
Thermal effects in magnetoelectric memories with stress-mediated switching

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 J. Phys. D: Appl. Phys. 46 325002

(http://iopscience.iop.org/0022-3727/46/32/325002)

Download details:

IP Address: 82.233.186.44

The article was downloaded on 26/07/2013 at 14:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3727/46/32
http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS

J. Phys. D: Appl. Phys. 46 (2013) 325002 (12pp) doi:10.1088/0022-3727/46/32/325002

Thermal effects in magnetoelectric
memories with stress-mediated switching

S Giordano1, Y Dusch1, N Tiercelin1, P Pernod1 and V Preobrazhensky1,2

1 International Associated Laboratory LEMAC/LICS: IEMN, UMR CNRS 8520, PRES Lille Nord de

France, ECLille, 59651 Villeneuve d’Ascq, France
2 Wave Research Center, Prokhorov General Physics Institute, Russian Academy of Science, 38 Vavilov

str., Moscow 119991, Russia

E-mail: Stefano.Giordano@iemn.univ-lille1.fr

Received 28 February 2013, in final form 25 June 2013

Published 26 July 2013

Online at stacks.iop.org/JPhysD/46/325002

Abstract

Heterostructures with magneto-electro-elastic coupling (e.g. multiferroics) are of paramount

importance for developing new sensors, actuators and memories. With the progressive

miniaturization of these systems it is necessary to take into account possible thermal effects,

which may influence the normal operating regime. As a paradigmatic example we consider a

recently introduced non-volatile memory element composed of a magnetostrictive nanoparticle

embedded in a piezoelectric matrix. The distributions of the physical fields in this

matrix/inclusion configuration are determined by means of the Eshelby theory, the

magnetization dynamics is studied through the Landau–Lifshitz–Gilbert formalism, and the

statistical mechanics is introduced with the Langevin and Fokker–Planck methodologies. As

result of the combination of such techniques we determine the switching time between the

states of the memory, the error probability and the energy dissipation of the writing process.

They depend on the ratio kBT/v where T is the absolute temperature and v is the volume of

the magnetoelastic particle.

(Some figures may appear in colour only in the online journal)

1. Introduction

The possibility to attain a direct coupling between magnetic

and electric properties in physical systems has recently

stimulated great scientific and technological interest [1–3].

At the beginning of these investigations different single-

phase materials exhibiting the coexistence of ferroelectric and

ferromagnetic responses were introduced (multiferroism) [4].

However, the development of these materials was strongly

limited by the weak magneto-electric interaction at room

temperature [5]. Therefore, to enhance and control the

coupled response, composite structures of piezoelectric and

magnetostrictive phases have been proposed and adopted in

several devices [6, 7]. In this case the coupling is based on the

principle of the mechanical stress (or strain) mediation.

Heterostructures based on intrinsic multiferroics or multi-

phases materials are very promising from the energetic point

of view (low-power devices). It is well known that the

electric/mechanic reorientation of the magnetization in single

particles or layers dissipates very low energies and it is

appropriate for memories, spintronics and new logic paradigms

[8–11]. The reduction of the energy dissipation is one of

the most important factors for improving the integration level

in memories and other devices [12]. However, when the

energy of variables carrying the information is very low,

thermal effects may play a crucial role and the so-called

signal-to-noise ratio must be taken into account for studying

the possible degradation of signals. For this reason typical

temperature distributions in realistic structures have been

recently investigated [13]. From the technological point

of view, the analysis of the compromise between operating

temperature and miniaturization level is a central task for

avoiding any form of information loss.

In this paper we investigate the possible thermal effects in

a paradigmatic magnetoelectric memory element with stress-

mediated switching. In particular, we consider a recently

proposed heterostructure composed of a magnetoelastic

particle embedded in a piezoelectric matrix [14, 15]. We

validated this approach by realising two macroscopic

versions of this memory element [16, 17]. Moreover,
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the assembly of the structure at the nanoscale is still in

progress [18]. This device exhibits several technological

advantages. In fact, it allows avoiding complex procedures for

controlling the microstructure of interfaces in multiferroics,

as recently proposed for enhancing the response of single-

phase materials [19–21]. Moreover, although the direct control

of magnetization by electric field was achieved at very low

temperatures in some semiconductors [22, 23], our system

is able to work at room temperature because of the stress-

mediated coupling. Furthermore, the switching process, even

if it consists in a very efficient non-toggle spin reorientation,

does not require electric pulses of particular duration and

shape (e.g. for creating a temporary magnetic anisotropy).

We remark that controlled pulses have been largely adopted

in a variety of structures in the recent past [24–26], and

valuable simulations were performed to demonstrate their

efficacy [27, 28].

The static and dynamic behaviour of the memory element

is described in [15] where, however, the temperature effects

were neglected. Here, we perform the analysis of the

dynamical response of this heterostructure at finite temperature

and, in particular, we determine the switching time, the error

probability and the energy dissipation associated with the

process of writing a bit. These important quantities have

been studied in terms of the ratio kBT/v, describing the

compromise between temperature and particle size. As an

important result we develop a procedure for determining the

maximum admissible value of the ratio kBT/v. It means that

we are able to find the maximum operating temperature if the

size of the nanoparticle is fixed or, conversely, the minimum

volume of the nanomagnet when the temperature is imposed.

The memory element here investigated is based on a

couple of orthogonal states of the magnetization direction,

generated by the competition between anisotropic and Zeeman

energies [14]. The commutation process between the states is

induced by the piezoelectric matrix, which is able to act on

the particle through the magnetostrictive effect. The static

behaviour of the particle is described by a generalized energy

function, able to allow for the spin-reorientation in terms of

the applied electric field. Nanomechanical techniques [29, 30],

based on the multi-physics Eshelby theory [31, 32], have been

of primary importance for determining the distribution of the

physical field within the heterogeneous structure. As for

the dynamic response of the system, the above-mentioned

analytical form of the energy function has been combined

with classical ferromagnetic models [33, 34], in order to

obtain the evolution equation of the magnetization direction

during the switching phases. Moreover, in order to consider

the temperature effects, the Landau–Lifshitz–Gilbert (LLG)

equation [33, 34] has been generalized by means of the

Brown formalism, i.e. by introducing a random field acting

on the magnetization [35–38]. This approach leads to a

stochastic Langevin equation or, equivalently, to a Fokker–

Planck equation describing the time evolution of the density

probability of the magnetization direction [40, 41]. The

numerical solution of the Langevin LLG stochastic equation

allows us to obtain a complete picture on the dynamic

behaviour (i.e. the commutation strategy) of the system at finite
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Figure 1. Magnetoelastic particle inserted between two electrodes
in a piezoelectric matrix: three-dimensional scheme (a) and top
view (b). The easy axis and the hard axis of the particle are along
the x- and y-axis, respectively. The electrodes generate the electric

field �E∞ at ϕ = 3π/4 while the magnetic field �H∞ is applied
at ϕ = π/2.

temperature. In particular, these results are useful to design

the device in agreement with the desired balance between

operating temperature and particle size.

The structure of the paper is the following. In section 2

we introduce the memory element and we describe the energy

function governing its static response. In section 3 we briefly

review the statistical mechanics of the magnetization in a

single-domain particle. In particular, we discuss the Langevin

and Fokker–Planck approaches, useful for the following

developments. Finally, in section 4 we perform the complete

thermal analysis of the memory element. We determine the

switching time, the error probability and the energy dissipation

associated with the commutation process in terms of the

ratio kBT/v.

2. The memory element

We consider a magnetoelastic ellipsoidal particle embedded in

a piezoelectric matrix (see figure 1 for details) and we briefly

introduce the formalism developed for modelling its behaviour.

The magnetic response of the particle is characterized by two

different mechanism of anisotropy, namely the geometrical one

generated by the prolate shape, and the physical one depending

on the specific material and technological processes adopted.

These anisotropies attempt to maintain the magnetization

aligned along the x-axis (easy axis, EA). However, the

principle of operation of the memory element is based on

an externally applied magnetic field �H∞ aligned with the y-

axis (hard axis, HA). Two stable states for the magnetization

are in fact generated by the competition between the intrinsic

anisotropies and the applied field (see state ‘0’ and state

‘1’ in figure 1(b)). The piezoelectric matrix is used to

change the state of the memory: the electric field �E∞

applied to the system generates a tension or a compression

2
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Table 1. Main parameters of the memory structure.

Parameter Symbol Value

Axis along x 2a1 45 nm
Axis along y 2a2 25 nm
Axis along z 2a3 20 nm
Magnetization Ms 64 × 104 A m−1

Anisotropic effective Ha 18 × 104 A m−1

field
First magneto-elastic λ1 1 1 1.7 × 10−3

coefficient [43]
Second magneto-elastic λ1 0 0 0.1 × 10−3

coefficient [43]

Effective magneto-elastic λs = 3
5
λ1 1 1 1.06 × 10−3

coefficient [43] + 2
5
λ1 0 0

Young modulus of the E 110 GPa
particle

Poisson ratio of the ν 0.35
particle

External magnetic field H∞ 50 × 104 A m−1

Distance between d 130 nm
electrodes

Applied voltage V ±0.5 V
Applied electric field E∞ = −V/d ±3.85 × 106 V m−1

Magnetic permeability µ1 = µ0 4π × 10−7 A m−1

Exchange stiffness A 10−11 J m−1

constant (Terfenol) [50]
Gilbert damping coefficient |α| 0.3

for RE-TM
Landé g-factor g 2

Bohr magneton µB = eh̄

2me
9.274 × 10−24 J T−1

Gyromagnetic ratio |G| = gµB

h̄
1.76 × 1011 rad s−1 T−1

along the direction perpendicular to the planes of the parallel

electrodes. More precisely, a tensile stress stores the state

‘1’ while a compressive stress stores the state ‘0’. This

scheme corresponds to a non-toggle switching mechanism: it

means that the knowledge of the previously stored state is not

necessary for writing a new bit.

As a typical example, we adopt a nanoparticle made of

TbFe2 (Terfenol) with semi-axes a1, a2, and a3 inserted in a

lead zirconate titanate (PZT-5H) matrix [15]. The internal

magnetization �M = Ms �γ is uniform (Ms is its constant

intensity and �γ is a unit vector) because of the small size of

the particle. The direction �γ can be determined by minimizing

the following energy function [42]

w( �γ ) = −µ0Ms �γ · �H + ϕa( �γ ) − T̂ : ε̂µ( �γ ). (1)

The first term (Zeemann energy) describes the effect of the

local magnetic field �H . The second term ϕa( �γ ) represents

the anisotropic energy [14]. In our case we assume the usual

uniaxial form ϕa( �γ ) = −(1/2)µ0MsHaγ
2
x . Finally, the third

term represents the elastic energy, where T̂ is the local stress

and ε̂µ( �γ ) is the strain describing the magnetostriction. We

use the standard expression ε̂µ( �γ ) = (λs/2)(3 �γ ⊗ �γ − Î )

where Î is the identity tensor and the effective magnetostriction

coefficient λs can be evaluated as in table 1 (where one can find

the main parameters of the system) [43].

To conclude, we summarize the constitutive equations

of the particle: the magnetic behaviour is governed by
�B = µ0[ �H + Ms �γ ] where �B is the magnetic induction and the

elastic one by T̂ = L̂2{ε̂0 − ε̂µ( �γ )} where ε̂0 is the local strain

tensor (referred to the demagnetized particle) and L̂2 is the

stiffness tensor of the particle. The direction �γ = �γ ( �H, T̂ )

can be found through the minimization of equation (1).

2.1. Coupling with the external magnetic field

It is important to know the relationship between the local

magnetic field �H and the externally applied magnetic field
�H∞. As recently discussed [15], the solution of this problem

is given by

�H =
[

Î − Ŝm

(

Î − µ̂−1
1 µ0

)]−1 [

�H∞ − Ŝmµ̂−1
1 µ0Ms �γ

]

= Â �H∞ + N̂ �γ , (2)

where the tensor Ŝm is the magnetic Eshelby tensor [44, 45], µ0

is the vacuum magnetic permeability and µ̂1 is the magnetic

permeability tensor of the piezoelectric matrix. Tensors Â and

N̂ can be directly identified by the first line of equation (2).

The local magnetic field is therefore explicitly written in terms

of the remotely applied magnetic field and of the internal

magnetization orientation.

2.2. Coupling with the external electric and elastic fields

The coupling with the external electric and elastic fields

is mediated by the piezoelectric matrix, representing the

environment where the particle is inserted. We search for

the relationship between the local stress T̂ and the applied

electric field �E∞ and the remote elastic strain ε̂∞. We recall

that the constitutive equation of the matrix can be written

as T̂ = L̂1ε̂ + Q̂1
�E and �D = R̂1ε̂ + ǫ̂1

�E where L̂1 is the

elastic stiffness tensor, ǫ̂1 is the permittivity tensor and Q̂1

and R̂1 = −Q̂T
1 are the piezoelectric tensors of the matrix.

The tensor properties of the PZT-5H matrix can be found in

literature [46]. The magnetoelastic particle is inserted into

the piezoelectric matrix with a specific initial magnetization

direction �γ0 and a corresponding magnetostriction ε̂µ( �γ0). We

define the local strain (within the particle) with respect to

such an initial state and we therefore define ε̂ = ε̂0 − ε̂µ( �γ0).

Here, ε̂0 is the local strain tensor referred to the demagnetized

particle. Specifically, we observe that �γ0 is aligned with the

x-axis and therefore �γ0 = ±�e1 (where �ei is the unit vector along

the ith axis). Hence, the constitutive equations of the particle

in the new reference frame read T̂ = L̂2{ε̂− [ε̂µ( �γ )− ε̂µ( �γ0)]}
and �D = ǫ̂2

�E where L̂2 and ǫ̂2 are the elastic stiffness and the

permittivity tensor of the particle, respectively.

The coupling problem can be approached and solved by

means of the multi-physics Eshelby formalism [15, 30–32]. As

recently verified [15], the local stress depends on the external

electric and elastic fields and on the magnetization direction.

In fact, we proved the explicit relation

T̂ = Ĉε̂∞ + D̂ �E∞ + F̂
[

ε̂µ ( �γ ) − ε̂µ ( �γ0)
]

, (3)

where the tensors Ĉ, D̂ and F̂ can be calculated through

the refined procedures described in literature [15]. They

depend on the physical properties of the two phases and on

the piezoelectric Eshelby tensor [15, 47–49].

3



J. Phys. D: Appl. Phys. 46 (2013) 325002 S Giordano et al

0
2

4
6

0

1

−2

0

2

4

6

x 10
5

ϑ
ϕ

w̃(ϕ,ϑ)

π / 2

AB

0
2

4
6

0

1

−2

0

2

4

6

x 10
5

ϑ

ϕ

w̃(ϕ,ϑ)

π / 2

B
A

0
2

4
6

0

1

−2

0

2

4

6

x 10
5

ϑϕ

w̃(ϕ,ϑ)

π / 2

B
A

Figure 2. Representation of w̃( �γ ) (J m−3) for different values of the
applied voltage: V = +0.5 V or E∞ = −3.85 × 106 V m−1

(compression) in the first panel, V = −0.5 V or
E∞ = +3.85 × 106 V m−1 (traction) in the second panel, and
V = 0 V in third panel. Red curves correspond to ϑ = 0 and show
the evolution of stable points A and B.

2.3. Static behaviour of the system

We can now combine previous results in order to obtain a

generalized energy function describing the static behaviour

of the memory system. The set of equations describing the

system is constituted of the energy minimization, equation (1),

the coupling with the external magnetic field �H = �H( �H∞, �γ ),

equation (2), and the coupling with the external electric and

elastic fields T̂ = T̂ (ε̂∞, �E∞, �γ ), equation (3). This problem

corresponds to the minimization of a new energy function

defined as [15]

w̃ = −µ0Ms �γ · Â �H∞ − 1
2
µ0Ms �γ · N̂ �γ + ϕa( �γ )

− Ĉε̂∞ : ε̂µ( �γ ) − D̂ �E∞ : ε̂µ( �γ )

− 1
2
F̂ ε̂µ( �γ ) : ε̂µ( �γ ) + F̂ ε̂µ( �γ0) : ε̂µ( �γ ). (4)

Such an expression provides the final magnetization

orientation in terms of the external fields applied to the

structure (the proof of equation (4) can be found in

appendix A). We can use the final form of the energy function

to investigate the behaviour of the memory element by letting

ε̂∞ = 0, �H∞ along the y-axis and �E∞ along the direction

identified by ϕ = π/4, ϑ = 0 (where ϕ and ϑ are the

standard spherical coordinates). When E∞ = 0 we observe

two equivalent stable positions around ϕ = π/4, ϑ = 0 and

ϕ = 3π/4, ϑ = 0 corresponding to the magnetization states

represented in figure 1. This is shown in the third panel of

figure 2 where w̃ is represented through a two-dimensional

surface (in terms of ϕ and ϑ). The red curve corresponds

to ϑ = 0 and shows two minima (points A and B). In the

first panel of figure 2 we have an applied compressive stress

(V = +0.5 V and E∞ = −3.85 × 106 V m−1) generating a

single minimum point A (state ‘0’). Conversely, in the second

panel we have an applied tensile stress (V = −0.5 V and

E∞ = +3.85 × 106 V m−1) corresponding to the minimum

point B (state ‘1’). It is evident that the form of the energy

function allows obtaining a non-toggle switching scheme for

the memory element.

Some comments follow on the parameters adopted

in our model. All the material-dependent parameters

have been chosen in order to describe the Terfenol

response for the magnetic particle and the PZT-5H response

for the piezoelectric matrix. These materials represent

classical paradigmatic examples being largely utilized in

nanotechnology. The size of the system has been chosen at

the nanoscale for assuring a mono-domain behaviour of the

magnetic particle (however, a varying volume of the particle

has been considered in section 4). The adopted anisotropic

effective field Ha is achievable with standard nanotechnologies

[14, 15]. A very important parameter is given by the external

magnetic field H∞: its value has been determined for fixing

the stable states of the magnetization around ϕ = π/4 and

ϕ = 3π/4. Therefore, the definition of this parameter

is crucial for the correct operating of the memory element.

Here we studied the position of the two minima of w̃ with

a varying H∞ (and with E∞ = 0) and we selected the value

corresponding to the geometry of figure 1. We remark that H∞

depends on the material parameters above defined (i.e. on the

physical properties of Terfenol and PZT-5H). To conclude, the

applied electric field E∞ (or, equivalently the electric potential

V ) has been determined in order to have (i) a mechanical

stress sufficient to observe the spin reorientation during the

switching phases, and (ii) a switching time always in the

subnanosecond scale. We obtained a value V = ±0.5 V, as

largely discussed in [15]. This is a value highly compatible

with most microelectronic technologies.

While the dynamic analysis of the system has been

performed in a recent paper [15], here we are interested in

investigating the effect of the temperature. To do this we need

to introduce the statistical mechanics of the magnetization.

3. Statistical mechanics of magnetization in a
single-domain particle

The magnetic system is assumed to be monodomain and,

therefore, all spins behave collectively. This is assured by

the small size of the magnetic particle and by the high value of

the exchange stiffness constant A (see table 1 for details) [50].

The dynamics of the magnetization direction �γ is therefore

described by the LLG equation [33, 34, 51]

d �γ
dt

= − G

Ms(1 + α2)

[

�γ ∧ ∂w̃

∂ �γ − α �γ ∧
(

�γ ∧ ∂w̃

∂ �γ

)]

, (5)

where G is the gyromagnetic ratio, α is the Gilbert damping

parameter and ∂w̃
∂ �γ represents the effective field applied to the

magnetic dipole (note that G < 0 and α < 0 for representing

electrons precession). Here w̃ is the generalized energy

function defined in equation (4). The previous LLG equation

is valid for a system at T = 0 K. In order to introduce thermal

fluctuations we assume the Brown hypothesis affirming that

the effects of the temperature can be mimicked by an addictive

random field acting on the magnetization [35–38]. It means

4
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that we substitute ∂w̃
∂ �γ with ∂w̃

∂ �γ + D�n, where �n is a stochastic

process with three main properties: its average value is zero at

any time, 〈�n(t)〉 = 0, it is completely uncorrelated (white),

〈ni(t)nj (τ )〉 = 2δijδ(t − τ), and it is Gaussian. So,

equation (5) is transformed into the Langevin LLG system

ϕ̇ sin ϑ = − G

Ms(1 + α2)

×
[

∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ
+ D

(

�δ + α �β
)

· �n
]

,

ϑ̇ = − G

Ms(1 + α2)

×
[

− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ
+ D

(

α�δ − �β
)

· �n
]

, (6)

where we have introduced a mobile reference frame

rigidly connected with the magnetization vector: �δ =
(cos ϕ cos ϑ, sin ϕ cos ϑ, − sin ϑ), �β = (− sin ϕ, cos ϕ, 0) and

�γ = (cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ) (ϑ and ϕ are the standard

nutation and precession angles).

It is well known that the combination of dissipation

(friction controlled by the Gilbert damping constant α) and

fluctuation (described by the diffusion coefficient D) is able to

describe the dynamic transient state leading to the equilibrium

thermodynamics for long time [39–41]. It is a general concept

valid both in classical mechanics [52, 53] and in quantum

mechanics [54, 55]. The system obtained in equation (6) is a

stochastic differential equation (SDE): from the mathematical

point of view there are two different approaches for defining the

meaning of a SDE, namely, the Itô stochastic calculus and the

Stratonovich one [56, 57]. Throughout all the paper we use

the Stratonovich approach for two main reasons: firstly, the

usual rules of calculus (for derivatives and integrals) remain

unchanged and, secondly, the Stratonovich approach is the

most convenient interpretation within the physical sciences

since it can be obtained as the limiting process of a coloured

noise towards an uncorrelated (white) one [40]. The typical

tool for studying SDEs is the Fokker–Planck methodology

based on a partial differential equation describing the dynamic

of the density probability of the state of the system [40].

In our case the state of the system is given by the couple

(ϕ, ϑ) and, therefore, the density probability can be written as

ρ = ρ(ϕ, ϑ, t). The related Fokker–Planck equation assumes

the form (see appendix B for details)

∂ρ

∂t
= G

Ms(1 + α2) sin ϑ

∂

∂ϕ

{[

∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ

]

ρ

}

+
G

Ms(1 + α2)

∂

∂ϑ

{[

− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ

]

ρ

}

− G2D2

M2
s (1 + α2)

∂

∂ϑ

{

cos ϑ

sin ϑ
ρ

}

+
G2D2

M2
s (1 + α2)

{

1

sin2 θ

∂2ρ

∂ϕ2
+

∂2ρ

∂ϑ2

}

. (7)

As stated above, this equation should have an asymptotic

solution coherent with the equilibrium thermodynamics and,

therefore, we can verify that

lim
t→∞

ρ (ϕ, ϑ, t) = sin ϑ

Z
exp

[

− w̃(ϕ, ϑ)v

kBT

]

, (8)

where the partition function Z is given by

Z =
∫ π

0

∫ 2π

0

sin ϑ exp

[

− w̃(ϕ, ϑ)v

kBT

]

dϕ dϑ. (9)

Here kB is the Boltzmann constant and T is the absolute

temperature. Note that the term sin ϑ in previous expressions

is due to the (non-cartesian) spherical system (it corresponds to

the Jacobian of the coordinates transformation). Moreover, v

represents the volume of the magnetic particle (w̃v is the total

energy with w̃ being the energy density). The value of the

diffusion constant D can be found by substituting equation (8)

in equation (7) and by observing that we obtain an identity if

and only if

D
2 = αMskBT

Gv
, (10)

an equation representing the specific fluctuation-dissipation

property.

The obtained Fokker–Planck equation is particularly

useful for obtaining a simplified version of the Langevin LLG

system: in fact, in equation (6) a three-dimensional random

vector has been added for introducing the fluctuations in a

system with two variables (ϕ and ϑ). There is no need to embed

the system in a three-dimensional space and, moreover, there

are important reasons for not doing so (coherence/elegance

of the theory and saving of computational resources). We

consider the following new version of the Langevin LLG

system where only two noise terms are considered [58–60]

ϕ̇ = − G

Ms(1 + α2) sin ϑ

[

∂w̃

∂ϑ
+

α

sin ϑ

∂w̃

∂ϕ

]

+
1

sin ϑ

√

1

2τN

nφ,

ϑ̇ = − G

Ms(1 + α2)

[

− 1

sin ϑ

∂w̃

∂ϕ
+ α

∂w̃

∂ϑ

]

+
1

2τN

cos ϑ

sin ϑ
+

√

1

2τN

nθ . (11)

Here we have introduced to so-called Néel time

τN = Ms(1 + α2)v

2αGkBT
, (12)

representing the characteristic response time of a particle

without external fields. If the noises have the standard

properties 〈nφ(t)〉 = 0, 〈nθ (t)〉 = 0, 〈nφ(t)nθ (τ )〉 = 0,

〈nφ(t)nφ(τ )〉 = 2δ(t − τ), 〈nθ (t)nθ (τ )〉 = 2δ(t − τ) and

they are Gaussian, we can prove that the Fokker–Planck

equation established starting form, equation (11) is exactly

coincident with equation (7). From the theoretical point of

view equation (11) is more coherent and elegant since the

SDE lives completely on the spherical surface without the

need for a three-dimensional embedding (it represents the

covariant formulation of the SDE on the spherical manifold)

[59, 60]. Moreover, from the computational point of view

equation (11) is convenient since two random numbers must

be generated at any time step, instead of the three ones needed

for the implementation of equation (6). They can be directly
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obtained by means of the Box–Muller theorem [61]. Another

remarkable advantage of equation (11) is that the noise induced

drift term is always zero, yielding exactly the same SDE both

for the Itô and the Stratonovich approach. This fact allows

us to apply indifferently numerical techniques specifically

developed for either the Itô or the Stratonovich interpretation

of SDEs (see appendix C for details).

To conclude, when we approach the problem of studying

the thermal effects on a single particle we can adopt one

of the three following methodologies. First, we can take

into consideration the Fokker–Planck equation and we can

search its solution through the finite difference method or the

finite element method. Such a technique has been used to

investigate the dependence of the magnetization reversal on

temperature, damping and applied fields [62–64]. As a second

approach, it is possible to develop the density probability in a

series of harmonic functions and to analyse the dynamics of

related coefficients. The kinetic equation for these coefficients

has been obtained [65–67] and it has been largely used for

determining the relaxation time of the Fokker–Planck operator

[68–71]. Finally, the third approach consists in numerically

solving the Langevin equation and in calculating the relevant

average values through the Monte Carlo method [72]. In the

following we adopt this approach with a standard integration

scheme discussed in appendix C.

4. Switching process within the magnetoelectric
memory

We can now approach the problem of evaluating the

temperature effects on the memory element. As one can find

in table 1, we have considered an ellipsoidal particle with

axes of lengths 45, 25 and 20 nm. Nevertheless, we may

now consider an arbitrary size of the particle. To explain

this point we recall an important property of the Eshelby

theory (which is valid for the case with any possible coupling):

when an ellipsoidal particle is embedded in an infinite matrix

and subjected to uniform external actions, the physical fields

(electric, magnetic and elastic) induced within the particle

itself are always uniform and they depend on the material

properties of the two phases and on the ratios a1/a2 and a2/a3

[15, 30–32, 47–49]. The internal fields do not depend on the

actual size of the particle: only the shape of the ellipsoid may

influence the particle response. Therefore, the results based

on the energy function defined in equation (4) are also scale

invariant and depend only on the ratio between the axes lengths.

We conclude that the numerical evaluation of w̃ described

in section 2 can be used for any rescaled version of the

particle.

The only effect of the real size of the nanomagnet is

introduced in the Langevin system (see equation (11)) through

the Néel time τN defined in equation (12). Since 1/τN is

directly proportional to kBT/v (with a coefficient that is simply

material dependent) we can analyse the thermal effects in

terms of the ratio kBT/v, describing the conflict between

temperature and particle size. We remark that one of the

most important parameters of the system is the energy barrier

between the states A and B, which can be observed in the
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Figure 3. Stability analysis of the switching A (V = +0.5 V)–A
(V = 0 V). First panel: trajectories followed by the average
magnetization components (red: 〈γx〉; blue: 〈γy〉; green: 〈γz〉). Solid
lines correspond to the smallest ratio kBT/v (10 J m−3) and dashed
lines to the highest one (20 000 J m−3). Second panel: error
probability in terms of the ratio kBT/v.

third panel of figure 2 (in absence of the electric field). It

is an intrinsic property of the structure depending only on

the anisotropies (geometrical and physical) of the particle and

on the externally applied magnetic field (creating the quite

orthogonal states): with the set of parameters defined in table 1

we obtain an energy barrier equal to �e = 2.5 × 104 J m−3.

It is evident that the memory can work only if the density of

thermal energy kBT/v is much lower than �e (for avoiding

unwanted switching between the states). For example, for

the initially proposed structure (v ≃ 10−22 m3) at room

temperature (T = 300 K) we have kBT/v = 40 J m−3 ≪ �e

and, therefore, the system should work correctly. In this case

the total energy barrier between the states A and B corresponds

to v�e = 1.7 × 10−18 J ≃ 400kBT . It is interesting to know

how much we can increase the temperature or, on the other

hand, decrease the volume of the particle, without modifying

the regular operation of the device. In other words, we search

for the maximum value of kBT/v admissible for our structure.

In order to do this, we consider the system without electric

field applied to the piezoelectric matrix and we suppose to

have an initial magnetization in the state A or B. We observe

that the state A is represented by �γ = �vA = (cos ϕA, sin ϕA, 0)

where ϕA ≃ 0.892 while for the state B we have �γ = �vB =
(cos ϕB, sin ϕB, 0) where ϕB ≃ 2.277. We determine the

trajectories of �γ starting from these points in order to analysing

the stability of the stored bit. It means that we simulate the

transition A → A generated by the electric potential change

V = +0.5 V → V = 0 V and the transition B → B generated

by the electric potential change V = −0.5 V → V = 0 V.

For any value of the ratio kBT/v (100 equispaced values in

the range from 10 J m−3 to 2 × 104 J m−3) we generate a

large number (dynamically adjusted from 104 for the high

values of kBT/v to 5 × 106 for the low values of kBT/v) of

trajectories �γ (t) by solving equation (11) (with E∞ = 0 and

�γ (0) = �vA or �γ (0) = �vB) and we determine the average

values through the Monte Carlo method. The numerical

solution of equation (11) has been performed through the

integration scheme discussed in appendix C with a time step

δt = 2.4 × 10−13 s.

The results are reported in figures 3 and 4. In the first panel

we show the time evolution of the three components of 〈 �γ (t)〉
for the extreme values of the ratio kBT/v. It is evident that for

6
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Figure 4. Stability analysis of the switching B (V = −0.5 V) - B
(V = 0 V). The panels description can be found in figure 3.

the larger values of kBT/v (dashed lines in the first panel of

figures 3 and 4) we observe a vector 〈 �γ 〉 rapidly aligned to they-

axis, indicating the complete information loss (in this situation

we have �γ · �vA ≃ �γ · �vB). A measure of this effect is given

by the error probability, shown in the second panel of figures 3

and 4. For any value of kBT/v we follow Nt trajectories

for a long time and we determine the number of unwanted

switching towards the other state. The error probability is given

by the ratio between this number and the total number Nt of

trajectories. Such a number Nt is dynamically adjusted and

it corresponds to 104 for the higher values of kBT/v (sizeable

error probability) and to 5×106 for the lower values of kBT/v

(very low error probability). We remark that it is difficult to

have a good estimate of the error probability for values of the

ratio kBT/v much lower than 103 J m−3 since this probability

is very low and we should use a large number of trajectories

Nt ≫ 108, which is quite prohibitive from the computational

point of view. We obtained quite the same curve of Perr

versus kBT/v for both transitions A–A and B–B. It means that

the error probability is a symmetric quantity for our system.

Moreover, we observe that if kBT/v → +∞ then Perr → 1/2,

a value exactly quantifying the total information loss. We can

identify the maximum value admissible for kBT/v in order

to have a negligible error probability: for example, if we

impose Perr ≪ 10−8 then we obtain (kBT/v)max ≃ 103 J m−3

(see second panel of figures 3 and 4), which is much larger

than our initial proposition (40 J m−3) and, at the same time,

much smaller than the fixed energy barrier between the states

(�e = 2.5 × 104 J m−3). Of course one can select an arbitrary

threshold for the error probability by obtaining a different

maximum value admissible for kBT/v. This stability analysis

was performed by starting from a deterministic initial condition

(given by �γ (0) = �vA or �γ (0) = �vB) since we were interested in

examining the possible escape from the potential wells induced

by the thermal agitation during the time evolution. It is the

possibility of remaining inside the wells that is important to

evaluate the pertinent error probability.

Having determined the restriction on the ratio kBT/v we

may analyse the dynamics of the transitions A–B and B–A.

In this case, since we want to analyse the real dynamics

at a given temperature, we cannot start our simulations

at �γ (0) = �vA or �γ (0) = �vB. Instead, we must start

with a random initial condition coherent with the statistical

distribution within the initial potential well. The initial density

probability corresponds to the thermodynamic equilibrium and

it is therefore given by equations (8) and (9). We extracted
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Figure 5. Switching process between states A and B (traction,
V = −0.5 V). First panel: trajectories followed by the average
magnetization components (red: 〈γx〉; blue: 〈γy〉; green: 〈γz〉). Solid
lines correspond to the smallest ratio kBT/v (10 J m−3) and dashed
lines to the highest one (4 × 103 J m−3). Second panel: switching
time tm versus kBT/v for three different values of the precision
parameter (blue triangles: ǫγ = 0.01; red circles: ǫγ = 0.02; green
squares: ǫγ = 0.03).
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Figure 6. Switching process between states B and A (compression,
V = +0.5 V). The panels description can be found in figure 5.

the initial conditions from this distribution. For any value

of kBT/v in the range from 10 J m−3 to 4 × 103 J m−3 we

generate 104 trajectories of the magnetization and we evaluate

their average values. We have chosen a range of kBT/v

exceeding the threshold value (kBT/v)max ≃ 103 J m−3 to

better explore the critical region. In figure 5 we show the

results for the switching A–B corresponding to the applied

traction at V = −0.5 V. Similarly, in figure 6 we show the

results for the switching B–A corresponding to the applied

compression at V = +0.5 V. In the first panel we present

the time behaviour of the components of 〈 �γ 〉. The good

switching behaviour is evident in the whole range of variation

of kBT/v: in the first panel of figures 5 and 6 solid lines

correspond to the smallest ratio kBT/v (10 J m−3) and dashed

lines to the highest one (4 × 103 J m−3). In particular, the

regular accomplishment of transitions is well described by

the limit limt→∞ �γ · �vB = 1 for the switching A–B and by

limt→∞ �γ · �vA = 1 for the switching B–A. We use these

asymptotic behaviours to introduce the switching time tm of

the process. It is defined as the first instant of time tm satisfying

the condition | �γ (t) · �vB − �γ (+∞) · �vB| < ǫγ for any t > tm
(for the transition A–B). Evidently, for the second transition

B–A the inequality reads | �γ (t) · �vA − �γ (+∞) · �vA| < ǫγ . Note

that the precision parameter ǫγ (around 10−2) concerns the

accuracy of the measurement of the magnetization �γ within the

asymptotic regime and it is not related with the error probability

above defined (Perr ≪ 10−8 if kBT/v < 103 J m−3). In the

second panel of figures 5 and 6 we show the switching time

7



J. Phys. D: Appl. Phys. 46 (2013) 325002 S Giordano et al

in terms of the ratio kBT/v. The three different sets of data
correspond to three values of the precision parameter ǫγ . In
all cases we observe an increasing trend of tm versus kBT/v.
Of course, the switching times obtained in figures 5 and 6
(hundreds of ps) must be realistically augmented in order to
consider different phenomena not contemplated in our model:
response time of the piezoelectric matrix, time to transfer the
stress to the magnetic particle, and delays of the electronic
system generating the electric pulses. We can estimate a loss
of velocity of about ten times, resulting in final switching times
of some nanoseconds. However, the values of the writing
time are in any case strongly competitive with other standard
or spintronic memory technologies [73]. The behaviour of
the curves for the switching A–B and B–A is quite different
because of the different physical processes involved. As a
matter of fact, the transition A–B is characterized by a traction
inducing a planar anisotropy from the magnetic point of
view, while transition B–A is characterized by a compression
inducing an axial anisotropy for the magnetization.

To conclude, we discuss the results concerning the
energy consumption during the switching phases. This
energy derives from the charge/discharge of the effective
capacitor and from the damped precession of the magnetization
[27, 28]. The first contribution �Ee represents the so-
called CV 2 dissipation and it can be simply determined
when the geometry of the system is given. For example,
if we consider the parameters shown in table 1 we obtain
�Ee = 7.5 × 10−17 J. The second contribution �Em can
be evaluated by determining the variation of w̃(t) during
the transitions phases. We can obtain the time evolution of
dw̃(t)/dt through the expression dw̃(t)/dt = (∂w̃/∂ϑ)ϑ̇ +
(∂w̃/∂ϕ)ϕ̇ and we can use equation (11) to evaluate the terms
ϑ̇ and ϕ̇. This procedure can be numerically implemented
within the integration scheme of the Langevin system. As
before, the average values are determined with the Monte
Carlo technique. Since w̃ is always a decreasing function
during the switching phases, in figure 7 (first and second
panels) we show the average value of −dw̃(t)/dt for the
transitions B–A and A–B. This is done for 100 equispaced
values of kBT/v (from 10 J m−3 to 4000 J m−3). Interestingly
enough, we note that the temperature effects are stronger in
the transition A–B. However, we can determine the specific
energy dissipated during a transition phase by integrating the
time derivative of w̃: �Em/v = −

∫ +∞
0

(dw̃(t)/dt) dt . The
numerical integration leads to the results shown in the third
panel of figure 7, where �Em/v is plotted versus kBT/v for
both transitions B–A and A–B. We observe that there is only a
very slight (linear) dependence of �Em/v on kBT/v. In fact,
we can approximate �Em/v ≃ 2 × 105 J m−3 for any value of
kBT/v. For our original particle with v = 10−22 m3 we obtain
�Em = 2×10−17 J and the total switching energy is therefore
�E = �Ee + �Em ≃ 9.5 × 10−17 J. This value is strongly
competitive when compared with most non-volatile memory
technologies [15, 73, 74].

5. Conclusions

In this work we have developed a complete analysis
concerning the effects of the temperature on the magnetization
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Figure 7. Energy dissipation during switching phases. First panel:
average value of −dw̃/dt during the transition B–A for different
values of kBT/v (100 equispaced values from 10 J m−3 to
4000 J m−3). The black continuous line corresponds to the smallest
ratio kBT/v and the black noisy line to the highest one. Second
panel: average value of −dw̃/dt during the transition A–B. The
black lines have the same meaning as in the first panel. Third panel:
magnetic dissipated energy �Em/v in terms of kBT/v for both
transitions A–B and B–A.

dynamics in a paradigmatic memory element. We considered

a heterostructure composed of a magnetoelastic particle

embedded in a piezoelectric matrix. In order to introduce

the statistical mechanics we have taken into consideration

the Langevin equation describing the dynamics of the

magnetization vector when the system is in contact with

a thermal bath. Its numerical solution allowed us

to examine the switching behaviour between the stable

states in terms of the temperature. We elaborated a

blended nanomechanical/magnetic/statistic approach to obtain

a comprehensive model and, therefore, a complete picture

of its dynamics at finite temperature. The mechanical

coupling between magnetoelastic particle and piezoelectric

matrix is described by the multi-physics Eshelby formalism,

the time evolution of the magnetization orientation is modelled

through the Landau–Lifshitz–Gilbert equation and, finally, the

presence of the temperature is introduced following the Brown

assumption, leading to specific Langevin and Fokker–Planck

equations. The thorough combination of these three methods

allowed analysing the most important quantities of the system

in terms of the ratio kBT/v. More specifically, we determined

the switching time, the error probability, and the energy

dissipation corresponding to the commutation phases. To

conclude, we remark that from the technological point of view

the knowledge of these parameters versus kBT/v is crucial

for obtaining the desired compromise between maximum

operating temperature and size of the memory element (which

should be strongly reduced for having a very large-scale

integration).
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Appendix A. Mathematical form of the energy
function

We consider equations (1), (2) and (3) in order to prove

equation (4). It is important to remark that the local magnetic

field �H and the local stress tensor T̂ enter the energy

function w( �γ ) as parameters. It means that the minimization

min
�γ : ‖ �γ ‖=1

w( �γ ; �H, T̂ ) furnishes the direction �γ in terms of the

magnetic field and the stress tensor, i.e. �γ = �γ ( �H, T̂ ).

Therefore, to approach the minimization problem defined by

equation (1), we can apply the Lagrange method based on the

auxiliary function L( �γ , λ) = w( �γ ) − λ( �γ · �γ − 1), where

λ is the so-called Lagrange multiplier. Hence, we consider

the equations ∂L/∂γi = 0 (for i = 1, 2, 3) and ∂L/∂λ = 0.

Summing up, we obtain the system

2λγi = −µ0MsHi +
∂ϕa( �γ )

∂γi

− T̂ :
∂ε̂µ( �γ )

∂γi

, (A.1)

�γ · �γ = 1, (A.2)

�H = Â �H∞ + N̂ �γ , (A.3)

T̂ = Ĉε̂∞ + D̂ �E∞ + F̂
[

ε̂µ ( �γ ) − ε̂µ ( �γ0)
]

. (A.4)

We can now substitute the last two relations in the first one,

eventually obtaining

2λγi = −µ0Ms(Â �H∞ + N̂ �γ )i +
∂ϕa( �γ )

∂γi

(A.5)

−
{

Ĉε̂∞ + D̂ �E∞ + F̂
[

ε̂µ ( �γ ) − ε̂µ ( �γ0)
]

}

:
∂ε̂µ( �γ )

∂γi

.

By exploiting the symmetries of tensors N̂ and F̂ [15] we can

simply rewrite equation (A.5) as follows (by converting each

term in a partial derivative with respect to γi)

2λγi = −µ0Ms

∂

∂γi

(

�γ · Â �H∞
)

− 1

2
µ0Ms

∂

∂γi

(

�γ · N̂ �γ
)

+
∂ϕa( �γ )

∂γi

− ∂

∂γi

[

Ĉε̂∞ : ε̂µ( �γ )
]

− ∂

∂γi

[

D̂ �E∞ : ε̂µ( �γ )
]

−1

2

∂

∂γi

[

F̂ ε̂µ( �γ ) : ε̂µ( �γ )
]

+
∂

∂γi

[

F̂ ε̂µ( �γ0) : ε̂µ( �γ )
]

.

(A.6)

The previous expression combined with the condition �γ · �γ = 1

corresponds to a constrained minimization of a new energy

function w̃ defined in equation (4). We can note that in

equation (A.6) or (4), while the first term represents the Zeeman

contribution (related to the applied magnetic field), the second

term represents the self-magnetization of the particle. The

factor 1/2 in the second term has been obtained by observing

that 1
2

∂
∂γi

( �γ · N̂ �γ ) = (N̂ �γ )i . The same argument is valid for

the first term in the third line of equation (A.6).

Appendix B. The Fokker–Planck equation

We take into consideration the following system of SDEs

dxi(t)

dt
= hi(�x, t) +

m
∑

j=1

gij (�x, t)nj (t), (B.1)

where the stochastic processes nj (t) fulfil the following

properties






〈ni(t)〉 = 0 ∀ i, t
〈

ni(t1)nj (t2)
〉

= 2δijδ(t1 − t2) ∀ i, j, t1, t2
ni(t)Gaussian noises.

(B.2)

If we take into consideration the Stratonovich interpretation of

the stochastic calculus, it is possible to prove that the dynamics

of the density probability of the state vector �x is described by

the following Fokker–Planck equation [40]

∂ρ(�x, t)

∂t
= −

n
∑

i=1

∂

∂xi

[

Di(�x, t)ρ(�x, t)
]

+

n
∑

i=1

n
∑

j=1

∂2

∂xi∂xj

[

Dij (�x, t)ρ(�x, t)
]

, (B.3)

where Di are the so-called drift coefficients given by

Di(�x, t) = hi(�x, t) +

n
∑

k=1

m
∑

j=1

gkj (�x, t)
∂gij (�x, t)

∂xk

. (B.4)

Here, the first term represents the standard drift coefficient

introduced by the differential problem stated in equation (B.1);

the second term represents the so-called noise induced drift

term and it is a peculiarity of the Stratonovich calculus. We

remark that it is different from zero only with multiplicative

noises, i.e. when gij (�x, t) depends directly on the state �x. On

the other hand, the diffusion coefficients Dij are defined as

follows

Dij (�x, t) =
m

∑

k=1

gik(�x, t)gjk(�x, t). (B.5)

They take into account the fluctuations introduced by the noise

terms. Through this theory, in section 3 we have established the

Fokker–Planck equation associated to the Langevin systems

given in equations (6) and (11) and we have found the same

evolution equation given in equation (7). We remark that,

while for the Langevin system in equation (6) we obtain

a noise induced drift term represented by the third line in

equation (7), for the simplified version of the Langevin system

in equation (11) the noise induced drift term is zero, leading to

the equivalence of the Itô and the Stratonovich interpretation

for this particular case.

Appendix C. On SDEs

The SDE defined in equation(B.1) can be integrated in a time

step, by obtaining

xi(t + δt) − xi(t) =
∫ t+δt

t

hi(�x, t) dt

+

∫ t+δt

t

gij (�x, t)nj (t) dt, (C.1)
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where the sum over j is implicit for brevity and the noises

satisfy properties in equation (B.2). We adopt a general

integration rule that takes into account both the Itô (α = 0)

and the Stratonovich (α = 1/2) approaches (also including

all the intermediate cases): in the integrands we substitute

�x → (1 − α)�x(t) + α�x(t + δt), i.e. a weighted means of

the values assumed at the endpoints of the interval. We can

define δ�x = �x(t + δt) − �x(t) and, therefore, we can rewrite

the substitution as �x → �x(t) + αδ�x. For the first integral in

equation (C.1) we obtain
∫ t+δt

t

hi(�x, t) dt ∼= hi(�x(t), t)δt +
∂hi

∂xk

(�x(t), t)αδxkδt, (C.2)

and, similarly, for the second one we get
∫ t+δt

t

gij (�x, t)nj (t) dt ∼=
[

gij (�x(t), t)

+
∂gij

∂xk

(�x(t), t)αδxk

] ∫ t+δt

t

nj (t) dt. (C.3)

Summing up, we have found the first form of the integration

scheme

δxi = hi(�x(t), t)δt +
∂hi

∂xk

(�x(t), t)αδxkδt

+ gij (�x(t), t)

∫ t+δt

t

nj (t) dt

+
∂gij

∂xk

(�x(t), t)αδxk

∫ t+δt

t

nj (t) dt. (C.4)

The term
∫ t+δt

t
nj (t) dt is a Gaussian random variable with the

following expectation values
〈∫ t+δt

t

nj (t) dt

〉

= 0, (C.5)

〈∫ t+δt

t

ni(t) dt

∫ t+δt

t

nj (τ ) dτ

〉

=
∫ t+δt

t

∫ t+δt

t

〈

ni(t)nj (τ )
〉

dt dτ = 2δijδt. (C.6)

So, we can define

Pj = 1√
2δt

∫ t+δt

t

nj (t) dt, (C.7)

and we obtain a sequence of Gaussian random variables with

the properties 〈Pj 〉 = 0 and 〈PiPj 〉 = δij . To complete the

calculation we have to re-substitute equation (C.4) into itself

and to retain only the terms of order δt . When we make

the substitution in the first term containing δxk (first line in

equation (C.4)), we observe that the term itself disappears

because all coefficients are of order larger than δt . Differently,

when we make the substitution in the second term containing

δxk (third line in equation (C.4)), we observe that only one term

must be considered. More specifically, we must retain the term

with the product between
∫ t+δt

t
ns(t) dt and

∫ t+δt

t
nj (t) dt ; in

fact, both terms are proportional to
√

δt , generating a product

of order t , which is not negligible. Explicitly, we obtain

δxi = hi(�x(t), t)δt + gij (�x(t), t)
√

2δtPj (C.8)

+
∂gij

∂xk

(�x(t), t)αgks(�x(t), t)

∫ t+δt

t

ns(t) dt

∫ t+δt

t

nj (t) dt.

Now, the average value of the product of the two integrals is

given in equation (C.6) and the result is 2δsjδt . Moreover, it

is simple to verify that the second order expectation values of

the same quantity,
∫ t+δt

t

∫ t+δt

t

∫ t+δt

t

∫ t+δt

t

〈

ns(t1)nj (t2)nq(t3)ni(t4)
〉

× dt1 dt2 dt3 dt4, (C.9)

are equal to zero for: (i) four different indices s, j , q and i,

(ii) s = j = q �= i, and (iii) s = j �= q, s = j �= i and

q �= i. Moreover, we have the result 4δt2 for s = j �= q = i

and the result 12δt2 for s = j = q = i. Of course all results

are invariant to any indices permutation. So, the second order

expectation values are zero or of order δt2. Therefore, we

may assume the average value as the deterministic value of the

product. The final result corresponds to the Euler scheme of

integration for a SDE

δxi =
[

hi(�x(t), t) + 2α
∂gij

∂xk

(�x(t), t)gkj (�x(t), t)

]

δt

+ gij (�x(t), t)
√

2δtPj . (C.10)

In the specific case of the Stratonovich interpretation we have

α = 1/2 and the integration scheme becomes

δxi = Di(�x(t), t)δt + gij (�x(t), t)
√

2δtPj , (C.11)

where the drift coefficients Di , defined in equation (B.4), are

perfectly coherent with the Fokker–Planck equation. In order

to implement the integration scheme of equation (11) we need

two Gaussian random variables at any time step and, therefore,

they can be generated through the Box–Muller theorem: if U1

and U2 are independent random variables uniformly distributed

in (0,1), then P1 = (−2 log U1)
1/2 cos(2πU2) and P2 =

(−2 log U1)
1/2 sin(2πU2) are Gaussian independent random

variables with 〈Pj 〉 = 0 and 〈PiPj 〉 = δij , as requested in

equation (C.11). Finally, we underline that the convergence of

the Euler scheme to the solution of equation (B.1) is assured

by the Skorokhod theorem [57, 75].
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