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Summary. The present paper analyzes the porous constant gap externally pressurized conical bearings 
when the slider is rotating with uniform angular velocity. The lubricant is assumed to be incompressible, 
and its viscosity varies exponentially with temperature. The lubricant inertia due to rotation of the slider 
is considered but the convective inertia is neglected. The energy equation is used to determine the tem- 
perature generated in the lubricant film. The governing system of coupled momentum and energy equa- 
tion is solved numerically, using finite difference method, to determine various bearing characteristics. It 
is observed that for the surfaces which are highly porous the inlet pressure decreases remarkably, resulting 
in reduced load capacity of the bearing, and the torque remains unaffected with respect to variation in the 
permeability. 

Notation 

C 

D 
E 
h 
h~ 
H = hp/h  

k 
k 
L 

M 

P 
p* 

Pr 
Q 
R 
Re 
Re* 
T 

U~ V~ W 

~* ~ V* ~ W* 

U, V, W 
x, y, r 
X i n  ~ Xo 

O~ 

r] 

specific heat of the fluid 
dissipation parameter 
a type of Eckert number 
lubricant film thickness 
thickness of the porous matrix 
nondimensional thickness of the porous matrix 
thermal conductivity 
permeability 
load capacity of the bearing 
torque on the bearing surface 
gauge pressure 
pressure in the porous matrix 
Prandtl number 
flow rate 
rotational parameter 
Reynolds number 
modified Reynolds number 
temperature of the lubricant 
temperature of the pad and the slider, respectively 
velocity components in the x, y and .O directions, respectively 
velocity components in the porous matrix 
reference quantities for the velocity components 
conical coordinate system 
inlet, outlet positions 
angle between stationary pad surface and a plane perpendicular to the bearing axis 
viscosity-temperature exponent 
viscosity of the lubricant 
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density of the lubricant 
Uo kinematic viscosity of the lubricant 
r/o viscosity of the lubricant at pad temperature 
co angular velocity of the slider 

A bar above a variable indicates a corresponding nondimensional quantity. 
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1 Introduction 

Several researchers have attempted to study porous bearings with various geometries. Morgan 
and Cameron [1] were perhaps the first to study porous journal bearings. Their analytical 
work has been further investigated and extended by Cameron et al. [2]. The latter research 
indicated that for porous metal bearings full hydrodynamic conditions can be maintained up 
to a certain critical load, provided there is a sufficient supply of oil. Above this critical load, 
the eccentricity ratio approaches unity, implying that the shaft touches the inner surface of 
the bearing, and consequently hydrodynamic lubrication ceases. Howarth [3] has discussed 
both experimentally and theoretically the performance of an externally pressurized bearing 
using circular porous thrust pads. Shukla and Isa [4] discussed the characteristics of an exter- 
nally pressurized porous thrust bearing with a power law lubricant. Roy and Biswal [5] inves- 
tigated externally pressurized conical and squeeze film bearings with a viscoelastic lubricant 
and studied the effect of inertia and porosity of the bearing material. 

No significant effort seems to have been made to analyze thoroughly the thermal effects in 
porous conical bearings. Thermal effects in externally pressurized non porous conical bearings 
have been analyzed in detail by Kennedy et al. [6]. The convection terms were dropped in the 
energy equation. In a subsequent paper Sinha and Rodkiewicz [7] considered convection as 
well as dissipation effects. In a further development Chandra et al. [8] studied the influence of 
convective inertia on the characteristics of a parallel gap conical bearing. In order to fully 
comprehend the effect of inertia, both the convection as well as the dissipation terms were 
retained in the energy equation. All these studies were made on non-porous conical bearings. 

The present paper is thus devoted to the study of thermal effects in externally pressurized 
porous conical bearings with temperature dependent viscosity given by the relation 

r /=  r/o exp [-/3(T - T1)], (1) 

where ~/o is the dynamic viscosity of the lubricant at pad temperature T~. The gap between the 
slider and the pad is assumed to be constant. In view of the model suggested by Kennedy 
et al. [6] only rotational inertia is considered, and convective inertia terms are neglected. Simi- 
larly, in the energy equation it is assumed that the convective term is negligible as compared 
to the dissipation term (for details one may see the order of magnitude analyses and numerical 
examples in [6]). This work is thus a an extension of the work by Kennedy et al. [6]. 

2 Governing equations 

The geometry of the problem is shown in Fig. 1. The problem considers the analysis of steady 
flow of an incompressible lubricant in the constant gap of a conical bearing externally 
pressurized through the central recess. The upper part of the bearing, the slider, rotates with 
constant angular velocity co, and both parts of the bearing are maintained at constant but dif- 
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Fig. 1. Geometry of conical bearing with porous pad 

ferent temperature, T, and Tz for the upper and lower (pad) parts, respectively. The conical 
coordinate system x, y, r is linked with the cylindrical coordinate system r, r z by the follow- 

ing transformation: 

x = r c o s ~ +  zsinc~, y = - r s i n c ~ +  zcos~, r 1 6 2  (2) 

The gap between the slider and the pad is assumed to be constant. The pad is taken to be 
porous, and the bearing is fitted into the solid housing. It is assumed that the permeability of 
the porous pad is homogeneous and isotropic and the flow within it satisfies Darcy's law, i.e. 

k Op* (3) 

k 0 p *  
v* - , (4) 

q Oy 

where k is the permeability, ~ is the viscosity of the lubricant, p* is the pressure in the porous 
matrix, and u* and v* are velocities in the porous matrix in x- and y-direction, respectively. 
Further, Op*/Or = 0 due to axial symmetry of the flow, thus w* = 0. 

Using the conical coordinate system (2) the continuity equation for flow in the porous pad 
is given by Kennedy et al. [6], 

07ff GgV" lZ* COS Oz -- V* s i n  O~ 
+ + = 0 ,  (5) 

x cos c~ - y sin c~ 

whereas the continuity equation for flow in the gap using relation (1) is given by Kennedy et 
al. [6], 

0g 0~ g 
§ ~Y=+~ = 0 .  (6) 
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It may be noticed that the continuity equation for the porous pad appears to be different 
from that for the gap, This happens because of  the order of  magnitude analysis for the gap 

(see the Appendix of  [6]), 

The other governing equations are 

Mom. x osg /~ - exp [/3(T - 1)] (7) 
092 off of~ ~ ' 

02or OT Ofv 
Mom.r  ~ - - / ~  OO 0 9 - - 0 '  (8) 

025r ( O ~ )  2 
Energy ~-+Dexp[-~?(T- I)] N = 0, (9) 

where 

x y u v w Q 
x = - - ,  9 = ~ ,  ~ =  9 =  w =  U -  

zo U ' V ' W ' 2~rxoh cos a 

V h U, W WXoCOSC~, T T r/ . . . . .  , ~ : - : ~ p  [-5(T - i)], 
Zo Tl ~o 

ph 2 rlo 21rW2Xo 2 h 3 cos 3 o~ 
, 3 = 5 ~ ,  p -  . o = - - ,  R =  

%xoU ' 0 uoQ ' 

D -  Re* ' R e -  , R e * = R e  
//o 

(m) 

Further, using the nondimensional parameters, 

=--k g,=__u* 9*=--v* p,_ p*h 2 
Xo 2 U V ~oxoU 

( n )  

Eqs. (3)-  (5) transform to the following form: 

p* 

9" = _~e4 exp [9(7 ~ - 1)] 0~ ' 

9' 
0~* 0~* g* cos c~ - -~- sin a 

o ~ + ~  ~, . = 0 ,  
;~* CO80~  - -  -~ -  s i n  oz 

(12) 

(13) 

(14) 

where 6 = Xo/h. 

Continuity requirements of  flow in the porous matrix give the dimensionless equation 

[ 0p* o~*] 
o2 ,0 2 k o2 , LCOS   6sinoz NJ = O, 

~ -  + ~ cos oe 
(Is) 

where it is assumed that 2 cos a > (h/xo)  ~ sin c~ as h/xo  << 1 and c~ is not close to 90 ~ 
These equations are subject to the boundary conditions 

g (x, O) = g (~, 1) = O. (16) 
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Matching of the normal components of velocities at the interface (Y = 0) of the porous 
surface (pad) and the fluid film gives 

v (~, 0) = ~* (~, 0). (1'7) 

Since the slider is taken to be non-porous, therefore 

(:~, 1) - 0, (18) 

also 

w(~,0) = 0 ,  ~(x,  1) = ~ ,  

T(x,O) = 1, ~(:< 1) = ~<, 
(19) 

~* ( ~ , - H )  : ~* (~ , -H)  = 0, 

p(1) = 0, 

where H = hp/h, hp is the thickness of the porous matrix. 
The second condition in (19) implies fixed temperature boundary conditions. These condi- 

tions have been frequently used in recent years by several authors. A discussion in this regard 

is given by Saxena et al. [9]. 
The third condition in (19) implies that there is no flow across the porous matrix (i.e., at 

y = -h ; ) .  This is justified since the porous matrix is assumed to be fitted in the solid housing. 
Continuity of pressure at the interface (9 = 0) gives 

/5(~) : /5* (~  o).  (20) 

3 Method of solution 

Since the peripheral length of the bearing is usually much larger than the thickness of the 
bearing shell, the pressure gradient in the porous matrix is assumed to be linear across the 
material of the bearing and is zero at the outer surface of the bearing, Mak and Conway [10]. 
This greatly simplifies the analysis. Thus, the following form of 0/5*/@ is assumed: 

0/5* = 9(~) (9 + i-i). (21) 
09 

It satisfies the condition that ~ * / 0 9  = 0 at 9 = - H ,  which shows that there is no flow of 
lubricant outside the porous matrix as the bearing is fitted into the housing. 

Hence, 

~1"~=o = -f~64Hg (Y)" (22) 

Equation (I 5) along with Eq. (21) gives 

1 [02/5 * 1_ Op*] 2"eosoz 
9(2) = - ~  -~-z2 +2 02J ( 6 2 e o s ( ~ r s i n a )  ' (23) 

Thus, using the continuity of pressure at the interface of the oil and pad we get 

, cosa d ( d / 5 )  (24) 
vl~=~ = -fc53H (&~cos~-~/sinc~) d-~ x ~ . 
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The continuity equation (6) with the help of boundary conditions (17) and (18) along with 
Eq. (24) gives the matching condition 

1 1 

. . . .  7 s cos oz - H sin c, ds s ds 
0 

(2s) 

where it is assumed that 

1 
fu(:c,9) d 0 = l  at 2 = 1 .  (26) 
0 

4 Numerical  method 

The system of Eqs. (7)- (9) has been discretized and solved simultaneously. Central difference 
representation has been used for the derivatives with respect to ~. Using the finite central 
difference scheme according to grid details shown in Fig. 2, Eqs. (8) and (9) can be written as 
follows: 

1 [@(i , j  + 1) + w ( i , j -  1)] 

[ e ( <  j + 1) - ~ (i, j - 1)] IT (i, j + 1) - 7 ~ (i, j - 1)] 
8 

1 [7~ ( i , j+  i)  + 7 ~ ( i , j -  1)] 

D 
+ ~- exp [ - ~  (2 ~ ( i , j )  - 1)] [@ ( i , j  + 1) - @ ( i , j  - 1)] 2 . 

(27) 

(2s)  

~ ( i , m y ) = O  
j~my 

j=l 
10,0)  x=Xln  

I 

i , j  

i , , j - I  

~ ( l , i ) = ~ ' * ( i , l )  

POROUS PAD 

1 
- -  *x,7 

T 

~ = 1  x 

Fig. 2. Grid details 
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Fig. 3. Flowchart 

A Gauss-Seidel iterative process is used to evaluate ~ (i, j) and 2r (i, j) as shown in the flow 
chart (Fig. 3) using the convergence criterion given by 

srlo, ( ,j)  s(i,j) < E (29) 
Sncw(i,j) - ' 

where S represents g, ~, 2r and e is the accuracy parameter. 
Having found @(i,j) and T(i,j),  Eq. (7) is solved for g(i,j) by assuming dp/(d~) (i) and 

using the finite central difference scheme 

1 
,g(i,j) = ~ [ g ( i , j +  1) - ~ ( i , j -  1)] 

-(AY)~2 exp[~ ( T ( i , j ) -  1)J [ ~ ( i ) -  R (@(i'J))~l 

- ~  [(z(i,j + 1) - a ( i , j -  1)] [T(i,j + 1) - T ( i , j -  1)1 ; (30) 
8 

g(i, j) are also determined using a Gauss-Seidel iteration process with the same convergence 
criterion. Marching begins from the outlet (i = rex) to the inlet (i = 1) assuming 
d~/(d~2) (rex). The matching condition (25) is used to check the validity of the assumed pres- 
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sure gradient dp/(dx) (ram). If  the assumed value of @/(dY:) (rex) fails to satisfy (25) at the 
outlet, its value is modified and the same procedure is repeated. Then we proceed to the grid 
point i = m x  - 1 and the above mentioned procedure is repeated. This procedure is continued 
for each mesh point until (25) is satisfied for all points of the mesh, including the inlet (i = 1). 
A flow chart giving details of this method is shown in Fig. 3. 

The above mentioned process determines not only the velocity distribution at each grid 
point but also the pressure gradient. Pressure is then found by using the forward difference 
formula 

@ 
p( i )  = p ( i  + 1) - z x z  ~ (i) . (31) 

5 Load capacity and torque 

Once the pressure distribution is known, the bearing characteristics, load capacity and torque 
of the bearing have been calculated by using the following formulae. The nondimensional 
load L of the bearing is given by 

1 

rcx02r/0Ucos 2 c~ \ d2/ 
'iin 

and the nondimensional torque M of the bearing by 

I 

2~0.04~ cos~ ~ = 22 exp [ -~(#  - 1)] N de. (33) 
X.in 

The integrals which appear in (32) and (33) are evaluated numerically by Simpson's rule 
using the previously obtained values of @/&2 and ~. 

6 Results and discussion 

Numerical values for various bearing characteristics are obtained by taking /~ = 60, 
xi,~ = 0.10 and/3 = 0, 1, 5. H and 6 are taken to be 102 and 2 • 10 a, respectively. The nondi- 
mensional permeability/T varies from 0 to 1 x 10 10. In the limiting case/~ = 0, both the sur- 
faces of the bearing become nonporous, and the present problem reduces to the one discussed 

by Kennedy et al. [6]. 
In accordance with Saxena et al. [9] the value of D has been taken as 1.5. 
It has been observed by Kennedy et al. [6], and Chandra et al. [8] that cooling of the slider 

is advantageous, as it increases the load capacity and decreases the friction in the bearing. In 
view of this, results are presented for the case of cool slider-hot pad condition only, i.e. for 

2P~ = 0.8. 
It is to be mentioned that in the present analysis values of @(2, 9) and 5~(x, 9) remain simi- 

lar to those reported by Kennedy et al. [6]. This happens because Eqs. (27) and (28) do not 
involve the permeability parameter/~. So, these quantities have not been discussed here, 
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Fig. 4. Effect of permeability /~ on velocity distribution along �9 direction at different cross-sections for 
R =  60 

6.1 Velocity distribution 

Figures 4 (R -- 60) and 5 (R = 150) show the effect of/~ on the velocity ~(:5, f) at different 

cross-sections of  the bearing for/3 = 1 and 5. For /3  = 1 as well as 5, the velocities g(s 9) at 

all the values of/v are highest near the inlet (Y, = 0.19). For  ~ = 1, the velocity profile g(2,, 9) 

appears to be symmetric about the centre line. Departure from the symmetric nature of  the 
flow begins to appear from the central region (i.e., for ~ > 0.55), and the lubricant in the 

upper half  of  the film is seen to move faster than that in the lower half. This behavior is most 

significant in the outlet region and is due to rotation of  the slider. For /3  = 5, the symmetric 
nature of  the flow is slightly disturbed, and the lubricant near the pad seems to move faster. It 

is also observed that for a given ,~ the value of  ~2(a?, 9) continuously decreases as the lubricant 
moves towards the outlet in case of/~ -- 1 as well as / )  = 5. It happens due to the conical geo- 

metry of  the problem which shows continuous increase in the area of  cross-section through 
which the lubricant passes. These observations are similar to those of  Kennedy et al. [6]. 

Further it is seen from Fig. 4 that ~(2-, 9) decreases as the permeability parameter/~ increases 
for all the values of  2) which may be due to the increased filtration with increase in /~. The 
decrease in u(2~, 9) is more significant in the inlet zone. However, as the lubricant moves 
towards the outlet (s = 1.0), the decrease in g(~, 9) becomes lesser, and at the outlet the 

curves for all values of  ~ coincide. Numerical calculations yield negative velocities in the outlet 



224 P. Sinha et al. 

! ' 
I 0 . 5  

\ 
o.o k 
-4.( 0 

I R = 1 5 0  I 

. . . .  ~ - 0 . 0  
= 16 I~ ~ o.5x 

---,>..--k = lx l f f  I0 

0 

\\ 

// 

I / 

I l 
4,0 

1.0 
I ? 
I ? 

,? 

0." '~' 0.5 

0.0 ~ / /  0.01 
8. 0 -4.0 0 . 0  4.0 -4,0 

] 1.0 1.0 ~ \ \  

t I / ! /  ",,I 

., l J  / 

0 . 0  ~ ~ 0 .0  , I 
-4.0 0.0 4.0 8.0 -4,0 C 

,r. 
i " \  
I 

0.0 4.0 
k \  I.o 5 

I \  

' / '~  i," / 
!/ ,! 
r z 0.0 , ~1 , 
0 4.0 -4.0 0.0 4.0 

s  s  ~" �9 1.0 

Fig. S. Effect of permeability /~ on the velocity distribution along the ~-direction at different cross- 
sections for/~ = 150 

region f rom/~ = 80 onwards. However, these values are so insignificant that the flow reversal 

cannot be depicted graphically. 

As R is further increased to 150, the flow reversal becomes significant (Fig. 5) as was 

observed by Kennedy et al. [6]. For R = 150, fi = 1, there is no reversal of  flow up to 
/~ = 0.5 • 10 -1~ However, as/~ increases to 1 x 10 -10, there is a significant back-flow even in 

the mid region (Y = 0.55). This is because of  the porous nature of  the pad. At higher values of  

a larger amount  of  lubricant is sucked in by the pad resulting in a decreased velocity of  the 
lubricant in Y-direction in the fluid film region. At the outlet the lubricant at higher values of  

/~ moves forward to maintain the fixed flow rate according to relation (26), and the curves for 
all values of/~ become identical. Mathematically, this is justified in view of  (25) and (26). It is 

also seen that at the outlet the depth to which the flow reversal penetrates from the stationary 

surfaces is reduced as compared to that in the mid region. At R = 150, fi = 5 similar flow 
behaviour is observed but the reversal of  the flow is more prominent than that at ~ = 1 and 
begins to appear from k = 0.5 • 10 -l~ onwards. 

6.2 Pressure distribution 

Figures 6 (/3 = 0), 7 (/3 = 1) and 8 (/3 = 5) show the effect of  ~ on the pressure distribution for 
R = 60. It is seen that commencing from the inlet the pressures continuously fall which is 
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Fig. 9. Effect of/3 on pressure distribution at 
R = 60 and/~ = 0.5 • 10 -l~ 

because of  the viscous na tu re  of  the flow. The inlet  pressure goes down  signif icantly as 

increases, bo th  for ,~ = 1 a n d  5. This  is unders tandab le ,  since ~(~, y) decreases significantly 

with respect to ]~ in the inlet  region as was observed earlier (Fig. 4). Also,  higher values of  l~ 

indicate  tha t  a larger a m o u n t  of  lubr ican t  enters in the porous  pad  th rough  capil lary act ion 

which results in a pressure d rop  in  the fluid film region. Thus ,  it is likely that  for the surfaces 

which are highly porous  the pressure m a y  reduce to such an  extent  that  a fihn of  the required 

thickness m a y  n o t  be ma in ta ined .  
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Fig. 11. Torque vs. viscosity coefficient '~ (independent 
of permeability k) 

The effect of/3 in the present case is similar to that observed by Kennedy et al. [6] in the 

nonporous case (/~ = 0). Near the inlet, the pressures at fl = 5 are much higher than those at 

/3 = 1 for all values of/~. This effect is not  unexpected as a cool slider hot-pad situation is 
considered here, and cooling of  the slider at higher values of/3 indicates the increase in vis- 

cosity of  the lubricant close to the slider, which results in the higher pressure at higher values 

of/~. 

Figure 9 shows that for 0.1 < z < 0.6 the pressure at/3 = 5 is higher than that at ~ = 1 for 
a fixed value of/~ = 0.5 x 10 -l~ As ~ further increases, it becomes slightly lesser than those at 

/3 = 0 and 1. However, this variation is not very significant. 

6.3 Load capacity and torque 

Figure 10 shows the load versus ]~ for /~  = 60 and for different values of/3. It is seen that the 

load capacity of  the bearing decreases with increase in k. This is in view of  the reduced pres- 

sure with an increase in /c as observed earlier (Figs. 6 -8 ) .  For  fl = 0 the load capacity at 
/~ = 1 x 10 -l~ is almost zero. It is also seen that at /3 = 5 the load capacity is remarkably 

higher than that at/3 = 0 and ~ = 1 for 0 </~ < 0.8 x 10 -l~ This happens due to higher pres- 
sures for/3 = 5 as observed earlier. However, as ~ increases further, negative load capacities 

are observed, and the trend reverses, i.e. higher values of/3 show higher negative load capa- 
city. It may happen due to lower pressures near the outlet at a particular value of  
/~(= 0.5 x 10 -l~ as seen in Fig. 9. Thus, it can be concluded that the porous nature of  the 

pad may effect adversely, if the permeability is very high. 
Figure 11 shows the torque of  the bearing versus ~, It is seen from Eq. (33) that the torque 

is not effected by ~ as it depends upon if; (z, 9) and 2~ (z, 9), and it has already been said that 
both of  these values remain unaffected by the permeability k. 
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7 Conclusions 

The present paper analyzes the porous constant gap externally pressurized conical bearings 
with temperature dependent viscosity. In the analysis, the lubricant inertia due to rotation of 

the slider is considered but convective inertia is neglected. The energy equation is used to 

determine the temperature generated in the lubricant film. 

It can be concluded from the results and discussions that for the surfaces which are highly 

porous the inlet pressure decreases remarkably, resulting in reduced load capacity of  the 

bearing. However, at lower values of  the permeability parameter, the load capacity is found 

to be more for higher values of  ~, but a reverse trend is observed at larger values of/~. Thus, 

the porous nature of  the pad may not be favorable to the load capacity of  an externally pres- 
surized conical bearing. It is also seen that the torque of  the bearing remains unaffected with 

respect to a variation in permeability. 
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