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Abstract: High-accuracy sea surface temperature (SST) retrieval near nuclear power plants (NPPs) is
one of the most significant indicators for evaluating marine ecological environment quality, moni-
toring the real-time situation of thermal discharge, and supporting planning decisions. However,
complex computations, the inaccessible real-time vertical profile of the atmosphere, and the uncer-
tainty of atmospheric profile data increase the error of SST retrieval. Additionally, influenced by
their low spatial resolution, the widely used AVHRR/MODIS remote sensing images (RSIs) are
unable to retrieve the detailed distribution of SST in small scale regions such as coastal NPPs. In this
paper, we propose a simplified split-window-based temperature retrieval method (the SW method)
suitable for SDGSAT-1 30 m thermal infrared spectrometer (TIS) RSIs. Specially, this method only
needs atmospheric transmittance and surface emissivity by counteracting the average atmospheric
temperature to monitor the thermal discharge of offshore NPPs. First, the geometric and radiometric
calibrated thermal infrared and multi-spectral cloudless data of the target regions are selected to
obtain the corresponding apparent radiance of the RSIs. Second, in accordance with the red and
near-infrared (NIR) bands of multi-spectral RSIs, the surface emissivity is calculated to distinguish
water from land. Next, we determine the atmospheric profile parameters from the weather conditions
of the target region at the imaging time. Finally, according to the theory of surface-atmosphere
radiative transfer, the SST of target regions is retrieved with the proposed SW method, and the results
are compared with those of the conventional radiative transfer equation (RTE), mono-window (MW),
and the nonlinear sea surface temperature (NLSST) algorithms. The experimental results indicate
that the SST retrieved from the split-window algorithms (i.e., SW and NLSST) are generally higher
than those of the single-channel algorithms (i.e., RTE and MW). The SST difference between the
SW algorithm and the NLSST algorithm is within 0.5 ◦C. In addition, SDGSAT-1 can monitor the
seasonal detailed variation of the thermal discharge near coastal NPPs. This article is the first to
attempt to quantitative small-scale SST retrieval based on thermal infrared and multi-spectral images
obtained from the SDGSAT-1 TIS and a multispectral imager (MII), and therefore, provide an effective
reference for marine environment monitoring.

Keywords: SST retrieval; the split-window algorithm; thermal infrared; thermal discharge

1. Introduction

The rapid development of nuclear power has alleviated the greenhouse effect resulting
from traditional thermal power fuels, but the marine thermal pollution caused by the
transfer of waste heat from nuclear power plants (NPPs) cannot be ignored [1]. Sea surface
temperature (SST) refers to the seawater temperature below the ocean surface with a
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depth of less than 0.5 m [2,3], which is one of the important indicators used to evaluate an
ecological environment [4]. The thermal discharge from NPPs influences SST which could
increase dramatically and cause the death of fish, coral, and other coastal organisms [5].
Retrieval of SST has been of great importance in thermal contamination monitoring and has
also become conducive to protecting the marine environment and maintaining ecological
balance [6].

Many investigations and studies on monitoring and evaluating thermal discharge near
NPPs have been conducted based on field observations [7] and satellite remote sensing
technology [6,8]. Due to the restricted direct-measure range and limited number of discrete
oceanographic stations, conducting dynamic and successive thermal discharge monitoring
through high-cost field observations is challenging, which significantly hinders intuitively
displaying the spatiotemporal variation of thermal discharge. Satellite remote sensing tech-
nology provides a new means for monitoring the thermal discharge of NPPs by detecting
the sea’s surface thermal radiation and calculating the SST indirectly. Compared with a
single field-based measurement, satellite remote sensing technology has the advantages
of abundant global data, fast update speed, and wide spatiotemporal monitoring range.
According to the electromagnetic wavelength of the data, satellite remote sensing tech-
nology can be divided into microwave [9] and infrared remote sensing [10], as shown in
Table 1. Although microwave remote sensing can penetrate the clouds to obtain sea surface
radiation, the low spatial resolution and underdeveloped retrieval algorithms significantly
limit its application. SST retrieval based on infrared remote sensing can reduce costs and
improve the efficiency of thermal discharge monitoring, as well as intuitively display the
spatial diffusion and temporal variability of the thermal discharge.

Table 1. Remote sensing data for SST retrieval.

Items Payloads Wavelength Revisit Resolution

Microwave

FY-3B MWRI 10.65/18.7/23.8/36.5/89.0 GHz 1 day 15–85 km
TRMM TMI 10.7/19.4/21.3/37.0/85.5 GHz 1–2 days 25–50 km

GCOM-W1 AMSR2 6–89 GHz 1–3 days 31.25 km
DMSP SSM/I 19.36/22.23/37.0/85.5 GHz 1 day 12.5–25 km

Infrared

GOES ABI 10.5–12.5 µm
0.5–1 h 3–10 kmFY2S VISSR 10.3–11.3/11.5–12.5 µm

Terra MODIS 10.78–11.28/11.77–12.27 µm 12 h 1 km
NOAA AVHRR 10.3–11.3/11.5–12.5 12 h 1.1 km
ERS-2 ATSR-2 10.35–11.35/11.5–12.5 µm 1–2 days 1–2 km

FY-3 VIRR 10.3–11.3/11.5–12.5 µm 1–4 days 1.1 km
Sentinel-3 SLSTR 10.8–12.02 µm 2 days 1 km

S-NPP VIIRS 8–12 µm 16 days 750 m
Landsat-7 ETM+ 10.4–12.5 µm 1–16 days

100 mLandsat-8 TIRS 10.6–11.19/11.5–12.51 µm 16 days

Terra ASTER 8.125–8.475/8.475–8.825/8.925–
9.275/10.25–10.95/10.95–11.65 µm 16 days 90 m

So far, a large number of thermal infrared remote sensing images (RSIs) have been
widely used for surface temperature retrieval such as moderate-resolution imaging spectro-
radiometer (MODIS) [11], advanced very high resolution radiometer (AVHRR) [12], and
Landsat-8 thermal infrared sensor (TIRS) [13] images. MODIS and AVHRR data are pio-
neers in achieving mass production of free SST products on websites, which have become
the underlying supporting data in the world. Tang examined AVHRR SST and shipboard
measurements of the thermal plume from the Daya Bay [7]. Nie employed higher resolu-
tion Landsat data to monitor the thermal discharge near the Tianwan NPP [14]. However,
frequent cloud coverage [15], missing strip photograph, and low temporal resolution can
severely affect the actual effect of thermal discharge dynamic monitoring. Cloud coverage
creates many difficulties for subsequent target detection and identification, and also directly
reduces the accuracy of surface temperature retrieval.
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According to the band number and characteristics of infrared RSIs, researchers have
proposed a variety of surface temperature retrieval algorithms [16–19] which can be di-
vided into two categories: single-channel algorithms such as the radiative transfer equation
(RTE) algorithm [20,21] and the mono-window (MW) algorithm [22,23], and multi-channel
algorithms such as the split-window algorithm [24,25] and the nonlinear sea surface temper-
ature (NLSST) algorithm [12,26]. In 2001, according to the surface heat radiation conduction
equation, Qin linearized the Planck function and put forward an MW algorithm [27] that
simplified the calculation of the upward and downward atmospheric radiation and was
applied to SST retrieval of Landsat TM6 thermal infrared RSIs. Chen evaluated and com-
pared the performance of the RTE and MW algorithms [22,27,28] on SST retrieval from
Landsat-8 TIRS RSIs in the coastal water of the Hongyan River NPP [28]. Considering
various atmospheric influences, the RTE method is the most comprehensive and rational
algorithm, but the complex computation, inaccessible real-time atmospheric vertical pro-
file, and uncertainty of atmospheric profile parameters increase the error of SST retrieval.
Jimenez-Munoz proposed a generalized single-channel method that depended only on the
vapor content [23]. In terms of AVHRR, McMillin proposed a two-channel linear correction
method, namely the split-window algorithm, to obtain the SST quantitatively by elimi-
nating atmospheric influence [25,29]. Subsequently, associated scholars have put forward
many improved, different types of split-window algorithms according to the surface heat
radiation conduction equation and the discrepant atmospheric absorption theory of the
split-window channels. In 2020, Fu proposed a new split-window algorithm for retrieving
SST from Landsat-8 TIRS thermal infrared RSIs based on the variation of atmospheric water
vapor content [24]. Additionally, multi-channel algorithms also include the day/night
algorithm for MODIS data and the temperature emissivity separation algorithm applicable
for ASTER RSIs [13,30,31].

With the expansion of maritime military and civil demands, people’s requirements for
SST detailed distribution in small scale regions are increasingly stringent and it is especially
urgent to manufacture high-resolution SST retrieval products [32]. Aiming at elaborating
the interaction between human activities and the natural environment, SDGSAT-1 was
launched in November 2021, with the core payloads being a thermal infrared spectrometer
(TIS) and a multispectral imager (MII) that can acquire three spectral thermal infrared
images and multispectral RSIs of the Earth’s surface at an orbit altitude of 505 km to
provide higher precision, dynamic, multi-scale, and periodic rich information for SST
retrieval. The detailed specifications of the TIS and MII are shown in Table 2. To achieve
fine monitoring of thermal discharge of NPPs, in this paper, we propose a simplified split-
window-based temperature retrieval method (SW) suitable for SDGSAT-1 30 m TIS RSIs.
Specially, this method only requires atmospheric transmittance and surface emissivity by
counteracting the average atmospheric temperature to monitor the thermal discharge of
offshore NPPs.

Table 2. Technical and performance index of the SDGSAT-1 TIS and MII.

Payloads Spectrum (µm) Resolution
(m) NETD/SNR Radio-Calibration

Precision

TIS
B1:8–10.5

30 0.2 K@300 K Relative: 5%
Absolute: 1 K@300 K

B2:10.30–11.3
B3:11.5–12.5

MII

b1:0.374–0.427

10

≥130

Relative: 2%
Absolute: 5%

b2:0.410–0.467

≥150

b3:0.457–0.529
b4:0.510–0.597
b5:0.618–0.696
b6:0.744–0.813
b7:0.798–0.911



Remote Sens. 2023, 15, 2298 4 of 19

The remainder of this paper is organized as follows: First, in Section 2, we describe
the methodology for thermal discharge monitoring including data preprocess (geometric
and radiometric calibration), surface emissivity calculation, atmospheric transmissivity
calculation, and four different SST retrieval algorithms (RTE, MW, SW, and NLSST). In
Section 3, we analyze and discuss the experimental results from the four algorithms. Then,
we conclude the methods and its application in Section 4. Finally, some interferences in SST
retrieval and the prospects for future optimization are pointed out.

2. Methodology

SST retrieval is one of the indispensable steps in the study of thermal effluent distri-
bution. In this section, we introduce the conventional RTE, MW, and NLSST algorithms
and we propose the SW method based on 30 m TIS thermal infrared RSIs and 10 m MII
multi-spectral images of SDGSAT-1, as shown in Figure 1. First, the thermal infrared
and multi-spectral cloudless RSIs of the target regions after geometric and radiometric
calibration are selected to obtain the corresponding apparent radiance of the RSIs. Second,
in accordance with the red and near-infrared (NIR) bands of multi-spectral data, surface
emissivity is calculated to distinguish water from land. Then, we determine the atmo-
spheric profile parameters from the weather conditions of the target region at the imaging
time. Finally, according to the theory of surface-atmosphere radiative transfer, the SST of
target regions is retrieved using the four methods mentioned above.
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Figure 1. Flowchart of the thermal discharge temperature retrieval and monitoring of the NPPs.

2.1. Data Preprocess
2.1.1. Geometric Correction

The cloudless images covering the target NPPs should be geometrically corrected
based on the ground control points or digital elevation model, and the small geometric
positioning error will be helpful for subsequent processing. In this paper, the geometric
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correction process for the SDGSAT-1 TIS/MII and Landsat-8 TIRS RSIs employed in the
experiment had been previously completed [15,33].

2.1.2. Radiometric Calibration

Ground objects at different temperatures are reflected on the obvious gray discrepancy
in the infrared images. As shown in Equation (1), the apparent radiance Lλ of thermal
infrared and multi-spectral images can be calculated by using the calibration coefficients
provided by the official website:

Lλ = gain×DN + bias (1)

where gain and bias, respectively, represent the absolute calibration gain and offset, and
can be obtained from the meta-files, as shown in Table 3. DN is the gray value of the pixels.
The temperature (T) of thermal infrared images can be deduced from Planck’ law [34], as
shown in Equation (2):

T =
k2

ln
[

k1
Lλ(T)

+ 1
] (2)

where k1 and k2 are the specific thermal conversion coefficients depending on the wave-
length λ(µm), as shown in Table 3.

Table 3. Parameters for the radiometric calibration of the TIS/MII/TIRS.

Parameters TIS-B1 TIS-B2 TIS-B3 TIRS-B10 TIRS-B11 MII-Red MII-NIR

gain 0.003947 0.003946 0.005329 0.000342 0.000342 0.016096 0.019719
bias 0.167126 0.124622 0.222530 0.1 0.1 0 0
k1 1655.628 838.706 543.058 774.89 480.89
k2 1542.762 1342.719 1232.021 1321.08 1201.14

2.2. Surface Emissivity Calculation

Surface emissivity (ε) is one of the most important parameters in earth surface tem-
perature retrieval [35], which affects the radiation emitted from the Earth’s diverse surface.
The emissivity of a surface mainly depends on the material structure of the target sur-
face, the spectral range of the detector, and the pixel resolution. Surface emissivity varies
slightly with the wavelength and can be replaced by the surface emissivity at the channel’s
central wavelength. Generally, the Earth’s surface can be divided into water, towns, and
bare land, and their emissivity can be calculated by using the NDVI threshold method as
Equations (3)–(5) [13,36]. The spectral characteristics of water are obviously distinct from
others, whose surface emissivity can be estimated as 0.995 in surface temperature retrieval
(8–12 µm). Compared to land surface temperature retrieval, water pixels account for a
larger proportion in SST retrieval. Water-land separation is employed in SST retrieval to
independently retrieve the water surface temperature. For areas that are easily affected
by tides, the NDVI threshold method is often used for water-land separation. For areas
that are not easily affected by tides, the water surface can be directly extracted according to
fixed shoreline boundaries.

εwater = 0.995
εtowns = 0.9589 + 0.086× Fv − 0.0671× Fv × Fv

εbare−land = 0.9625 + 0.0614× Fv − 0.0461× Fv × Fv

(3)

Fv =

[
NDVI−NDVImin

NDVI−NDVImax

]2
(4)

NDVI =
P(Red)− P(NIR)
P(Red) + P(NIR)

(5)
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where Fv is the fractional vegetation. NDVI is the normalized difference vegetation index
and can be deduced from Equation (5). NDVImin/max is the minimum/maximum of NDVI
in the target region, which represents the pure soil/vegetation. Generally, NDVImin = 0.05
and NDVImax = 0.7. P is the pixel value of the radiometric calibrated red/NIR images and
can be calculated using Equation (1).

2.3. Atmospheric Transmissivity Calculation

Atmospheric transmissivity, which is affected by fluctuations in meteorological con-
ditions such as atmospheric pressure, humidity, and gas density, can change significantly,
and therefore, can have an obvious impact on infrared radiation transmission [37] and the
accuracy of SST retrieval. In view of the difficulties in obtaining real-time atmospheric pro-
file data, researchers have typically used MODTRAN, LOWTRAN, 6S, and other software
to simulate atmospheric transmittance τ [37]. For the MODIS, NIR images (B2/B19) can be
used to retrieve atmospheric water vapor content w(g/cm2); thus, some researchers haved
also estimated τ by simulating the relationship between w and the band-31/32 atmospheric
transmissivity τ31/32, as shown in Equations (6) and (7) [38]:

w = [0.02− ln(ref19/ref2)]/0.651 (6)

{
τ31 = 5.72− 4.69ew/42.05, R2 = 1.00
τ31 = −1.25 + 2.28e−w/12.44, R2 = 0.99

(7)

where ref19/2 is the band-19/2 surface emissivity of MODIS.

2.4. SST Retrieval

In the process of surface-atmosphere radiative transfer [39], the thermal energy mainly
radiates outward through two atmospheric windows: 3–5 µm and 8–14 µm [40]. The
energy received by a thermal infrared sensor includes three parts: the surface heat radiation
after atmospheric weakening, the upward atmospheric radiation received by the sensor,
and the surface-reflecting energy of the downward atmospheric radiation. Therefore, the
apparent radiance of RSIs is inevitably affected by surface temperature, surface emissivity,
and atmospheric transmission. Due to the influence of atmospheric absorption (especially,
water and gas absorption) and scattering, the total radiation received by the sensor does
not reflect the true radiation of the Earth’s surface, and therefore, atmospheric correction
is used to eliminate these radiation errors. It is necessary for SST retrieval to remove the
atmospheric radiation from thermal infrared RSIs to obtain the real reflectance, radiation,
and temperature of the surface. Surface temperature retrieval is essentially a type of special
atmospheric correction.

2.4.1. RTE Algorithm

Considering the various atmospheric influences, the RTE method is the most com-
prehensive and rational algorithm. Assuming that there is uniform atmosphere without
cloud interference, when the actual surface temperature is TS(K), the top atmospheric
radiation obtained by the thermal infrared imager is the apparent radiance Lλ, which is
composed of the upward atmospheric radiance Lλatm↑, the energy ελτλLλ(TS) from the
actual ground radiance passing through the atmosphere and finally reaching the detector,
and the reflected energy of the downward radiance (1− ελ)τλLλatm↓. The corresponding
blackbody radiation Lλ(TS) of the object is as shown in Equation (8) and the actual surface
temperature TS can be obtained by using Equation (2):

Lλ(TS) =
Lλ − Lλatm↑

ελτλ
−

(1− ελ)Lλatm↓
ελ

(8)

where ελ is the surface emissivity and τλ is the atmospheric transmissivity. Lλatm↓ is the
downward atmospheric radiance. In order to obtain the actual surface temperature TS by
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employing the RTE algorithm, the surface specific emissivity ελ, atmospheric transmittance
τλ, Lλatm↑, and Lλatm↓ should be estimated in advance. The abovementioned atmospheric
parameters can be simulated in MODTRAN if the air temperature, pressure, relative
humidity, elevation, and other meteorological data are known.

2.4.2. MW Algorithm

The MW algorithm can avoid calculation of the upward and downward atmospheric
radiation, according to Qin [27]. The calculation formula of the MW algorithm is shown as
Equation (9):

TS = {a(1−C−D) + Tsensor[b(1−C−D) + C + D]−DTave}/C (9)

where TS is the actual surface temperature (K). Tsensor is the brightness temperature, which
can be obtained by Equation (2). The coefficients a and b should be modified according
to the spectral response function if the spectrum changes. When 0◦C ≤ TS ≤ 70◦C,
a = −66.2795, a = −66.2795 and b = 0.4461 for Landsat-8 TIRS band-10 (10.60~11.19
µm) RSIs. C = ελτλ, D = (1− τλ)[1 + (1− ελ)τλ] are the intermediate variables. ελ
is the surface emissivity and τλ is the atmospheric transmissivity. Tave is the average
atmospheric temperature (K), which can be divided into three cases: tropic, summer in mid-
latitudes, and winter in mid-latitudes, as shown in Equation (10). The temperature near the
ground (T0) is usually replaced by the brightness temperature. The MW algorithm needs
to calculate the brightness temperature (Tsensor), surface emissivity (ελ), and atmospheric
transmissivity (τλ) to obtain the actual surface temperature TS:

Tave−summer = 16.0110 + 0.92621T0
Tave−winter = 19.2704 + 0.91118T0

Ttropic = 17.9769 + 0.91715T0

(10)

2.4.3. SW Algorithm

The split-window algorithm, applied mainly for AVHRR SST retrieval, can correct the
atmospheric radiation through the combination of two adjacent thermal infrared channels
with obviously different atmospheric absorption [41,42]. Currently, there are nearly twenty
publicly published split-window algorithms and their basic form is shown as Equation (11),
representing surface temperature through a linear/nonlinear combination of brightness
temperatures in multiple bands [16]:

TS = A0 + A1Ti + A2Tj (11)

where TS(K) is the actual surface temperature; Ti, Tj are, respectively, the brightness temper-
ature of band-i and band-j; A0, A1, A2 are the parameters determined by the atmospheric
transmissivity and surface emissivity.

SDGSAT-1 TIS, containing three thermal infrared bands with a spatial resolution of
30 m, has the advantages of more thermal channels and higher spatial resolution which is
suitable for surface temperature retrieval in the offshore sea. The brightness temperature
difference between TIS B2 and B3 of forty samples are calculated by using Equations (1)
and (2). As shown in Figure 2a, there are seven samples less than zero and thirty-three
samples greater than zero. It is obvious that the radiation of the two adjacent bands is
actually different. In this paper, we select the TIS B2 images as the data source for the RTE
and MW algorithms and take the combination of the TIS B2 and B3 images as the input for
the SW and NLSST algorithms.
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First, we construct the radiative transfer equation for TIS B2 and B3 images as Equation (12).{
L2(T2) = ετ2(θ)L2(TS) + [1− τ2(θ)]× [1 + (1− ε)τ2(θ)]L2(TT)
L3(T3) = ετ3(θ)L3(TS) + [1− τ3(θ)]× [1 + (1− ε)τ3(θ)]L3(TT)

(12)

where T2, T3(K) are the brightness temperature of the TIS B2 and B3 RSIs, respectively.
TS(K) is the actual surface temperature and TT(K) is the average atmospheric temperature.
ε is the surface emissivity (8–12 µm) and τ2(θ), τ3(θ) are the atmospheric transmissivity
when the zenith angle of TIS is θ. L2(T2), L3(T3) are the apparent radiance received by
the sensor and L2(TT), L3(TT) are the apparent radiance corresponding to the average
atmospheric temperature. It is difficult to directly calculate the surface temperature because
of the complex nonlinear properties of the Planck equation [34]. We provide the scatter plot
between temperature and apparent radiance based on the TIS B2 and B3 images, as shown
in Figure 2b. It is found that the relationship between temperature and apparent radiance
is approximately linear in 0–50 ◦C, as Equation (13). Then, Equation (12) can be reduced to
Equation (14) by counteracting TT. Finally, TS can be estimated only if ε and τ2(θ), τ3(θ)
are predicted according to Sections 2.2 and 2.3.{

L2 = a2T− b2 = 0.15T− 35.02, R2 = 1
L3 = a3T− b3 = 0.13T− 29.55, R2 = 1

(13)

Ts =
M3M2(

b2
a2
− b3

a3
) + M3(a2T2 − b2)−M2(a3T3 − b3) + Pb2 −Qb3

(Pa2 −Qa3)
(14)
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M3 = {a3(1− τ3)[1 + τ3(1− ε)]}
M2 = {a2(1− τ2)[1 + τ2(1− ε)]}

P = M3τ2ε

Q = M2τ3ε

(15)

where a2 = 0.15, b2 = 35.02, a3 = 0.13, b3 = 29.55 and M2, M3, P, Q are the intermediate
parameters determined by the atmospheric transmissivity and surface emissivity.

2.4.4. NLSST Algorithm

The relative spectral response functions for different channels of the TIS, AVHRR,
MODIS, and TIRS sensors are shown in Figure 4 and the setting of the two thermal infrared
bands (B2: 10.30–11.3 µm and B3:11.5–12.5 µm) of SDGSAT-1 TIS is consistent with the CH4
(10.30–11.3 µm) and CH5 (11.5–12.5 µm) of NOAA AVHRR, as shown in Tables 1 and 2.
The NLSST algorithm is specially designed for AVHHR CH4 and CH5. The SST results
retrieved from the SSW algorithm should be theoretically similar to those of the NLSST
algorithm for the same RSIs.
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Here, we take the NLSST algorithm [12] as a contrast to evaluate the accuracy of the
SW algorithm, as Equation (16):

TS = C1T4 + C2(T4 − T5) + C3(T4 − T5)(secθ− 1) + C4 (16)

where TS(K) is the actual surface temperature and T4, T5 are the brightness temperature
(K) of the AVHRR CH4 and CH5 RSIs, respectively. θ is the zenith angle of the sensor.
c1 = 1.0222, c2 = 2.31, c3 = 0.83, c4 = −280.39, which are regressed by the drifting and
fixed buoys data in the tropical Pacific.
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3. Results and Discussion
3.1. Experimental Data

In this study, the Tianwan (TW), Ling’ao (LA), Yangjiang (YJ), and Hongyan River
(HY) NPPs and their adjacent sea areas are taken as our experimental areas, and their
geographical distribution is shown in Figure 5. The TW NPP, located in Lianyungang
City, Jiangsu Province, is the largest single capacity NPP which can accommodate eight
nuclear power generation units in the order of megawatts with a total installed capacity
of 8–10 million kilowatts and an annual power generation of 60–70 billion kilowatt hours.
The LA NPP is China’s first large commercial NPP with a total of six megawatt class
pressurized water reactor nuclear power units, located in Dapeng New District, Shenzhen
City, Guangdong Province. It has an annual generating capacity of about 45 billion kilowatt
hours. The YJ NPP, located in Dongping Town, Yangjiang City, Guangdong Province, is
the only private NPP in southern China with a total installed capacity of 1100 megawatts.
The HY NPP, located in Hongyan River Town, Wafangdian City, Liaoning Province, is the
first NPP in northeast China with a total of six million kilowatts pressurized water reactor
nuclear power units.
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Figure 5. The geographical distribution of the experimental data.

Eighteen TIS images and thirteen MII images, with less than 5% cloud cover, of the
four NPPs are selected and the corresponding Landsat-8 TIRS images in the same place
are picked out as the contrast. The images’ detailed information is shown in Table 4 and
all the experimental images have been geometric corrected and cropped to the same size
(1000 pixels × 1000 pixels). ‘Image Name’ in Table 4 is in the form ‘NPP-sensor-time’.
‘TW-TIS-220517’ represents the TIS image of the Tianwan Nuclear Power Plant taken on
17 May 2022.
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Table 4. Detailed information about the selected images.

Regions Image Name Acquisition Time Solar Zenith Angle (◦)

TW NPP

TW-TIS-220517 21:17 113.602
TW-TIS-220615 09:54 29.476
TW-TIS-220625 10:03 29.749
TW-TIS-220911 10:02 41.492
TW-TIS-230111 09:56 64.582
TW-TIS-230127 09:54 61.806
TW-MII-220504
TW-MII-220615
TW-MII-220625
TW-MII-220911
TW-MII-230111
TW-MII-230127

TW-TIRS-200526 08:36

LA NPP

LA-TIS-220307 21:46 135.027
LA-TIS-220625 10:06 31.078
LA-TIS-220712 21:45 120.520
LA-TIS-221221 10:14 56.250
LA-MII-220625
LA-MII-221221

LA-TIRS-211230 10:46

YJ NPP

YJ-TIS-220722 21:52 122.796
YJ-TIS-220827 21:59 130.618
YJ-TIS-221211 10:14 54.269
YJ-MII-220406

YJ-TIRS-211212 10:59

HY NPP

HY-TIS-220520 09:47 31.565
HY-TIS-220629 21:01 104.302
HY-TIS-220911 10:01 43.620
HY-TIS-221117 09:48 63.627
HY-TIS-230111 09:45 68.855
HY-MII-220520
HY-MII-220911
HY-MII-221117
HY-MII-230111

HY-TIRS-211207 08:35

3.2. Results and Discussion

In this paper, twenty-two thermal infrared RSIs that originated from the TIS/TIRS
at the TW, LA, YJ, and HY NPPs are selected to quantitatively retrieve SST. As shown
in Figure 1, first, we crop the selected images to obtain experimental images that fully
cover the potential temperature rising area. Then, four SST retrieval algorithms (RTE, MW,
NLSST, and SW) are employed to retrieve SST. Next, we grade the SST distribution and
mark the temperature rise levels with different colors. Finally, we count the distribution
acreage at every level.

The SST that is not affected by thermal pollution is called the datum T0. Objective
and accurate T0 is of great significance for evaluating the thermal contamination of NPPs
and methods for obtaining T0 must avoid the influence of potential thermal discharge.
Additionally, T0 should represent the average temperature in the measurement area at
different times as much as possible. For open seas, SST in the same area before the NPPs’
operation can be taken as T0. For semi-closed seas, the average SST of the area not polluted
by thermal discharge can be used as T0. In this experiment, all four NPPs are semi-closed
seas and the average SST of the area away from temperature rising area is defined as datum
T0. After obtaining the SST and datum T0, the temperature rising area is determined. In this
paper, we formulate the specification and mapping for temperature rise levels, as shown in
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Table 5, and different colors are used to mark the temperature rise levels. According to the
number of pixels occupied by each temperature rising level and the spatial resolution of
RSIs, the distribution acreage and area proportions of different temperature rise levels can
be derived.

Table 5. Specification and mapping for temperature rise levels.

Temperature Rise Levels ∆T=TS−T0(
◦C) R G B

Datum T0 ∆T = 0 40 40 204
L1 0 < ∆T ≤ 1 40 204 40
L2 1 < ∆T ≤ 2 204 149 40
L3 2 < ∆T ≤ 3 204 95 40
L4 3 < ∆T ≤ 4 204 40 40

3.2.1. SST Distribution

The SST retrieved from the SDGSAT-1 TIS and Landsat-8 TIRS images of the TW NPP,
LA NPP, YJ NPP, and HY NPP are, respectively, displayed in Figures 6–9. It is obvious
that the TIS images can depict more prominent boundary and clearer details than TIRS
images because of higher spatial resolution (30 m). Considering that the distribution of
thermal discharge is easily influenced by the season, tides, and geographical location, the
multi-temporal and higher spatial-resolution TIS data are more suitable for describing the
subtle changes in thermal discharge than that of Landsat-8 TIRS, MODIS, and AVHRR data.
Therefore, TIS data are a better option for monitoring subtle variations in thermal discharge
and for evaluating marine environments.
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Figure 7. The retrieved SST from the TIS and TIRS images of the LA NPP: (a) TIS; (b) TIRS.
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Figure 7. The retrieved SST from the TIS and TIRS images of the LA NPP: (a) TIS; (b) TIRS. 
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Figure 8. The retrieved SST from the TIS and TIRS images of the YJ NPP: (a) TIS; (b) TIRS.
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Figure 9. The retrieved SST from the TIS and TIRS images of the HY NPP: (a) TIS; (b) TIRS.

3.2.2. SST Comparison

In Figures 10–13, thirty-one points are uniformly sampled from the SST results re-
trieved from the TW NPP, LA NPP, YJ NPP, and HY NPP TIS images, respectively. The
brightness temperature of B2 (B2-Tsensor), brightness temperature of B3 (B3-Tsensor), SST
retrieved by the MW algorithm (MWSST), SST retrieved by the RTE algorithm (RTESST),
SST retrieved by the NLSST algorithm (NLSST), and SST retrieved by the SW algorithm
(SWSST) of the 31 sampling points are statistically shown in Figure 14.
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Figure 10. Spatial distribution of the 31 sampling points from the TW NPP: (a) TIS; (b) TIRS.
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Figure 11. Spatial distribution of the 31 sampling points from the LA NPP (a) TIS (b) TIRS.
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Figure 14. The comparisons of B2/B3 bright temperature, MWSST, RTESST, NLSST, and SWSST of
the 31 sampling points around the four NPPs: (a) TW NPP; (b) LA NPP; (c) YJ NPP; (d) HY NPP.

The Experimental results show the following:

(1) MWSST, RTESST, NLSST, and SWSST are all higher than B2/B3-Tsensor by about
3–5 ◦C.

(2) The SST retrieved from the split-window algorithms (SWSST and NLSST) is generally
higher than that of the single-channel algorithms (MWSST and RTESST), which is
largely related to the fact that the split-window algorithms can correct atmospheric
effect and obtain more accurate SST.

(3) The values of SWSST and NLSST are close to each other, with a small difference of
0.5 ◦C. It is inferred that the small difference is relevant to the NLSST algorithm’s
empirical coefficients, which have not been updated for a long time. The small
difference also confirms the theoretical hypothesis stated in Section 2.4.4, which
relatively verifies the accuracy of the SW algorithm.

3.2.3. Thermal Discharge Monitoring

As shown in Figures 15–18, five different colors are used to mark the temperature
rise levels retrieved from the TW NPP, LA NPP, YJ NPP, and HY NPP TIS images under
different months. Afterwards, the number of pixels and the acreage occupied by differ-
ent temperature rise levels are calculated (the corresponding acreage of a single pixel is
30 m × 30 m). As shown in Figure 19, the statistical analysis shows that:

(1) Obvious seasonal variation of the temperature rise area is monitored near the outfall
of the four NPPs. The proportion of L1 temperature rise area is the largest (about
15 km2 in winter and 5 km2 in summer) and the smallest proportion is the L4 area
(about 2 km2 in winter and 0.5 km2 in summer).

(2) The highest temperature difference is about 4 ◦C, and the total acreage of temperature
rise area is about 25 km2, diffusing in a feather-shape to distant natural seas.

(3) The temperature rise areas of different NPPs have obvious distinctions influenced by
terrain, climate, wind direction, tides, and geographical location.
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4. Conclusions

In this paper, we propose a simplified split-window-based temperature retrieval
method (SW method) that is suitable for SDGSAT-1 TIS RSIs and which needs only atmo-
spheric transmissivity and surface emissivity by counteracting the average atmospheric
temperature. We quantitatively retrieve the SST of the TW NPP, LA NPP, YJ NPP, and HY
NPP with thermal infrared RSIs from the SDGSAT-1 TIS and Landsat-8 TIRS. The TIS im-
ages (30 m) can depict more prominent boundary and clearer details than the TIRS images
(100 m) because of higher spatial resolution. The SST retrieved from the split-window algo-
rithms (SSWSST and NLSST) is generally higher than that of the single-channel algorithms
(MWSST and RTESST), which is largely related to the fact that the split-window algorithms
can correct atmospheric effect and obtain more accurate SST. The obvious seasonal varia-
tions in the temperature rise area are monitored near the outfall of the four NPPs. Through
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the above research, we find that the SDGSAT-1 TIS images can better describe the detailed
distribution of thermal discharge based on the SW method, which provides a feasible and
efficient method to monitor thermal pollution in small-scale regions. However, there are
some uncertain factors in the retrieval process, including water and gas absorption, cloud
coverage, mixed pixels, and proximity effect, which may cause some deviations in the
retrieval results. Preprocessing of thin clouds can restore real surface information and
reduce retrieval errors, which is an essential link in remote sensing analysis and application.
Therefore, accurate atmospheric correction and cloud detection preprocessing are also
important steps in the future optimization of thermal discharge monitoring.
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