
1. Introduction

Process models that simulate industrial processes are in-
creasingly being used to reduce costs and improve produc-
tivity.1–8) The success of such models is highly dependent
on the thermophysical property data used in the simulation
calculations. Unfortunately high temperature thermophysi-
cal data for liquid metals and slags are scarce. Also what
data that are available often have a high uncertainty associ-
ated with them.1,2,9–11) Therefore regardless of how well a
process model may be physically based it is likely, given the
current state of high temperature thermophysical property
data, in particular heat capacity, viscosity and thermal con-
ductivity/diffusivity, that the models predictions will be
limited by the uncertainty associated with the data. It is un-
clear how much such models are being used by industry but
extreme care should be exercised when attempting to re-
alise or understand the predictions of process simulation
models.

At the National Physical Laboratory we have attempted
to address some of the problems associated with the mea-
surement of thermophysical properties at high tempera-
tures. This paper outlines the developments we have made
in the measurement of the thermal diffusivity of liquid met-
als by use of a laser flash technique and presents our recent
measurements on pure iron.

Thermal conductivities/diffusivities of liquid metals are
difficult to measure. These difficulties are a result of the

following:
a) Chemical reactivity (containment) problems at high

temperatures required for metallic systems
b) Convectional (mass flow) heat transfer of the liquid. It 

is difficult to hold liquid metal at high temperatures 
and make thermal-conductivity/diffusivity measure-
ments without there being a convectional term associat-
ed with the measured value, as thermal instabilities in
the measurement systems can be enough to initiate con-
vection.

There is a further problem associated with laser flash
thermal diffusivity measurements of liquid iron. Classical
laser flash measurements often require the sample to be
covered with graphite to improve the signal to noise ratio of
the measurement.12) This is not possible with pure liquid
iron and steel as they have a significant Carbon solubility.13)

Given the problems associated with the laser flash tech-
nique for making measurement on liquid iron, the approach
to develop the technique for the measurement of iron could
be questioned. The reason for this approach can be found in
the review of the thermal conductivities/diffusivities of liq-
uid metals carried out by Mills et al.2) The review found
that that the laser flash technique seemed to be one of two
techniques currently available capable of making thermal
diffusivity measurements in the liquid at the high tempera-
tures required for steelmaking. The other was Zinovyev’s
electron beam technique.14) It was felt that Zinovyev’s tech-
nique14) did not lend itself to the development of a laborato-
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ry bench apparatus. Therefore the laser flash technique was
chosen for further development.

The principle advantages of the laser flash method for the
measurement of thermal diffusivity are
• it is a semi contact measurement technique. A probe is

not inserted in the melt to make a measurement; both the
laser and measurement sensor are remote from the melt.
Therefore, the only contact with the molten metal is the
holding container, thereby minimising the effects of cont-
amination of the melt. 

• the measurement is very fast, ,0.5 of a second for a
complete measurement. Such a fast measurement tech-
nique minimises the errors associated with convection.

2. Experimental

2.1. Laser Flash Apparatus

The thermal diffusivities presented in this paper were
measured using a Netzsch 427 laser flash apparatus (LFA).
A schematic of the LFA is given in Fig. 1.

It is a standard piece of equipment, the details of which
are published elsewhere.12,15) The measurement involves
heating the front face of a disc-shaped sample using a high
intensity laser and monitoring the temperature rise on the
back face. From the temperature rise, the thermal diffusivi-
ty (a) can be calculated by Eq. (1),15)

.................................(1)

where l is the thickness of the sample t0.5 is the time taken
for the temperature rise to reach half the value of the maxi-
mum temperature rise. Eq. (1) represents ideal adiabatic
conditions for an idealized instantaneous energy pulse.
Corrections can be made for heat loss effects and the finite
pulse time of the laser.16) The sample may be sprayed with

graphite or zirconia prior to placing in the LFA and mea-
surements are made in an argon atmosphere. The method
has an estimated uncertainty of 65% for solids.1) The laser
flash method is well developed for solids but has only 
relatively recently been applied to liquid metal measure-
ment.17–20)

In liquid measurements the sample is held in a sapphire
cell a schematic of which is given in Fig. 2.

The sapphire cell is transparent to the laser (wavelength
1.064 mm) and UV light and to all intents and purposes can
be ignored with respect to the thermal diffusivity measure-
ment. The materials used in this study are given in Table 1.

2.2. Validation of the Zirconia Coating

Zirconia was chosen to coat the sample because it was
readily available in paint form and is chemically stable with
respect to iron at high temperatures. Also preliminary tests
demonstrated that it did improve the signal to noise ratio of
measurements made in the LFA.21) What was not clear was
how the zirconia coating effects the measured thermal dif-
fusivity.

To assess the effects of the zirconia coating on the mea-
sured thermal diffusivity measurements were made on zir-
conia coated electrolytic copper and compared with mea-
surements made on graphite coated electrolytic copper. The
results of a number of measurement runs are shown in Fig.
3.

Also plotted on Fig. 3 are the recommended thermal dif-
fusivities values for pure copper in the solid state from
Touloukian’s thermophysical property review.22) On inspec-
tion of Fig. 3 it can be seen that the graphite coated samples
are in good agreement with the recommended values.
Below 650°C the zirconia coated Cu sample has a mea-
sured thermal diffusivity lower than both that of the
graphite coated Cu and the Touloukian’s recommended val-
ues. Above 650°C there is extremely good agreement be-
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Fig. 1. Schematic of the laser flash apparatus.



tween all sets of data. This result indicates that above ap-
proximately 650°C the zirconia coating is not interfering
with the laser flash thermal diffusivity measurement. 

It is believed that this behaviour can be explained in
terms of the radiation transmission properties of the materi-
al zirconia. At temperatures below 650°C, the heat conduc-
tion properties of the zirconia are dominated by the rela-
tively slow lattice (phonon) conductivity but above 650°C
radiation (photon) conduction is dominant. The zirconia
coating thickness, measured using a high-resolution optical
microscope and calibrated graticule, was 26 microns. This

thickness can be considered optically thin for zirconia and
as such cause little interference to the heat transfer through
the zirconia coated sample.23)

3. Results and Discussion

Figure 4 shows the results of thermal diffusivity mea-
surements on pure iron ACF. These data are compared with
Touloukian’s24) recommended values for pure iron and
Zinovyev et al.’s14,26,27) data. In the authors knowledge
Zinovyev et al.14,26,27) are the only other researchers that
have made thermal diffusivity measurement at temperatures
near the melting point or in the liquid phase region of iron.
The solid sample geometry for the ACF iron was corrected
for expansion using linear expansion coefficients based on
the recommended values given in TPRL series27) and those
measured by Waseda et al.28) The linear expansion coeffi-
cients used are given in Table 2.

The sapphire cell defines the sample geometry in the liq-
uid phase. The expansion of the sapphire cell was corrected
using Eq. (2),29)

12.25231027(T1273.15)2

22.894310211(T1273.15)3.....................(2)

where lO is the measured thickness of the cell at ambient
temperature, D l the change in thickness on increasing tem-
perature and T is temperature in Celsius. The different ACF
numbers on Fig. 4 denote different sample of the same ma-
terial. Also letters H, C, G and Z denote heating, cooling,
graphite coated and zirconia coated respectively.

It can be seen in Fig. 4, that where comparisons can be
made, the thermal diffusivity measured in this study on
pure iron (ACF) is in good agreement with that recom-
mended by Touloukian.24) The Touloukian values are based
on over 100 data sets available prior to the book being pub-
lished. There is a difference between the Touloukian24) rec-
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Fig. 2. Schematic of the sapphire cell.

Table 1. Sample identification and composition.

Fig. 3. Change of thermal diffusivity with temperature of copper
with different coatings.



ommended thermal diffusivity values and the measured val-
ues at temperatures near the Curie temperature (TC) and be-
tween the TC and the a to g transformation temperature. It
can be seen that around TC the thermal diffusivity changes
considerably and the slope of diffusivity with temperature
changes from negative to positive. It may be that the ACF
iron’s structure may not have been completely at equilibri-
um. If so, given the changes in thermal diffusivity around
the TC and up to the a to g transformation, this could have
a significant impact on the measured thermal diffusivity. As
such, the authors prefer to recommend the continued use of
the values recommended by Touloukian24) at temperature
up to the a to g transformation. The recommended values
are given in Table 3.

Above the a to g transformation temperature there were
very little data available to Touloukian24) and only one set
that went up to approximately 1 400°C. This set of high
temperature data were measured by Zinovyev.30) Therefore
in the higher temperature regions the only data that can be
used to compare with the measurements made in this study
are that measured by Zinovyev’s group. At high tempera-
tures, in the solid phase, there are no obvious explanation to
for the differences between the measured data in this study
and those reported by Zinovyev. Where comparisons can be

made on other systems both instruments data are in reason-
able agreement.2) It may be that sample purity or sample
contamination is an issue. Or the differences (scatter) in the
data may represent the true uncertainty in the measurement
at these temperatures. It is therefore impossible to conclude
which data set is most representative of the pure iron. As
such the recommended values for thermal diffusivity in the
g and d phase regions are a mean of the two data sets. Eq.
(3) represents the recommended thermal diffusivity values
for the g phase, where T is the temperature in Celsius. 

a563102613.13310293(T2911) ..............(3)

In the d phase region the thermal diffusivity can be rep-
resented by the constant 0.0731024 m2 s21.

In the transition from d iron to liquid the behaviour of
the two sets of data differ considerably. The thermal diffu-
sivity as measured by Zinovyev increases but the data as
measured in this study decreases. Generally, a decrease in
thermal diffusivity would be expected when a BCC struc-
ture (as is iron) melts.2,11) The explanation for this decrease
being that there is an increase in disorder associated with
the transition, lessening the mean free path associated with
energy transfer.2,11) This is supported by electrical conduc-
tivity measurements on pure iron, where a decrease in elec-
trical conductivity is associated with the transition from
solid to liquid.2,11) The results from this study are consistent
with such a view.

On the assumption that the liquid Zinovyev data was cor-
rect, then what could cause the ACF Fe liquid data to have
such low measured thermal diffusivity values. Perhaps it is
the zirconia coating on the iron, but from Fig. 3, it can be
seen at these temperatures the fine zirconia coating has no
effect on the thermal diffusivity of Cu. Perhaps the coating
is reacting with the iron or it may be being sub-ducted by
the liquid iron. Either has the potential to change the mate-
rials thermal properties. To assess whether the zirconia
coating was reacting with the sample ACF9 was inspected
in the SEM after measurement. 

To prepare the sample for SEM analysis the zirconia
coated ACF9 sample was sectioned and polished perpen-
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Table 2. Linear expansion data and %volume change on
phase transitions for Fe.27,28)

Table 3. Recommended values for the thermal diffusivity of
pure iron in the g phase.24)

Fig. 4. Change of thermal diffusivity with temperature of iron.



dicular to the zirconia coated surface. Figure 5 shows 4
compositional digital maps of the sectioned ACF9 sample.
The sample was analysed for Si, Zr, Fe and Ni. The high-
lighted areas on the digital maps indicate the respective ma-
terials are present. From Fig. 5 it can be seen that the coat-
ing is continuous and still on the surface of the iron after
measurement. Fig. 5, also demonstrates that there is no zir-
conium, therefore no zirconia, in the bulk of the Fe below
the detection limits of the EDX (,0.1 wt% Zr). Indicating
that all the zirconia remained on the surface of the sample
and was not drawn into or going into solution in the liquid.
The Si and Ni shown on the maps are a result of sample
preparation for the SEM. Colloidal Si was used to polish
the sample and Ni was used to coat sample prior to section-
ing and polishing. Fig. 5 indicates that the zirconia coating
is unlikely to be the cause of the discrepancy between the
different liquid values obtained in this study from that of
Zinovyev.

As the liquid thermal diffusivity measurements in this
study are more consistent with other properties of liquid
iron,2,11) and the fact that the diffusivity has been measured
over a wider temperature range (Zinovyev’s data only goes
up to 30°C greater than the melting point), the authors ten-
tatively recommended this studies values for the liquid
state. The liquid phase thermal diffusivity values up to a
temperature of 1 650°C can be represented by Eq. (4).

a56.23102611.79310293(T21 538)............(4)

It is clear from Fig. 4 that more work is required to ob-
tain definitive values for the thermal diffusivity of iron at
temperatures greater than 1 200°C. The most promising ap-
proach would be a round robin involving a number of labo-
ratories measuring the thermal diffusivity of pure iron.

4. Conclusions

A technique and measurement practice has been devel-
oped that is capable of measuring the thermal diffusivities
of iron at high temperatures in both the solid and liquid
phases.

Recommended values for the thermal diffusivity of iron
have been reported for temperatures between ambient and
1 650°C.

The discrepancies in the high temperature regions (T.
1 200°C) of the reported data can only be addressed by fur-
ther work. This work would be best served by a round robin
measurement series where a number of laboratories mea-

sure the thermal diffusivity of iron.
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Fig. 5. SEM analysis of the zirconia coated sample, ACF9 after
measurement.


