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Abstract

Technologies that control the chemical composition of white lighting-emitting

diodes are promising means to enhance thermal properties and renew spectra

generation. Although (oxy)nitride red phosphors have been available for more than

a decade, the drawbacks of these devices still evidently remain with respect to the

local environments of activators in a variety of nitridosilicates. Thermal effects, such

as, thermal quenching, thermal ionization, and thermal degradation, are technologically

important parameters that determine product reliability. In recent years, red phosphors,

which can alter novel complexes with particular wavelengths, have been easily

synthesized and used to minimize losses during energy conversion process. Silicon

nitride ceramics contain a more highly condensed network compared with silicate

because of the higher degree of cross-linking, edge-sharing SiN4 tetrahedron, and more

covalent and stronger crystal field splitting. To provide a reasonable explanation for the

relationship between photoluminescence and structure, an empirical model has been

proposed, in which the changes in the chemical environment of the activators are

attributed to strains resulting from atom displacements. In addition, the development

of high-efficiency and cost-effective light-emitting diodes based on these luminescent

materials has difficult challenges.

Keywords: Light-emitting diodes; (Oxy)nitride phosphor; Thermal quenching; Thermal

ionization; Thermal degradation

Background

White light-emitting diodes (wLEDs) are a promising solid-state lighting technology

that have a large number of revolutionary applications because they are energy-saving,

robust, have long-lifetimes, and environment-friendly [1-3]. This technology, which is

now extensively integrated into our daily lives, has replaced traditional incandescent or

fluorescent light sources for less energy and viable options. Phosphor-converted white

light devices consist of a blue or near-UV chip as excitation source, and have appropri-

ate phosphor compositions that down-convert a portion of the chip emission to longer

wavelengths. Therefore, phosphor has an important role in solid-state lighting (SSL),

and should possess high chemical/thermal stability, high quantum efficiency (QE), suit-

able excitation and emission spectra, high reliability, and low cost [4,5]. Although nu-

merous phosphors have already been investigated or developed for SSL applications,

only a few of them can be practically applied to wLEDs. Aside from the drawbacks of

low external quantum efficiency (EQE), high humidity, reabsorption, unsuitable spec-

tral shape, and diverse morphology, thermal effects are seriously detrimental for phos-

phors, which hinder their commercialization.
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Phosphor luminescence can be approximately described by four mechanisms. The

perfect luminescence of dopants proceeds from the lowest position of the excited

state to the ground state without thermal effects, as exhibited by the emission spec-

tra (Figure 1a; green line). Unfortunately, numerous lanthanide activators display

emission spectra with spectral intensity and positions that are easily affected by the

environmental temperature. Heat is usually detrimental, and phosphor efficiency

decreases through nonradiative relaxation as device temperature increases. This

phenomenon indicates thermal quenching (TQ), and the phosphor will consequently

shift to the emission peak wavelengths and decrease the luminescent intensity. The

excited electrons can relax through radiative (Figure 1b; dotted green line) and non-

radiative (Figure 1b; gray line) processes, such as photon emission and collisional

quenching, respectively. According to the configurational coordinate model, the

transition probability (N) of a nonradiative relaxation process can be expressed as

follows [6,7]:

N ¼ sexp
−△U

kT
ð1Þ

where s can be treated as a constant (1013 s−1) because it is weakly affected by tem-

perature. Using Equation (1) and the luminescent probability W, luminescent efficiency

η can be expressed using the following formula [6,7]:

η ¼
W

W þ N
¼ 1þ

s

W
exp

−△U

kT

� �

−1

ð2Þ

η can also be calculated using the lifetime [8,9]:

Figure 1 Luminescent mechanism of thermal effects in inorganic solids. (a) Emission from a

luminescent activator upon excitation. (b) TQ results in nonradiative pathway associated with heat. (c) TI

excites electrons to conduction band through heat. (d) TD can lead to other emissions as a result of heat.

A and A* represent the ground and excited states of the activator, respectively. A’ and A*’ represent the

ground and excited states of the activator with different charges, respectively. VB and CB represent the

valence and conduction bands of the host, respectively.
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η ¼
τ

τR
ð3Þ

where τ is the observed lifetime from the intensity decay curves and τR is the lifetime

of the excited state without any nonradiative decay process. However, it is not possible

to obtain the radiative lifetime (τR) through Judd-Ofelt theory only. It is conventional

to measure an approximated value of radiative lifetime using an extremely dilute sys-

tem. Figure 1 (c) shows the relative positions between the localized 5d electron states

of activators and the delocalized conduction band states of hosts. First, autoionization

spontaneously occurs and no 5d–4f emission is observed when the lowest 5d state is

above the bottom of the conduction band. Such cases include Ba10(PO4)4(SiO4)2:Eu
2+

[10], Ln2O3:Ce
3+ [11], LaAlO3:Ce

3+ [12], and the Eu2+ on the trivalent rare-earth sites

in oxide compounds [13]. Second, the 5d states of the activators are below the conduc-

tion band of the hosts in most 5d–4f emission situations. The 5d electrons are ionized

to the conduction band through thermal ionization (TI), which depends on the energy

EdC between the 5d state (d) of the activator and the bottom of the conduction band

(C) [14,15]. The activator Eu2+ located in the fluffy structure is easily oxidized to the

trivalent species through high temperature. Therefore, the existence of Eu3+ can be

observed in the photoluminescence (PL) and X-ray absorption spectra. This phenomenon is

called thermal degradation (TD) effect [Figure 1 (d)].

Thermal effects are detrimental for SSL technology. In the present study, a systematic

review on the performance and mechanisms of (oxy)nitride phosphors for modern

wLEDs applications was conducted.

Methods

Solid state reaction is a well-accepted classical reaction applied for micro-scale lumi-

nescent powders. For instance, nitridosilicate compounds (M2-xSi5N8:Eux {M = Sr, Ba})

[16] were successfully prepared through this method. A homogeneous mixture was pre-

pared using stoichiometric amounts of powdered Sr3N2 (Cerac, 99.5%, ~60 mesh), Ba3N2

(Cerac, 99.7%, ~20 mesh), Si3N4 (Aldrich, 99.9%), and EuN (Cerac, 99.9%, ~60 mesh)

in a glove box, and then packed in a molybdenum crucible. The mixture was

reacted in a tube furnace at 1400°C for 16 h with flowing 90%N2–10%H2 atmos-

phere. Oxonitridosilicates composites (Sr1-xSi2O2N2:Eux
2+) [17] were synthesized

through the same method.

Second, a gas-pressure technique utilizing graphite heater was used for the synthesis of

the oxonitridoaluminosilicates M1.95Eu0.05Si5-xAlxN8-xOx (M= Ca, Sr, Ba) [18]. Stoichio-

metric mixture of high purity Ba3N2, Sr3N2, Ca3N2, α-Si3N4, EuN, and Al2O3 was ground,

placed in boron nitride crucibles, and fired in a gas-pressure sintering furnace (FVPHP-R-5,

FRET-25, Fujidempa Kogyo Co. Ltd.) at 800°C under a vacuum of 10−2 Pa. Reaction

temperature was then increased and maintained at 1600°C for 2 h with flowing nitrogen

gas (99.999% purity). Moreover, this method afforded excellent results in the synthesis of

nitridosilicates (Ca1-xLix)(Al1-xSi1+x)N3:Eu [19].

Third, nitridosilicates (MYSi4N7:Eu
2+ {M= Ca, Sr, Ba}) [20] were synthesized from the

stoichiometric mixture of CaCO3, SrCO3, BaCO3, Y2O3, and Eu2O3 through carbothermal

reduction and nitridation. The starting materials and active carbon were thoroughly

mixed and reacted at 1800°C for 2 h in a gas-pressure sintering furnace under a pressure

of 0.92 MPa.
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Results and discussion

TQ effect

The intensities of luminescent materials decrease with increasing temperature in a nor-

mal environment through the TQ effect. Excited electrons are promoted to a higher

state of vibration excitation energy levels by absorbing external energy at high tempera-

tures. Afterward, these excited electrons relax to the ground state of the activators

through a non-radiative manner. The TQ effect affects the luminous efficiency of fluor-

escent compounds. For instance, nitride phosphors have an important role in wLED fabri-

cation because of their high efficiencies and thermal stabilities. A size-mismatch between

host and dopant cations affects the TQ conditions of the M1.95Eu0.05Si5-xAlxN8-xOx

Figure 2 TQ properties of M1.95Eu0.05Si5-xAlxN8-xOx
materials (M = Ca, Sr, Ba). (a) Temperature-

dependent normalized-intensity curves are shown as functions of IT/I0 = [1 + D exp(−Ea/kT)]
−1 where I0 (the

intensity at T = 0), D, and Ea (the activation energy) are refined variables. (b) The relations of the activation

energies and components for different alkaline earth metal series. (Reprinted with permission from reference

[18]. Copyright 2012, American Chemical Society).
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Figure 4 Thermal properties. Temperature-dependent normalized emission intensities for (a) (Ca1-xLix)

(Al1-xSi1+x)N3:Eu and (b) (Ca1-xLax)(Al1+xSi1-x)N3:Eu samples (x = 0 – 0.15). These curves are fitted by IT/I0 =

[1 + D exp(−Ea/kT)]
−1. Photoluminescence spectra were obtained at T = 298 K to 573 K, and is shown in the

right hand side. (c) Activation energies as a function of variable x for La and Li series. (Reprinted with

permission from reference [19]. Copyright 2013, American Chemical Society).

Figure 3 Cation-size-mismatch mechanisms for (a) Ca1.95Eu0.05Si4AlN7O and (b) Ba1.95Eu0.05Si4AlN7O

phosphors. (Reprinted with permission from reference [18]. Copyright 2012, American Chemical Society).
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(M =Ca, Sr, Ba) materials, as shown in Figure 2. When M= Sr and Ba, the initial

temperature for the TQ is maintained at around 300 K. For M =Ca series, temperature

drastically but reversibly decreases to around 150 K when AlO+ substitution increases to

x = 1 (Figure 2a). The curves are fitted by the following equation [21]:

IT=I0 ¼ 1þ D exp −Ea=kTð Þ½ �−1 ð4Þ

The activation energy (Ea) of different components can be obtained and described in

Figure 2b. When x = 0, the quenching Ea values of the three series are around 0.28 eV,

and largely deviate with increasing x. These finding evidently indicates that the series

follows the order of the thermal stability of M = Ba >M= Sr >M =Ca in M1.95Eu0.05Si5-

xAlxN8-xOx materials. Figure 3 illustrates that variations in TQ were caused by the cat-

ion size-mismatch. This notable effect is ascribed to the surrounding-coordination of

Eu2+ when the difference between large Ba2+ or small Ca2+, and the dopant Eu2+ is com-

parable with the difference between the anion radii [[4]r(N3−) - [4]r(O2−) = 0.08 Å]. With

the significant dispersion of size △r [[8]r(Eu2+) - [8]r(Ca2+) = 1.25 - 1.12 = 0.13 Å] in the

Ca1.95Eu0.05Si5-xAlxN8-xOx system, the lattice strain is relaxed by bonding numerous oxy-

gen anions around the Eu2+ cations, as shown in Figure 3a. Hence, the thermal stability of

the system decreases by increasng the AlO+ substitution, which coincides with the activa-

tion energy (Figure 2b). Eu2+ is smaller than Ba2+ and prefers to be coordinated with

Figure 5 Remotely-controlled mechanisms for (a) CaAlSiN3, (b) La, and (c) Li series lattices. Wide

solid lines (deep red) represent the shorter and tauter bonds. Dashed lines (light red) represent the

longer and flabbier bonds. (Reprinted with permission from reference [19]. Copyright 2013, American

Chemical Society).
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nitride in the Ba1.95Eu0.05Si5-xAlxN8-xOx system, as shown in Figure 3b. Therefore, Ba2+

cations are preferentially coordinated by introducing oxide anions. The results imply that

the Ea gradually increases with increasing x value for M = Ba (Figure 2b).

Furthermore, a remotely-controlled phenomenon results in a variable photolumines-

cence of the CaAlSiN3 compound by introducing Li+/Si4+ and La3+/Al3+ pairs, as shown

in Figure 4. The emission intensities (IT) of all components evidently decreased with in-

creasing temperature because of the TQ effect, as illustrated in the right side of Figure 4.

The intensities of the samples with Li inclusion [(Ca1-xLix)(Al1-xSi1+x)N3:Eu] decreased

Figure 6 Thermal-dependent relative emission intensity of Eu2+-activated MYSi4N7 (M = Ca, Sr, Ba).

(Reprinted with permission from reference [20]. Copyright 2010, The Electrochemical Society).

Figure 7 TI effect mechanisms for (a) CaYSi4N7:Eu, (b) SrYSi4N7:Eu, and (c) BaYSi4N7:Eu. TIP and CFS

represent the TI process and crystal field splitting, respectively. VB and CB represent the valence and

conduction bands of hosts, respectively.
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Figure 8 Temperature-dependent luminescent spectra of (a) Sr2-xSi5N8:Eux (x = 0.02) (b) Sr2-xSi5N8:

Eu
x
(x = 0.10), and (c) Ba2-xSi5N8:Eux

(x = 0.10) heated and reversely cooled as functions of the

temperature (25°C to 300°C). Plot of the relative intensity against the temperature is inserted. (Reprinted

with permission from reference [16]. Copyright 2012, American Chemical Society).
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slower than that of the CaAlSiN3:Eu
2+ sample (x = 0), but the intensities of the samples

with La inclusion [(Ca1-xLax)(Al1+xSi1-x)N3:Eu] decreased rapider than that of the

CaAlSiN3:Eu
2+ sample, as displayed in Figure 4a and b. The TQ Ea gradually improved

across all materials from the La-included series (x = 0.15 to 0.03) to the intermediate x = 0

sample, and then to the Li-included series (x = 0.03 to 0.15), as shown in Figure 4c. These

results are inconsistent with the covalence balance, as well as the substitutions of

the LaAl6+ and LiSi5+ cation pairs for CaSi6+ and CaAl5+, respectively. The remotely-

controlled mechanisms explain the variations of the quenching behavior observed in

Figure 5. The La-N bond is more covalent than the Ca-N bond; however, the Al-N

bond is less covalent than the Si-N bond with the introduction of the LaAl6+ pair into

the CaAlSiN3 (x = 0) sample. Based on the radius, the Eu2+ cation [[6]r(Eu2+) = 1.17 Å]

is larger than the Ca2+ cation [[6]r(Ca2+) = 1.00 Å]. To minimize the lattice strain, a Eu2+

activator should be preferably contained in the wider Ca2+ site, as shown in the right side

of Figure 5b. When the x value increases, the thermal stability of the La series decreases

because of the weak covalent coordination environment for the Eu2+ dopant. However,

the rigid bond from the Eu2+ cation improves the thermal stability of the Li series

because the Li-N bond is less covalent than the Ca-N bond and has excess Si4+, as

presented in Figure 5c. These particular conditions for the TQ behavior of all

M1.95Eu0.05Si5-xAlxN8-xOx, (Ca1-xLix)(Al1-xSi1+x)N3:Eu, and (Ca1-xLax)(Al1+xSi1-x)N3:Eu

compounds demonstrated that the local coordination neighborhoods of the Eu2+ activator

are susceptible to the nearest anions (N3− and O2−) or cations (La3+ and Li+).

TI effect

The degree of TQ is unpredictable and can be exactly arranged according to the chan-

ging ionic radii of the alkali-earth ions in the same system. Similar to MYSi4N7:Eu

(M = Ca, Sr, Ba) compounds, the relative emission intensities of the three samples

drastically decreased and are in the order of Sr > Ba > Ca at around 100°C (Figure 6).

These findings indicate that the excited 5d electrons relax through the anomalous TI,

Figure 9 Different local coordination structures of (a) Sr2Si5N8:Eu and (b) Ba2Si5N8:Eu samples.

(Reprinted with permission from reference [16]. Copyright 2012, American Chemical Society).
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which depends on the distance between the 5d state of the activator and the bottom of

the conduction band of the host. The proposed energy level diagram for TI depends

on the crystal field splitting of the 5d level of the activators and the computationally

determined bandgaps of the hosts, as illustrated in Figure 7. The distinct TI effect and

strong TQ occur in the CaYSi4N7:Eu sample because of its small bandgap of 2.68 eV

(∆bandgap 1 > > ∆bandgap 2). For the Sr and Ba samples, the deviation in the crystal

field splitting for the Eu2+ (∆CFS 2) and the bandgap for the hosts (∆bandgap 2) result

in the long TI process (TIP 2) of the SrYSi4N7:Eu compound, which leads to a low TI

effect. According to the above-mentioned findings, the bandgap of the hosts and the

crystal field splitting of the activators relatively influence the TQ behavior except for

the local structure of dopants.

TD effect

In high-power LED devices, luminescent materials suffer from TD, which is diffe-

rent with TQ and cannot elaborate the thermal behavior at high temperature. The

Figure 10 Electron spectroscopy for chemical analysis spectra of (a) SrSi2O2N2: Eu0.03
2+ (baked and

unbaked samples) and detailed XPS spectra are shown in (b) O 1 s, (c) N 1 s, (d) Si 2p, and (e) Eu

4d, respectively. (Reprinted with permission from reference [17]. Copyright 2014, The Royal Society

of Chemistry).

Lin and Liu Journal of Solid State Lighting 2014, 1:16 Page 10 of 13

http://www.journalofsolidstatelighting.com/content/1/1/16



intensity of Sr1.98Si5N8:Eu0.02 sample decreases and normally recovers as a function

of the surrounding temperature, as shown in Figure 8a. The TD of the Sr1.9Si5N8:

Eu0.1 sample is irreversible (Figure 8b). By contrast, the initial intensity of Ba1.9Si5N8:Eu0.1
can be recovered from a high temperature to atmospheric conditions (Figure 8c).

Based on the literature, alkali earth metals of M2Si5N8 (M = Sr, Ba), such as those

with 8-coordination and 10-coordination sites, have two kinds of coordinate posi-

tions. The alkali earth metals have varying ionic radii [[8]r(Ba2+) = 1.42 Å; [8]r(Sr2+) =

1.26 Å], and the europium activator [[8]r(Eu2+) = 1.25 Å] is closed to Sr2+. Eu2+ is

preferentially doped into the 8-coordination site of Ba2+ ion in the Ba2Si5N8 com-

pound because its small radius [[8]r(Eu2+) < [8]r(Ba2+)] is suitable for the small space

(8-coordination site). However, Eu2+ is randomly doped into the 8-coordination or

10-coordination sites of Sr2+ ion in the Sr2Si5N8 compound because of their similar ionic

radii [[8]r(Eu2+) ~ [8]r(Sr2+)]. Therefore, the covalence of Eu-N in Ba2Si5N8 is higher than

that in Sr2Si5N8, which confers thermal stability to Ba1.9Si5N8:Eu0.1. Upon heating, the

mobility of oxygen atoms on the Sr1.9Si5N8:Eu0.1 surface results in oxidation

reaction and forms byproducts. Figure 9 briefly describes the TD mechanism.

In addition, the SrSiO3 formation and the oxidation reaction (Eu2+→ Eu3+) of

Sr0.97Si2O2N2:Eu
2+
0.03 occur during the baking process, as demonstrated in Figure 10.

The oxidation reaction is represented by the following chemical equation [22]:

2Eu2þ þ 1=2O2 gð Þ þ Vo→ 2Eu3þ þ Oo2− ð5Þ

Figure 11 Crystal structures of (a) SrSi2O2N2:Eu and (b) BaMgAl17O19:Eu. (Reprinted with permission

from reference [17]. Copyright 2014, The Royal Society of Chemistry).
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where Vo and Oo2− are the oxygen vacancy and oxygen ion of the lattice, respectively.

Eu2+ ions are easily attacked by oxygen because these ions are found between the

SiON3 layers and the crystal structure of BaMgAl17O19, as illustrated in Figure 11.

However, the activators are protected from oxygen by the polyhedron Eu(O,N)7 in

α-sialon. As discussed previously, plastic deformation of the luminescent intensity,

defined as the irreversible TD, is prevent. By contrast, TQ is a reversible process,

and is referred to as the elastic deformation of luminescent intensity.

Conclusions

In summary, the main effects are generalized and discussed according to the thermal

characteristics of various (oxy)nitride phosphors. In addition, thermal concepts that

could prevent serious thermal destruction were presented. First, the thermal stability of

phosphors is attained through ionic substitution and charge balance, such as AlO+
→

SiN+ and LiSi5+→CaAl5+. Considerable thermal effects depend on the local positions

of the activators. Second, the adjustment of the host bandgap can be improved by

controlling the host components. Finally, TD can be minimized through surface coating

and having excellent crystalline phosphor particles.
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