured we have plotted, for nF = 1, a — 0.8 and /S = 15, (A/ác)

1/2(rh//p)min as a 
function of (Tm — 7o)/(7b — 7b), showing the abrupt change in (rh//p)mi„ around Tm — Tb. 
If the energy released by the external source is EQ (per unit surface for j = 0 and per unit 
length for j = 1) and the resulting temperature profile is of the Gaussian type, we can write 
Eo/pcp(Tb—T0)lp

+J ~ (ni//p)1+;(7'm — 7b)/(7b—To). Hence, although it is possible to achieve 
ignition with a very small value of the ratio rh//p and (Tm — TQ)/(T\, — 7b) ~ 1, the energy 
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Figure 3. The minimum radius of the hot spot leading to ignition, (A/ác)
1/2(rh//p)niin, as a 

function of (Tm - T0)/(Tb - T0) for a = 0.8 and p = 15. 

content of the hot spot would be so small that might not be enough to develop a self-propagating 
flame. Notice that all profiles with the same local behaviour at r = 0 are equivalent from the 
ignition point of view, but we cannot expect all of them lead to a successful flame initiation. 

3. Minimum energy for flame propagation 

The above analysis has shown the existence, for Arrhenius reactions, of a critical value <5C of the 
Damkohler number, such that only if S > <5C will ignition occur at times much shorter than the 
homogeneous ignition time foo. This is the first condition to be fulfilled in the development of 
a self-propagating flame. Although necessary, it is not sufficient to ensure a successful flame 
initiation. Moreover, to describe the flame propagation we must account for the effects of the 
diffusion and consumption of the reactants, which have been neglected during the ignition stage. 

Kapila [11] has described the transition from the ignition regime to the self-propagating 
regime when a uniform energy flux is applied continuously to the surface of a reactive solid. 
When the ignition results from the instantaneous deposition of a finite amount of energy, a 
similar evolution is found after the first stage of thermal runaway. After burning completely 
the fuel in the centre of the hot spot, we encounter an expanding reactive core, where the fuel 
has been completely consumed. This core is separated by a thin reaction layer from the outer 
region where the reaction can be considered frozen. The flame kernel expands at a very high 
speed, much larger than the planar flame speed corresponding to the initial conditions of the 
mixture, because of the excess enthalpy associated with the initial external energy addition. 
With increasing values of the flame radius its velocity decreases because of the lowering values 
of the excess enthalpy. If the initiating energy is lower than a critical value, the outer motion of 
the flame front stops and starts to recede to the region of burnt gases. With this contraction stage 
it is possible to maintain the balance between the supply and consumption of the reactants, 
because the receding movement of the front decreases the reactant diffusion flux allowing 
the front to adapt itself to the lowering reaction rate. If the flame continues to move back 
and, eventually, collapses to the centre of the hot spot, the initiation of the flame fails. Only 
when the hot spot contains enough energy the flame kernel evolves to an expanding flame that 
eventually will attain the uniform propagation regime. 

According to the analysis by Kapila [11], the events subsequent to the ignition that lead 
to the development of a flame occur in a time very short compared with the ignition time. 
Thus, the elapsed time since the deposition of energy until the appearance of a flame kernel 



is approximately given by the ignition time, /¡, which is of the same order that the chemical 
time, to,, defined by (11). We can use the residence time in the planar flame, tp = lp/DT, as 
the characteristic time to describe the flame propagation. The ratio of both times satisfies 

ich 1 f rh\
2 Tm(Tb - To) 

ip us \ij rb
2 

so that if the condition (17) for ignition holds and Tm < 7b, when for ignition to occur the 
hot-spot radius must be large compared with the flame thickness, i.e. rh//p » 1, the ignition 
time is large compared with the residence time in the planar flame; while the opposite is true 
when Tm > 7b, or rh/lp <?C 1. Thus, in the first case, Tm < Tb, the conditions for successful 
flame initiation are given by the conditions of ignition, which require an energy input £0> of 
order pcp(Tm — T0)r^+ , that grows rapidly with Tb — Tm. 

When Tm grows above Tí, the energy required for ignition becomes, in agreement with (17), 
very small and the ignition time becomes very small compared with tp. This time characterizes 
in these cases the main stage of flame evolution, which defines whether the flame, created just 
after the ignition thermal runaway, will successfully evolve to an outgrowing flame or begin 
to collapse and quench. When Tm > 7b, or rj, <c lp, the energy required for flame initiation 
may be expected to be very large compared with that needed for ignition. 

We shall calculate the minimum energy, EQIC, for successful flame initiation in the cases 
rh/lv Ĉ 1, when the flame initiation process depends mainly on what happens to the flame 
when its radius has grown to values of order lp at times of order tp. At these times the external 
energy E0 appears to be added instantaneously, as a point source; giving birth to a flame 
front whose dynamics we must describe to elucidate if, eventually, a self-propagating flame is 
attained or not. As result of this analysis we expect to find a minimum value £o,c> such that 
the relation £ 0 > E0x can be used as criterion to ensure flame propagation at least when rh//p 

is small and the instantaneous point source mimics adequately the hot spot. 

3.1. Formulation and dimensionless equations 

With the aim of setting up the problem of describing the evolution of the flame front in 
its simplest form, we will adopt the thermal-diffusive, or constant density, model in which 
expansion and convective effects are neglected. Since large increments in temperature are 
involved, it is obvious that these effects must play a role; consequently, the conclusions of 
the analysis are expected to be only of qualitative significance. However, in spite of the 
simplifications this model leads to a nontrivial mathematical free-boundary problem, as we 
will show in the following. The thermal-diffusive model constitutes a previous and necessary 
step for the analysis of a convective-diffusive model. The governing equations (5)-(7) simplify, 
with u — 0 and p = constant, to the system: 

dT 1 9 / ¡dT\ w 
T7 = -jr(DTr T)+q—' (19) 

at rJ or \ or J pcp 

dYF 1 9 / ¡dYF\ w 
'Dvr1—] , (20) 0 dt r'l dr \ dr J 

r) dr V 
dY0 1 d ( 3Y0\ w 

'D0r
J-~- )-s —, (21) dt r¡ dr \ dr ) p 

with w given by (2). At t = 0 an instantaneous point source (more precisely, a symmetrical 
(2 — y')-dimensional distribution) located at r = 0 releases a finite quantity of heat EQ. This 
source can be represented by Q(r, t) = EoS(t)S(r)/cjrj where the factors c¡ are given by 



Co = 2, c\ = 2JT and c2 = An and S(-) stands for the Dirac delta function. Without chemical 
effects, the inert temperature distribution, 7i, is given by the solution of the problem 

97} 1 9 / ;.97}\ 97}(0,0 
pc„ = —r — &r' , = 0, H p dt rJdr\ dr ) dr 

7i(oo, t) = 7b; / (7i - 7b)c ,^ ' dr = E0/pcp. 
Jo 

We readily find 

TÍ .\ -r ¿o/pe,, / r2 \ 

As result of this form of energy source the temperature distribution at t = 0+ is also a Dirac 
delta function of r, whose evolution for very small times is assumed to model the initial flame 
kernel: a very small core, where the temperature is high and the chemical reaction is completed, 
surrounded by cold gas at the initial composition. Therefore we can write the initial conditions 
for(19)-(21)as 

r > 0 , i = 0+: r = 7i(r,/), YF = 7F,0, Y0 = 7o,0, (24) 

which completes the formulation of the problem. 
In order to nondimensionalize the problem it is convenient to introduce the following 

parameters: Lewis numbers L¡ = DT/Di (i = F, O); equivalence ratio <p = SÍF,O/1O,O 

(considering the mixture to be lean <p < 1, not close to stoichiometry; the case 0 > 1 is 
easily analysed by interchanging the roles of F and O; the quasi-stoichiometric case, <p ~ 1, is 
considered in the appendix); adiabatic temperature 7], = TQ + q ÍF,O/CP>n e a t release parameter 
a = qYFi0/cpTb; and Zel'dovich number p = E(Tb - T0)/RT^ » 1. We will use the 
following variables: 

r t T -Tb YF Y0 

I = - , r = - , <p= -, Y = — - , X = —¥-, (25) 
lp tp 7(, — 7b FF,O 4>YO,O 

where /p — DT/UP and fp = DT/Up given in terms of the planar flame speed defined by 
Up = (2DTA-lY^Q-lY^0p-("F+l)Bs-E/RTh)l/2, (26) 

with A" 1 = (1 - </>)"°r(nF + 1). 
The dimensionless inert temperature is given by <pi(f, T ) = P~1Eo$(t;, x) — 1, where 

^ ' T ) = ^S and Eo= ^PcP(Tb-%(4nl^nn- W 
E0 is proportional to the ratio between the released energy and fi~l times the chemical energy 
contained in a (1 + j)-dimensional sphere whose radius is lp. The factor / J - 1 has been included 
because, as we will see below (cf equation (32)), an excess enthalpy of order fi~l changes the 
reaction rate by a factor of order unity. Therefore, we can expect EQ ~ 1 to be sufficient for 
flame initiation. 

In the new variables, the conservation equations and initial and boundary conditions take 
the form 

'dm dY \ dX 1 
— -A(p = + — A Y = + — A X = £2, (28) 
9r dr Lp dr LQ 

(29) 

', (30) 

y = l, X = (p~\ (31) 

* = 0 : ^ = ^ 
H 9f 

£ = oo: <p = - 1 , 

£ > 0, r = 0+: w--

St-0-
Y = l, x = 4>~1 

^rXE09{^r)-\, 



where A stands for the symmetric form, (l/^j)d(^jd/d^)/d^, of the Laplacian operator and 
the dimensionless reaction rate is given by 

£2 = - A0"° tf"F+1 y"F Xn° exp (B — — |. (32) 
2 \ 1 +acpj 

From equations (28) two conservation equations can be derived for the Shvab-Zel'dovich 
variables H = tp + Y/L? and Z = Y/LF — X/L0 which satisfy the following equations, and 
boundary and initial conditions 

^ - A H = ( Z , F > - 1 ) ^ , (33) 

92 , dY , 3X 
_ - A Z = ( L F - ' - l ) - - ( L o 1 - D g 7 , (34) 

f = 0 : ^ = M=0, (35) 
5 3 | 3 | 
| = oo: / / = L p 1 - l , Z = L p ' - ( ^ - ' L Q 1 , (36) 

| > 0 , r = 0 + : / / = ^-1£0i?(f,T) + L p 1 - l , Z ^ L p ' - ^ - ' L o 1 - (37) 

These two equations (33) and (34), which are free from chemical sources, apply to the whole 
fluid field. They must be complemented by one of the equations (28) involving the reaction 
term £2. 

3.2. Near equidiffusivity approximation 

To ensure stability of the flame, we assume that both Lewis numbers are very close to unity, 
more precisely we define /o = B(Lo — 1) and /p = B(LF — 1) to be of order unity. This 
is consistent with our previous scaling of the independent variables, since, as pointed out by 
Joulin [9], for a light limiting reactant, such that 0 < 1 - LF ~ 1, the evolution of the flame 
occurs in a very large timescale of order B2(\ — ̂ /Lp)2tp and the dynamics of the kernel 
becomes quasi-steady, while in the opposite case, 0 < LF — 1 ~ 1, the evolution time is so 
short that even the reaction zone is unsteady [3]. 

In the asymptotic limit B —> oo the reaction zone appears as a surface of discontinuity 
located at | = ff (r) (in the following the subindex / will refer to conditions at the flame, 
which will be time dependent), and the reaction term, Í2, can be written in terms of the Dirac 
delta function as m(T)5(£ — §f), where m{x) stands for the nondimensional mass flux of fuel 
reaching the flame per unit surface and time. We seek the solution as an expansion in powers 
of B~l in the form 0 = 0O + B^&i + • • •, where 0 = (<p, X, Y, H, Z, m). 

From the definition of H and Z we obtain the following relations 

Ho = <po + Y0, ZQ = Yo — X0, 

Hi=(p1 + Yi- lFY0, ZX = YX-XX- l¥Y0 + loX0. 

The leading terms Ho and Zo are given by the solution of (33)-(37) with LF and LQ replaced 
by 1. Then, 

Ho = B-lEod(!;, T), Zo = 1 - <f>-\ (39) 

The fuel concentration at leading order is given by YQ = 0 in the burnt side of the flame 
(0 < £ < £f), while in the fresh gas side (f > ff) is given by the solution of 
9 Yo 
— = AFo m |f < | < oo, 

y0(|f, r) = 0, y0(oo, r) = Y0(^ 0) = 1, "If' = m0(r), 
9 | 



which determines the distribution of the fuel mass fraction and the flame position in terms of 
mo(T). The last boundary condition comes from the jump relation across the thin reaction 
zone, or flame sheet. Once Y0 and £f have been computed we can obtain <po and X0 from (38) 
and (39). However, at this stage wo(r) is still an unknown function, which will be only 
determined from the analysis of the reaction zone. 

Taking into account that ZQ = 1 — <f)~l we can write Hi and Z\ in the form 

ffi«,r) = - / F V ( | , r ) , (41) 

Zi(£, r) = - ( / F - Zo) V(£, r) + foW"1 - 1), (42) 

where V is the solution of the problem 

dV dY0 A V = in 0 < £ < oo; 
dt dx s 

3V(0, r) 
v = 0 , V(CO,T) = V( | ,0) = 1. 

(43) 

9£ 
Behind the reaction zone we admit the existence of chemical equilibrium, i.e. (X • Y){ — 0. 

Since <p < 1 we obtain Fo.f = 0 and X0,t = (¡>~l — 1, which leads to Y\¿ = 0 and 
*i,f = ¿o(</>_1 - 1) - Z u , or, from (42), Xi'f = (lF - lo)V{. 

3.3. Reaction zone structure 

To analyse the reaction zone we introduce the stretched variable 7/ = e_ 1 (f — £f) and expand 
<p, X and 7 as 

<p = P"1
 EQ6{ + ef + •••, 

X = (<p~l - l)+eX + ---, (44) 
y = £? + •••, 

where the small parameter e, to be defined below in (46), is a measure of the reaction zone 
thickness. 

The inner and outer solutions must match as r¡ -> ±oo and f ->• 5^, respectively, 
leading to 

<A -> p-lE08t,ft¡ - (epy'hVf, if - • rlE0eUT] - (epr%Vf - mQr), 

X - • (e /S)- '^ - Zo)Vf, X - • (£/3)-1( /F - /o)Vf + m0t¡, (45) 

f -> 0, Y -> m0T], 

as r) -*• —oo and ^ —> oo, respectively. 
Introducing the expansions (44) in the expression for the reaction rate (32) it becomes 

apparent that it is convenient to define 

e = \{\+ap-lE0e{)
2. (46) 

p 

When equations (28) are written in terms of the inner variables we obtain X = Y + 
(1 + aP~lEoOf)~2(h — hWf and two equations for \¡r and Y. For given values of EQ, fi, 
a, «F and /F, these equations, with the boundary conditions (45), and problems (40) and (43), 
for Yo and V, respectively, constitute a closed, nonlinear, nonsteady, free-boundary problem, in 
which wo(r) is an eigenfunction, to be solved in order to obtain the time-position history of 
the front, | f (r), which will determine whether the flame initiation is successful or not. 

This problem can be greatly simplified since we can expect that the important events for 
flame initiation will not occur in the rapid stage taking place at the very beginning after the 



deposition of energy, when the flame is located at the core of the hot spot and 8¡ takes very 
high values, but during the longer period in which 8f has decreased to values of order unity. 
Thus, if we take into account that EQ ~ 1, and assume Of to be small compared with f5, we 
can write 1 + a^~1Eo0f «s 1 in first approximation, which implies e = 1//3. Moreover, in this 
slow stage we can assume | f ^> s and that the evolution time of the flame is not very short 
compared with ip, leading to the well-known reaction-diffusion balance for i// and Y: 

From the first equation (47) and (45) we obtain ifr = —Y + j0-1£o0f,f7 — kVf, which allows 
us to reduce the system (47) to a single equation for Y. Using x = mot) as new independent 
variable and defining 

a — 1 zr n i 

M = _ £ ±A£ > o and D = —=• exp(£o0f - frVf), (48) 
w0 m„ 

the problem describing the reaction zone structure can be written as 

d2Y D lF~-fiX-Y. -y"Fe 
dx2 2r(nF + l) ' (49) 

Y —*• 0 for x -> — co, P — x -» 0 for x —> +oo, 

as in the premixed flame regime found by Liñán [13]. The Damkohler number, D, plays the 
role of an eigenvalue and should be determined as a function of the parameters nF and fi. 
However, notice that when ()~~i6f <SC 1 the space derivative satisfies also —f}~l9$j <JC 1, 
leading to ¡x <sc 1. For these values the solution of (49) can be sought as an expansion in 
powers of ¡x obtaining D = \+0{¡x). So that we can take D = 1 and from the second relation 
(48) it follows that 

/E0df-hVf\ 
m0(T) = expl J. (50) 

Therefore to obtain the evolution of the flame-front position, |f (r), we need to solve (40) 
and (43) together with the above relation for /no(r). The complete mathematical problem, 
without subindexes, can be written as 

dY 1 3 / ,dy\ 
r— [S1— 1 = 0 , i n | f < | < c o , 

dx ^ 3 | V H) (51) 
Y (If, r) = 0, F(oo, r) = Y (I > lf, 0) = 1, 

3V 1 3 / ,.3V\ dY . n t 

r— \IJ— = — , i n 0 < | < o o , 
3T %J 3f V 3f / 3r (52) 
Vf(0, r) = 0, V(oo, T) = V( | ,0) = 1, 

^ (If, r) = exp I 1, (53) 

with |f (0) = 0, y ( | < |f, T) = 0 and 6>(|, r) = e_f2/47r (1+-' ) /2. Notice that equation (53) 
defines | f implicitly since both y^df, r) and V(|f, T) depend on | f . This problem contains 
only two parameters: EQ, nondimensional measure of the external initiating energy, and 
iF = )8(LF - 1). 



3.4. Numerical solution and results 

To solve numerically the unsteady free-boundary problem (51)—(53) we use a marching in time 
algorithm that can be outlined as follows. We start by rewriting the problem (51) in terms of 
a new space variable n — f — ^. As result, the integration domain changes to 0 < n < oo 
with fixed boundaries and the velocity of the front, |f, appears explicitly in the problem and it 
will be considered as an unknown instead of the position of the front, ff, that will be computed 
from f* |f (r') dr'. Let us assume that the solution for x\ < X2 < • • • < ?k-\ is known. For 
zk = xk_x + AT we choose an initial guess for | f {xk), say vk, and compute an approximation 
to %{(rk) as sk = |f(rt_i) + Ax(vk + |f(r¿_i))/2. The accurate value of t;t(xk) is obtained 
according to the following iterative scheme. 

Forv = 1,2,..., 

1. solve problem (51), with ff (T*) and tjf(xk) replaced by vv
k~

l and s£_1, to obtain Yv~l and 
Yf\sr\xk); 

2. solve problem (52) to obtain Vv~i; 
3. solve equation (53) using the Newton method to obtain vk, which requires to compute 

3K/3|f and 3V/3|f, and compute a new approximation to %f(xk) as sk = ff(r^_i) + 
Ax(vl+kÁTk-x))l2. 

To initiate this procedure we need the solution for x <£ 1 that can be obtained as a quasi-
similar solution in the form £f(r) = *Jxa(x), Y = Y(x, x) and V = V(x, x) where a(x) 
is an unknown function, determined from (53), and the similarity variable x is defined as 
X = (£ - | f(T))/V?. 

In figure 4 we have plotted the flame position-time histories, £f(r), for several 
configurations. Figures 4(a)-(c) correspond to Zp = Oandy = 0, 1, 2, showing the effect of the 
geometry, while in figures 4(c)-(e) we illustrate the effect of the Lewis number (/F = 0, —2,2). 
In the spherical configuration there exists a well-defined critical value of the input energy, £o,c> 
such that for EQ < £o,c the flame reaches a maximum radius and then starts to move back, 
collapsing to the origin at a quenching time xq. For supercritical values the flame radius grows 
continuously and, eventually, the flame propagates at a constant speed. The separatrix between 
both regimes, plotted with dashed line, corresponds to the critical value £o,c, for which the 
problem attains the steady state and, hence, £t tends to the Zel'dovich flame-ball radius given 
by £fiC = e,p/2. In the cylindrical and planar cases the problem does not admit a such steady 
state and therefore we cannot define a similar separatrix. However, we can observe two well-
defined behaviours: quenching and self-propagation. For practical purposes it is convenient 
to define a critical value that can be used as a reference value to establish a division between 
both regimes. To this end we have defined £rj,c as the value that leads to quenching and such 
that £o,c + 10~4 leads to propagation. We have also plotted the corresponding trajectories with 
dashed line. 

The flame speed |f is plotted in figure 5 for the same values and configurations as in 
figure 4. Notice that |f (xq) = —oo in the cylindrical and spherical cases, while | f (xq) is finite 
in the planar case. This geometrical effect can also be observed in figure 4. 

Finally, figure 6 shows the critical value, £o,c> dividing the quenching and propagation 
regimes as a function of the reduced Lewis number /p. 

4. Results and conclusions 

We have analysed, in the limit of large activation energy, two related problems: (i) the ignition of 
a gaseous reactive mixture resulting from the thermal nonuniformity produced by the deposition 
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Figure 4. The position of the flame front, ff, as a function of time for several values of Eo, in five 
different configurations. The critical value is typeset in bold characters. 

of energy in a small region of the gas, and (ii) the flame initiation problem subsequent to the 
ignition. We assume that the time required for the deposition of energy is large compared 
with the time of acoustic waves propagation but short compared with the characteristic time 
of heat conduction. Therefore, heat conduction becomes the dominant mechanism for energy 
transport and has to compete with the heat release by the chemical reaction, which has been 
triggered by the external addition of energy. The asymptotic analysis lead to a model to 
describe the ignition process containing a single parameter: the Damkohler number, S. The 
numerical results show that ignition only occurs for values of <5 greater than a critical value, 
which is computed for the planar, cylindrical and spherical configurations. 

For energy source with a size small compared with /p, the ignition, or local thermal 
runaway, is not a sufficient condition to ensure a successful flame initiation and propagation 
since a larger timescale is involved, in which we must account for the diffusion and consumption 



Figure 5. The velocity of the flame front, |f, as a function of time for the same values of £o and 
configurations as in figure 4. 

of reactants, neglected during the ignition transient. To obtain, for energy sources of small 
size, conditions leading to flame propagation after ignition, we have omitted the description 
of the very early stage in which the ignition reaction zone evolves to a propagating flame 
front. Instead we have considered that a local source releases instantaneously a finite amount 
of energy giving rise to a well established flame front, whose dynamics will determine if the 
flame initiation is successful or not. This simplification is justified since the flame propagation 
occurs in a timescale much larger than the scale associated with the development of the flame 
kernel. We find that, for given physicochemical parameters of the mixture, the energy input 
must be greater than a critical value to attain the self-propagating regime. The results also 
reveals several features of the flame quenching: (i) it does not take place necessarily during the 
early stages of flame propagation; (ii) the quenching always occurs as a collapse of the flame 
at the position of the source; and (iii) the beginning of the receding movement of the flame is 
not associated with a very low frozen temperature. 



The critical value of the input energy obtained in section 3 must be seen as the minimum 
energy content of a hot spot required to produce a successful flame initiation. A hot spot of small 
size, measured with rh//p, will require less energy to ignite the mixture, while for large hot 
spots the amount of energy for ignition will be also sufficient to ensure flame propagation. 
A simplified representation of this situation is given in figure 7 where we have plotted 
the minimum energy for flame initiation, Eo,mm = ¿o,min//9_1pcp(Tb - 7b)(4jr/p)(1+-/')/2, 
as a function of the hot-spot size, r^/lp, for [5 = 15, /F = 0, «F = 1, «o = 0 and 
a = 0.8. The straight lines correspond to ¿io.min = £o,c- The curves of minimum 
energy for ignition have been obtained assuming that the initial distribution of temperature 
in the hot spot is given by Tb(r) = TQ + (Tm — To)e~kr , with k chosen to satisfy r\ = 
—2rm/(d2rh/dr2)r=0. The dimensionless energy content of the hot spot is then given by 
E0 = /3((1 - To/TnyvV+Mift/l^+HTn - 7b)/(7b - 7b), which, together with (17), 
determines the minimum energy for ignition, £n,ig> a s a function of rh//p. Obviously 
E0,min = min(£o,c. £o,ig)- Thus for hot spots larger than the flame thickness the condition 

Figure 6. The critical energy EQIC as a function of the reduced Lewis number /p for a 
nonstoichiometric mixture. 
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Figure 7. The minimum energy for flame initiation as a function of the hot-spot size, Hi/ip, in the 
cylindrical and spherical configurations for fi = 15, If = 0, np = 1. «o = 0 and a = 0.8. 



for ignition is also a sufficient condition for flame initiation, while for rb < Zp an additional 
increase in the ignition energy is required. 

It should be pointed out that our analysis does not rest on the existence of the Zel'dovich 
flame ball and its unstable character, which obviously is included, and, hence, the analysis is 
not restricted to the spherical case but it also applies to the planar and cylindrical cases. On the 
other hand, we have determined not only the critical conditions leading to flame initiation but 
also we have given a description of the dynamics of the process in terms of the position-time 
histories of the flame. 

Notice that the symmetrical calculations carried out here can not show the thermal-
diffusive instabilities described by Sivashinsky [15] for /p < —2 although if carried out for 
/F > 21/2 should show pulsating instabilities. The above theory can be extended to account 
for arbitrary Lewis numbers, noninstantaneous energy source and effects of variable density 
and flow-field. This will be considered elsewhere. 

Appendix. Minimum energy for flame initiation in a quasi-stoichiometric mixture 

When the initial mixture is quasi-stoichiometric, i.e. /J(l — fa ~ 1, the analysis of section 3 
can be extended with only minor changes. We start by writing the equivalence ratio as 
<j) = \+ fi~x4>\ + • ••. The two first terms of the expansion for H and Z are now given by 

H0 = cp0 + Y0, Hx = -ZFV(£, r), 

Z 0 = 0 , ZI = ( / O - Z F ) V ( $ , T ) + 0 I , 

with V(£, r) given by the solution of (43). Now both species vanish at the flame in first 
approximation and the condition (X\ • Y\)f = 0 must hold. It is easy to check that X\,t and 
Y\j are given in terms of Zi,f by the following expressions 

Xi,f = i ( | Z i , f | - Z i , f ) , y1>f = i( |Zi, f | + Zi,f). (A2) 

Notice that, as pointed out by Joulin [10], nonstoichiometric mixtures keep their character at 
the flame, but if the mixture is quasi-stoichiometric the preferential diffusion effects result in 
a mixture that close to the flame can be lean (Z¡f < 0) or rich (Zi,f > 0). For given values of 
/F and /o there exists a critical value of fa, say fa, such that if fa = fa the mixture is locally 
stoichiometric (Zif = 0), i.e. the departure from the stoichiometric condition of the fresh 
mixture far from the flame is balanced by the preferential diffusion effects. Since the critical 
value, given by fa(r) = (h — h)Vf, is time dependent the local stoichiometric character of 
the flame can change during the flame initiation process. 

The analysis of the reaction zone structure is carried out by means of the stretched variable 
y) = e-1(£—£f) and the expansions^ = / i - 1 E09f(r)+st¡f+- • •, Y = sf+- • andX — sX+- • •. 
After similar arguments to those of section 3.3 we can take e = I/ft, and we find that the 
functions \¡r, Y and X satisfy 

d V d2Y _ d2X _ 
drj2 dt]2 dt]2 

and the following matching conditions: 

\¡r - • p-lE00s,tri + Hu, f -+ p-lE0de,fri + Hhf - m0r], 

X->Xi , f , X -> Xi,f + m0r], (A4) 

y - » r i , t , f - > ^.f + nioij, 
for Tj —> — oo and rj -> oo, respectively. The leading term of the reaction rate, «o, is written as 

w° = ^ 7 " T T ^ exp(£o0f)?"FX"°e^, (A5) 
2G(oo; np> no, fa/2) 



( | a |+a + í)"F(|a¡ - a + í)"°e' f di, (A6) 

with the function G given by 

G(r};n¥,n0,a) - I 
Jo 

as result of the definition of Up in the stoichiometric case. We readily obtain ir + Y = 
P~lEo9^fr¡ + H\ti + Y\j and Y — X = Z\¿, which allow us to write a single equation for Y. 
It is convenient to reduce it to a canonical form by using x — mar] and S = Y — ylif as new 
independent and dependent variables, respectively, and defining 

G(oo;nF ,no, £) 
* 2 ' 8 = G(oo;n¥,n0,<t>\/2)' 

¡x = m0 

(A7) 
£> = • exp(Eo0f + Hhf). 

Then the problem for S is found to be 

d2S _ D 

dx2 ~ 2G(oo; nF, «o, O 

S -> 0 for JC -> —oo, 

(|f| + ? + S ) " F ( | f | - f + S)noe- -fxx—S 

(A8) 

5 — x -> 0 for x +00. 

This problem, as (49), only admits solution for an appropriate value of the Damkohler number, 
D, that must be computed for given values of fi, nF, « 0 and f. For fi <3C 1 it can be shown 
that D = l + 0(fi) and it follows that 

mo(r) = g 
1/2 (E{¡9f + H\tf 

e X P ( 2 ) 
(A9) 

The problem to be solved is (51)—(53) with the above definition for mo(r) and the expressions 
of Hit andZif in terms of Vf, i.e. H\¿ = —hVf and Ziif = (fo — /F) Vf + 0i • The parameters 
involved in this case are EQ, l?, lo, rip, «o a nd <P\, making difficult to give the result in the 
whole parameter space. As an example, we have considered the spherical configuration and 
the particular set of values «f = n 0 = 1, /0 = 0 and <pi — —2, — 1, 0, 1, 2. In figure 8 we 
have plotted the value of the critical energy as a function of ZF. The curves of £f as function of 
T for different values of EQ and ZF are quite similar to those of figure 4. 
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